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In the parallel k-stage flow-shops problem, we are given m identical k-stage flow-shops and 
a set of jobs. Each job can be processed by any one of the flow-shops but switching 
between flow-shops is not allowed. The objective is to minimize the makespan, which 
is the finishing time of the last job. This problem generalizes the classical parallel identical 
machine scheduling (where k = 1) and the classical flow-shop scheduling (where m = 1) 
problems, and thus it is NP-hard. We present a polynomial-time approximation scheme 
(PTAS) for the problem, when m and k are fixed constants. The key technique is to partition 
the jobs into big jobs and small jobs, enumerate over all feasible schedules for the big jobs, 
and handle the small jobs by solving a linear program and employing a “sliding” method. 
Such a technique has been used in the design of PTAS for several flow-shop scheduling 
variants. Our main contributions are the non-trivial application of this technique and a 
valid answer to the open question in the literature.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the parallel k-stage flow-shop problem, we are given m parallel identical k-stage flow-shops F1, F2, . . . , Fm and a set of 
n jobs J = { J1, J2, . . . , Jn}. These k-stage flow-shops are the classic flow-shops, each contains exactly one machine at every 
stage, i.e., k sequential machines. Every job has k operations, and it can be assigned to exactly one of the m flow-shops 
for processing; once it is assigned to the flow-shop, its k operations are then respectively processed on the k sequential 
machines in the flow-shop. The goal is to minimize the makespan, which is the completion time of the last job. We denote 
the problem for simplicity as (m, k)-PFS. Let M�,1, M�,2, . . . , M�,k denote the k sequential machines in the flow-shop F� , for 
every �. The job J i is represented as a k-tuple (pi,1, pi,2, . . . , pi,k), where pi, j is the processing time for the j-th operation, 
that is, J i needs to be processed non-preemptively on the j-th machine in the flow-shop to which the job is assigned. For 
all i and j, the processing time pi, j is a non-negative real number.

It is clear to see that, when m = 1, the (m, k)-PFS problem is the classic flow-shop scheduling [5] (a k-stage flow-shop); 
when k = 1, the (m, k)-PFS problem is the classic multiprocessor scheduling [5] (m parallel identical machines). When the 
two-stage flow-shops are involved, i.e., k = 2, the (m, 2)-PFS problem has been previously studied in [13,25,28,4]. Here 

✩ An extended abstract appears in the Proceedings of FAW 2016.
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we first review the complexity and the approximation algorithms for the flow-shop scheduling and the multiprocessor 
scheduling problems.

For the k-stage flow-shop problem, it is known that when k = 2 or 3, there exists an optimal schedule that is a permuta-
tion schedule, in which the jobs are processed on all the k machines in the same order; but when k ≥ 4, it is shown [3] that 
there may exist no optimal schedule that is a permutation schedule. Johnson [18] presented an O (n log n)-time algorithm 
for the two-stage flow-shop problem, where n is the number of jobs; the k-stage flow-shop problem becomes strongly NP-
hard when k ≥ 3 [6]. After several efforts [18,6,7,2], Hall [12] designed a polynomial-time approximation scheme (PTAS) for 
the k-stage flow-shop problem, for any fixed constant k ≥ 3. Due to the strong NP-hardness, such a PTAS is the best possible 
unless P = NP. When k is a part of the input (i.e., an arbitrary integer), Williamson et al. [27] showed that the flow-shop 
scheduling cannot be approximated within 1.25; nevertheless, it remains unknown whether this case is APX-complete, that 
is, whether the problem admits a constant ratio approximation algorithm.

Note that the m-parallel identical machine scheduling problem is NP-hard when m ≥ 2 [5]. When m is a fixed integer, 
the problem admits a pseudo-polynomial time exact algorithm [5], and Sahni [23] showed that this exact algorithm can 
be used to construct a fully PTAS (FPTAS); when m is a part of the input, the problem becomes strongly NP-hard, but still 
admits a PTAS by Hochbaum and Shmoys [14].1 The list-scheduling algorithm by Graham [8] is a (2 − 1/m)-approximation, 
for arbitrary m.

The APX-hardness of the classic k-stage flow-shop problem when k is a part of the input implies the APX-hardness of 
the (m, k)-PFS problem when k is a part of the input. When k is a fixed integer, the (m, k)-PFS problem could admit a 
PTAS; however, since the classic k-stage flow-shop problem is strongly NP-hard for a fixed k ≥ 3, the (m, k)-PFS problem 
would not admit an FPTAS unless P = NP. In this paper, we present a PTAS for the (m, k)-PFS problem when both k and 
m are fixed integers, which is the best possible approximability result. On the other hand, the (in-)approximability of the 
(m, k)-PFS problem when m is a part of the input while k is a fixed integer is left open.

Besides the (m, k)-PFS problem, another generalization of the flow-shop scheduling and the multiprocessor scheduling is 
the so-called hybrid k-stage flow-shop problem [20,22]. A hybrid k-stage flow-shop is a flexible flow-shop, that contains m j ≥ 1
parallel identical machines in the j-th stage, for j = 1, 2, . . . , k. The problem is abbreviated as (m1, m2, . . . , mk)-HFS. A job 
J i is again represented as a k-tuple (pi,1, pi,2, . . . , pi,k), where pi, j is the processing time for the j-th operation, which can 
be processed non-preemptively on any one of the m j machines in the j-th stage. The objective of the (m1, m2, . . . , mk)-HFS 
problem is also to minimize the makespan. One clearly sees that when m1 = m2 = . . . = mk = 1, the problem reduces to the 
classic k-stage flow-shop problem; when k = 1, the problem reduces to the classic m-parallel identical machine scheduling 
problem.

As a toy example, suppose there is a set of three jobs, J = { J1 = (p1,1, p1,2, p1,3), J2 = (p2,1, p2,2, p2,3), J3 =
(p3,1, p3,2, p3,3)}, that need to be processed. When we are provided with a (2, 3)-PFS (that is, two parallel identical 3-stage 
flow-shops), we may assign J1 to the second flow-shop; then J1 will be processed on the first machine of the second 
flow-shop for p1,1 units of time, then on the second machine of the second flow-shop for p1,2 units of time, and lastly on 
the third machine of the second flow-shop for p1,3 units of time. On the other hand, if we are provided with a (2, 1, 3)-HFS, 
then we may process J1 on any one of the two first-stage machines for p1,1 units of time, then on the (only) second-stage 
machine for p1,2 units of time, and lastly on any one of the three third-stage machine for p1,3 units of time.

The literature on the hybrid k-stage flow-shop problem (m1, m2, . . . , mk)-HFS is also rich [20,22], especially on the hybrid 
two-stage flow-shop problem (m1, m2)-HFS. First, (1, 1)-HFS is the classic two-stage flow-shop problem which can be opti-
mally solved in O (n log n) time [18], where n is the number of jobs. When max{m1, m2} ≥ 2, Hoogeveen et al. [15] showed 
that the (m1, m2)-HFS problem is strongly NP-hard. The special cases (m1, 1)-HFS and (1, m2)-HFS have attracted many 
researchers’ attention [9,11,1,10]; the interested reader might refer to [26] for a survey on the hybrid two-stage flow-shop 
problem with a single machine in one stage.

For the general hybrid k-stage flow-shop problem (m1, m2, . . . , mk)-HFS, when all the m1, m2, . . ., mk are fixed in-
tegers, Hall [12] claimed that the PTAS for the classic k-stage flow-shop problem can be extended to a PTAS for the 
(m1, m2, . . . , mk)-HFS problem. Later, Schuurman and Woeginger [24] presented a PTAS for the hybrid two-stage flow-shop 
problem (m1, m2)-HFS, even when the numbers of machines m1 and m2 in the two stages are a part of the input. Jansen 
and Sviridenko [17] generalized this result to the hybrid k-stage flow-shop problem (m1, m2, . . . , mk)-HFS, where k is a 
fixed integer while m1, m2, . . . , mk can be a part of the input. Due to the inapproximability of the classic k-stage flow-shop 
problem, when k is arbitrary, the (m1, m2, . . . , mk)-HFS problem cannot be approximated within 1.25 unless P = NP [27]. 
Table 1 summarizes the results we reviewed thus far.2 In addition, there are plenty of heuristic algorithms in the literature 
for the general hybrid k-stage flow-shop problem, and the interested readers can refer to the survey by Ruiz et al. [22].

Compared to the rich literature on the hybrid k-stage flow-shop problem, the parallel k-stage flow-shop problem is 
much less studied. In fact, the general (m, k)-PFS problem is almost untouched, except only the two-stage flow-shops are 
involved [13,25,28,4]. He et al. [13] first studied the m parallel identical two-stage flow-shop problem (m, 2)-PFS, motivated 

1 We note that there are sequences of work in developing faster PTASes, which are not the intended subject in this paper. The interested readers might 
refer to [16] for major references.

2 We do not list the detailed running time of these algorithms. Again, we note that there are sequences of work in developing faster PTASes, which are 
not the intended subject in this paper. The interested readers might refer to [16] for major references.
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Table 1
Known results for the hybrid k-stage flow-shop problem.

m j machines in stage j

m j = 1 m j fixed m j arbitrary

k stages k = 1 polynomial time FPTAS [23] PTAS [14]
k = 2 polynomial time [18] PTAS [12] PTAS [24]
k ≥ 3 fixed PTAS [12] PTAS [12] PTAS [17]
k arbitrary not be approximated within 1.25 [27]

by an application from the glass industry. In their work, the (m, 2)-PFS problem is formulated as a mixed-integer program-
ming and an efficient heuristic is proposed [13]. Vairaktarakis and Elhafsi [25] also studied the (m, 2)-PFS problem, in order 
to investigate the hybrid k-stage flow-shop problem. Among other results, Vairaktarakis and Elhafsi [25] observed that the 
(2, 2)-PFS problem can be broken down into two subproblems, a job partition problem and a classic two-stage flow-shop 
problem. Note that the second subproblem can be solved optimally by Johnson’s algorithm [18]. The NP-hardness of the first 
subproblem [5] implies the NP-hardness of (2, 2)-PFS, simply by setting all pi,2’s to zeros. One of the major contributions 
in [25] is an O (nP 3)-time dynamic programming algorithm for solving the NP-hard (2, 2)-PFS problem optimally, where n
is the number of jobs and P is the sum of all processing times. (Qi [21] later improved the running time to O (nP 2).) That 
is, the (2, 2)-PFS problem can be solved exactly in pseudo-polynomial time.

The NP-hardness of (2, 2)-PFS implies that the general (m, 2)-PFS problem is NP-hard, when either m is a part of the 
input (arbitrary) or m is a fixed integer greater than one. Zhang et al. [28] studied on how to approximate the (m, 2)-PFS 
problem, more precisely only for the special case where m = 2 or 3. They designed a 3/2-approximation algorithm when 
m = 2 and a 12/7-approximation algorithm when m = 3 [28]. Both algorithms are variations of Johnson’s algorithm and the 
main idea is first to sort all the jobs using Johnson’s algorithm into a sequence, then to cut this sequence into two (three, 
respectively) parts for the two (three, respectively) two-stage flow-shops in order to minimize the makespan. Recently, Dong 
et al. [4] extended the dynamic programming algorithm for the (2, 2)-PFS problem to solve the (m, 2)-PFS problem, for any 
fixed m ≥ 2, in O (nmP 2m+1)-time and O (P 2m)-space. They then designed an FPTAS for the (m, 2)-PFS problem out of this 
exact pseudo-polynomial time algorithm.

Here we present a PTAS for the (m, k)-PFS problem when m and k are fixed integers. Our PTAS borrows some design 
ideas from the PTAS for the classic k-stage flow-shop problem by Hall [12]. The key technique is to partition the jobs into 
big jobs and small jobs, enumerate over all feasible schedules for the big jobs, and handle the small jobs by solving a linear 
program and employing a “sliding” method. Such a technique has been used in the design of PTAS for several flow-shop 
scheduling variants. Our main contributions are the non-trivial application of this technique and a valid answer to the open 
question proposed in [4].

2. An approximation scheme for the (m, k)-PFS Problem

In the sequel, a schedule for an instance of the (m, k)-PFS problem is an assignment of non-negative starting times to all 
the operations of the given jobs, each on one of the m flow-shops, and a feasible schedule is one in which the assignment 
meets the processing restrictions: 1) each job can have at most one of its operations undergoing processing at any point in 
time, 2) each operation of a job must be processed on a machine non-preemptively for the specified length of time, and 
3) each machine can process at most one operation at any point in time. We use π∗ to denote an optimal schedule and its 
makespan is denoted by OPT.

For ease of presentation, we let Pi = ∑k
j=1 pij denote the total processing time of the job J i over all k machines, and 

assume without loss of generality that P1 ≥ P2 ≥ . . . ≥ Pn; we also let Q j = ∑n
i=1 pij denote the total processing time of all 

the jobs in the j-th stage machines. Define P = ∑n
i=1 Pi = ∑k

j=1 Q j . The following lemma bounds OPT.

Lemma 1. We have the following upper and lower bounds on OPT:

max

{
P

mk
, P1

}
≤ OPT ≤ P

m
+ P1.

Proof. Recall that in a k-stage flow-shop, a job is first processed on the first machine, and when it is finished it can start 
to be processed on the second machine, and so on. Therefore, the optimal makespan must be greater than or equal to P1, 
the longest total processing time of a job, that is, OPT ≥ P1. On the other hand, OPT ≥ Q j

m for every j, which is the average 
processing time on the m machines in the j-th stage. This gives OPT ≥ 1

k

∑k
j=1

Q j
m = P

mk .
For the upper bound, we add an extra constraint on the job processing: that every flow-shop must complete a job (i.e., 

finish processing on all the k machines) before starting processing another job. This essentially constructs an instance of 
the m parallel identical machine scheduling problem to minimize the makespan, where the job J i has processing time Pi . 
The list scheduling algorithm by Graham [8] produces a schedule π with makespan Cπ ≤ P

m + (1 − 1
m )P1 ≤ P

m + P1. Certainly 
OPT ≤ Cπ , and thus the upper bound is proved. �
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We normalize the job processing time by dividing each pij by the quantity 2 · max{P/m, P1}, for all i, j. This way, we 
have

1

2k
≤ OPT ≤ 1. (1)

Note that from the proof of Lemma 1 we also have Cπ ≤ 1, where π is the schedule produced by the list scheduling 
algorithm and Cπ denotes its makespan. We aim to find a better schedule than π and therefore, in the sequel, we consider 
only those feasible schedules having a makespan less than or equal to 1.

We use [n] to denote the set {1, 2, . . . , n}, for every integer n ≥ 1. For some real number γ ∈ (0, 1), which will be 
determined later (in Eq. (4)), we partition the job set J into two subsets of big jobs and small jobs, as follows.

B = { J i | ∃ j ∈ [k], pij ≥ γ }, and S = { J i | ∀ j ∈ [k], pij < γ }. (2)

The next lemma states that there are not too many big jobs.

Lemma 2. There are at most mk
γ big jobs.

Proof. If there were more than mk/γ big jobs, then in any feasible schedule there would be at least one of the mk machines 
which processes strictly more than 1/γ big job, resulting in a makespan greater than 1. This contradicts Eq. (1). �

At the high-level, the basic idea in our PTAS is as follows. First we compute the configuration for each feasible schedule 
(having a makespan ≤ 1), and the feasible schedules are partitioned into groups by their configurations. Then for each group, 
we use its configuration to construct a feasible schedule such that its makespan is very close to the minimum makespan of 
the schedules in the group. Lastly, we return the constructed schedule with the minimum makespan over all the groups.

2.1. Configuration

Recall that π∗ denotes an optimal schedule and its makespan is OPT, which is lower and upper bounded in Eq. (1). 
Recall also that the makespan of all the feasible schedules considered is at most 1. We will determine the parameter γ
later (in Eq. (4)), which depends on the worst-case approximation ratio we want to achieve.

Let δ ∈ (0, 1) be a multiple of γ (again this multiple will be determined later, in Eq. (4)), such that μ = 1/δ is an integer. 
We call an interval of length δ a δ-interval. (In our discussion, these intervals are half open.) The time interval [0, 1) is 
partitioned into μ consecutive δ-intervals; and we let It denote the t-th δ-interval [(t − 1)δ, tδ), for each t ∈ [μ].

Given a feasible schedule π (with makespan ≤ 1), for each job J i , we define its assignment as Xi = (�, s1, s2, . . . , sk), 
where � is the index of the flow-shop to which the job J i is assigned in the schedule π , and s j records the index of the 
δ-interval in which the j-th operation is started. That is, the machine M�, j starts processing the job J i in the δ-interval 
[(s j − 1)δ, s jδ). Let XB = (Xi) J i∈B and XS = (Xi) J i∈S .

In the schedule π , for each δ-interval It , t ∈ [μ] and each machine M�, j , (�, j) ∈ [m] × [k], we define Lt,�, j to be the 
workload of small jobs, which is the total time inside the interval It the machine M�, j spends for processing small jobs. 
Furthermore, we always round Lt,�, j up to the nearest multiple of γ . Let L = (Lt,�, j)(t,�, j)∈[μ]×[m]×[k] .

Then (XB, L) is defined as the configuration of the schedule π , or we say that the schedule π is associated with the 
configuration (XB, L). It is important to note that the configuration does not have any information about the assignments 
of small jobs. Clearly, every feasible schedule is associated with exactly one configuration; the feasible schedules associated 
with the same configuration form a group. The following Lemma 3 states that there are not too many distinct configurations. 
Let C be the collection of all configurations.

Lemma 3. There are at most (mμk)mk/γ (δ/γ + 1)mkμ distinct configurations in C .

Proof. From Lemma 2, the number of big jobs is at most mk/γ . Since every job can have at most mμk different assignments, 
the number of all possible assignments XB for big jobs is no greater than (mμk)|B| ≤ (mμk)mk/γ .

For every Lt,�, j that is a multiple of γ , its value is in {0, γ , 2γ , . . . , δ}. That is, there are δ/γ +1 different possible values. 
Therefore, the number of all possible L is no greater than (δ/γ + 1)mkμ .

Putting these two upper bounds together, there are at most (mμk)mk/γ (δ/γ + 1)mkμ distinct configurations in C . �
2.2. The PTAS

We want to construct a feasible schedule for every configuration in C , such that the makespan of the constructed 
schedule is very close to the minimum makespan among all the feasible schedules associated with the same configuration. 
For simplicity, we fix a configuration and assume that the optimal schedule π∗ is associated with this configuration. That 
is, among all the feasible schedules associated with this configuration, the minimum makespan is OPT.
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Algorithm Slide-I:

Input: m parallel identical k-stage flow-shops, J with known assignments, γ , δ;
Output: A feasible schedule π (with makespan at most OPT + 2(k − 1)δ).

Step 1. For each machine M�, j and each interval It :
1.1. let Ot,�, j be the operation set with starting time in It on M�, j ;
1.2. schedule the operations of Ot,�, j in non-decreasing processing time;
1.2. let πt,�, j denote the sub-schedule for Ot,�, j ;

Step 2. For each machine M�, j :
2.1. concatenate πt,�, j in increasing t;
2.2. let π�, j denote the sub-schedule on M�, j ;

Step 3. For each machine M�, j :
3.1. delay the sub-schedule π�, j by 2( j − 1)δ time;

Step 4. Return the final whole schedule denoted as π .

Fig. 1. A high-level description of Slide-I.

We describe an algorithm called Slide-I (see Fig. 1) that constructs a feasible schedule when the assignments of all the 
jobs of J are known, that is, more information than the configuration. Using the assignments, the algorithm first collects 
for each machine M�, j the set of operations it needs to start in the interval It ; let Ot,�, j denote this set of operations, 
for every (t, �, j) ∈ [μ] × [m] × [k]. Next, the machine M�, j processes the operations of Ot,�, j in a non-decreasing order of 
processing time (in fact, any order suffices as long as all operations can be started in the interval It ), denoted as 

−→Ot,�, j (in 
Lemma 4 we prove that all these operations can be started in the interval It , in particular in the non-decreasing order of 
processing time); thus the sub-schedule on M�, j is 〈−→O1,�, j, 

−→O2,�, j, . . . , 
−→Oμ,�, j〉. Lastly, the machine M�, j delays the processing 

by 2( j − 1)δ time.

Lemma 4. If in the configuration the assignments for all the jobs of J are known, then the algorithm Slide-I produces a feasible 
schedule with makespan at most OPT + 2(k − 1)δ.

Proof. The algorithm Slide-I is a variant of the algorithm designed by Hall [12] for the classic k-stage flow-shop problem. 
We prove below that the schedule is feasible.

First, we claim that every operation of 
−→Ot,�, j starts its processing in the interval It+2( j−1) . This is true because 

−→Ot,�, j is 
an re-ordering of the operations of Ot,�, j with non-decreasing processing time, and therefore the last operation of 

−→Ot,�, j
still starts its processing in the interval It if the machine M�, j does not delay the processing by 2( j − 1)δ time.

Second, the delay in processing is sufficient to make the schedule feasible. Assume the job J i is assigned to the �-th 
flow-shop in the optimal schedule π∗ , its ( j − 1)-st operation starts in the interval It′ and its j-th operation starts in 
the interval It , for some t′, t ∈ [μ]. Originally the j-th operation starts after the ( j − 1)-st operation finishes; but due to 
re-ordering the ( j − 1)-st operation could be delayed as much as δ time while the j-th operation could be started as much 
as δ time earlier. Therefore, delaying the job processing by 2δ time relative to the machine M�, j−1, the machine M�, j can 
feasibly process all its jobs in order.

In summary, if the machines do not delay the processing, then the schedule, which could be infeasible, produced by the 
algorithm Slide-I has a makespan at most OPT. By sliding the processing on the machine M�, j by a 2( j − 1)δ-length time 
window, the schedule becomes feasible with its makespan increased by 2(k − 1)δ. This finishes the proof. �

Unfortunately, given a configuration, we do not have the assignment information about the small jobs, but only the 
small job workload for each machine inside each δ-interval. We next try to obtain from the configuration the assignment 
information of “most” small jobs. To this purpose, we construct a linear program (LP) with the decision variables yi,X , each 
for a small job and an assignment. That is, yi,X = 1 if and only if the small job J i has an assignment X in the given 
configuration. Recall that we use S to denote the set of small jobs and that there are at most mμk different assignments 
for each job.

(LP) ∑
X

yi,X = 1, ∀ J i ∈ S;
∑

J i∈S,X=(�,s1,...,s j=t,...,sk)

pij yi,X ≤ Lt,�, j, ∀(t, �, j) ∈ [μ] × [m] × [k];

y ≥ 0.

In this LP, every small job J i must have an assignment, and the workload of the small jobs on the machine M�, j inside 
the interval It must be less than or equal to Lt,�, j , due to rounding. Clearly, there are only |S| + kmμ constraints and 
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Algorithm Slide-II:

Input: m parallel identical k-stage flow-shops, J , a configuration, γ , δ;
Output: A feasible schedule π .

Step 1. Construct a linear program using the configuration and solve it;
1.1. obtain the job subset S1 with known assignments, and S2;

Step 2. Run the algorithm Slide-I on the job subset B ∪S1;
2.1. obtain a partial schedule π ;

Step 3. Append the jobs of S2 to the end of the schedule π ;
3.1. each flow-shop is assigned with |S2|/m small jobs of S2;

Step 4. Return the final whole schedule still denoted as π .

Fig. 2. A high-level description of Slide-II.

therefore the number of variables |S|mμk is considerably larger. It follows that a basic feasible solution to this LP has at 
most |S| + kmμ positive values. Note that for every small job J i , if there is an X such that yi,X is a positive fractional 
value, then there must be another distinct X ′ such that yi,X ′ is a positive fractional value too. Suppose the total number of 
positive fractional values in the basic feasible solution is N . Let S1 denote the subset of small jobs for each of which there 
is an associated variable having value 1, that is, from the basic solution we know the assignment for each small job of S1; 
and let S2 = S −S1 denote the subset of small jobs for each of which there are some (equivalently, at least two) associated 
variables having fractional values. It follows that |S2| ≤ N/2, and thus |S1| ≥ |S| − N/2. Therefore, the total number of 
positive values in the basic solution is at least |S| − N/2 + N = |S| + N/2. From |S| + N/2 ≤ |S| + kmμ we have N ≤ 2kmμ, 
and thus we conclude that

|S2| ≤ N

2
≤ kmμ. (3)

We summarize the above result from the LP in the following lemma.

Lemma 5. Given a configuration where the assignments for all the jobs of B are known, the assignments for most, but no more than 
kmμ, of jobs of S can be obtained by solving the constructed LP.

Now we are ready to describe the second algorithm called Slide-II (see Fig. 2). In the first step, the algorithm uses the 
given configuration to specify a linear program LP as stated in the above, and obtains a basic solution to the LP. In the 
second step, the algorithm retrieves the assignments for the small jobs of S1, and calls the algorithm Slide-I on the job set 
B ∪ S1 since it has the assignments for all the big jobs from the given configuration. Let π denote the achieved schedule. 
Lastly, the algorithm appends the small jobs of S2 to the end of the schedule π , arbitrarily but each of the m flow-shops 
is assigned |S2|/m small jobs. (When |S2|/m is not integral, some flow-shops are assigned 
|S2|/m� small jobs of S2, while 
the others are assigned �|S2|/m� small jobs.)

Lemma 6. Given the configuration, the algorithm Slide-II produces a feasible solution with makespan at most OPT + 2(k − 1)(δ +
γ ) + μγ + (kμ + k − 1)γ .

Proof. The feasibility of the schedule π follows from the correctness of the algorithm Slide-I, as summarized in Lemma 4. 
In the last step the algorithm only appends the small jobs of S2 to the end of the schedule π . Therefore, the final achieved 
schedule is still feasible.

From Lemma 4 we know that the makespan of the schedule π (by the algorithm Slide-I) is at most OPT + 2(k − 1)(δ +
γ ) + μγ , where the additional terms γ in (δ + γ ) and μγ are caused by the rounding up the small job workload to the 
nearest multiple of γ .

Since for each small job of S2, the processing time of every operation is at most γ , assigning it to any flow-shop will 
increase the completion time by at most kγ . Clearly, assigning two small jobs to a flow-shop will increase the completion 
time by at most (k +1)γ , and so on. From Eq. (3), every flow-shop processes at most kμ jobs of S2, and thus its completion 
time increases by at most (kμ + k − 1)γ . Therefore, the makespan of the final achieved schedule is at most OPT + 2(k −
1)(δ + γ ) + μγ + (kμ + k − 1)γ . �

Our final algorithm, called Slide-III, for the (m, k)-PFS problem runs the algorithm Slide-II on every configuration to 
achieve a schedule, and returns the best schedule among them, i.e., the one with the minimum makespan.

Theorem 1. The algorithm Slide-III can be designed into a PTAS for the (m, k)-PFS problem.
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Proof. For any ε ∈ (0, 1), we show how to set up the values for the parameters δ and γ such that the makespan of the 
schedule returned by the algorithm Slide-III is within (1 +ε)OPT. Recall that the job processing times have been normalized 
to ensure that Eq. (1) holds for OPT. Recall also that δ is a multiple of γ . For ease of presentation (to avoid the use of ceiling 
function) we assume ε = 1

T for some positive integer T . Let

δ = ε

8k(k − 1)
, and γ = ε2

64(k + 1)k2(k − 1)
. (4)

From Lemma 2, the number of big jobs is at most mk/γ , which is polynomial in m, k, 1ε . Moreover, when m and k are 
fixed constants and ε is given (and thus a constant as well), mk/γ is a constant. Similarly, from Lemma 3, the number of 
distinct configurations is at most (mμk)mk/γ (δ/γ + 1)mkμ , which is a constant when m, k, ε are fixed constants. That is, the 
algorithm Slide-III makes only a constant number of calls to the algorithm Slide-II.

Inside the execution of the algorithm Slide-II, the constructed linear program LP contains |S| + kmμ constraints and 
|S|mμk variables. That is, the size of the LP is polynomial when m, k, ε are fixed. Since a linear program can be solved 
in polynomial time, for example by the interior point method [19], and the running time of the algorithm Slide-I is poly-
nomial in the number of jobs which have known assignments, the running time of the algorithm Slide-II is polynomial 
in the number of jobs. In summary, the algorithm Slide-III is polynomial in n, the number of jobs, when m, k, ε are fixed 
constants.3

For the performance ratio, from Lemma 6 we only need to measure the additive error term against OPT. By μ = 1/δ and 
Eq. (4), we have the following:

2(k − 1)(δ + γ ) + μγ + (kμ + k − 1)γ

= 2(k − 1)δ + (3(k − 1) + (k + 1)μ)γ

= 2(k − 1)δ +
(

3(k − 1) + k + 1

δ

)
γ

= ε

4k
+

(
3(k − 1) + 8(k + 1)k(k − 1)

ε

)
ε2

64(k + 1)k2(k − 1)

= ε

4k
+ 3ε2

64(k + 1)k2
+ ε

8k

=
(

3

4
+ 3ε

32(k + 1)k

)
1

2k
ε

<
1

2k
ε.

It follows that the makespan of the schedule produced by the algorithm Slide-III is less than OPT + 1
2k ε < (1 + ε)OPT, by 

Eq. (1). This proves the theorem. �
3. Conclusions

We presented a polynomial-time approximation scheme (PTAS) for the (m, k)-PFS problem, in which there are m parallel 
identical k-stage flow-shops. Our PTAS requires that both m and k are fixed integers. Since the classic k-stage flow-shop 
problem is strongly NP-hard for a fixed k ≥ 3, our PTAS seems the best possible unless P = NP. The APX-hardness of the 
classic k-stage flow-shop problem when k is a part of the input implies the APX-hardness of the (m, k)-PFS problem when 
k is a part of the input. An open problem is to investigate the (in-)approximability of the (m, k)-PFS problem when m is a 
part of the input while k is a constant.
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