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Tries and patricia tries are two popular data structures for storing strings. Let Hn denote 
the height of the trie (the patricia trie, respectively) on a set of n strings. Under the 
uniform distribution model on the strings, it is well known that Hn/ log n → 2 for tries and 
Hn/ log n → 1 for patricia tries, when n approaches infinity. Nevertheless, in the worst case, 
the height of a trie can be unbounded and the height of a patricia trie is in �(n). To better 
understand the practical performance of both tries and patricia tries, we investigate these 
two classical data structures in a smoothed analysis model. Given a set S = {s1, s2, . . . , sn}
of n binary strings, we perturb the set by adding an i.i.d. Bernoulli random noise to each bit 
of every string. We show that the resulting smoothed heights of the trie and the patricia 
trie are both in �(logn).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A trie, also known as a digital tree or a prefix tree, is an ordered tree data structure for storing strings over an alphabet �. 
It was initially developed and analyzed by Fredkin [6] in 1960 and Knuth [7] in 1973. Such a data structure has been 
used for storing a dynamic set to be exploited as an associative array, where keys are strings. There has been much recent 
exploitation of such index trees for processing genomic data.

In the simplest form, let the alphabet be � = {0, 1} and consider a set S = {s1, s2, . . . , sn} of n binary strings over �, 
where each si can be infinitely long. The trie for storing these n binary strings is an ordered binary tree TS : first, each si

defines a path (infinite if its length |si | is infinite) in the tree, starting from the root, such that a 0 forces a move to the 
left and a 1 indicates a move to the right; if one node is the highest in the tree that is passed through by only one string 
si ∈ S , then the path defined by si is truncated at this node, which becomes a leaf in the tree and is associated (i.e., labeled) 
with si . The height of the trie TS built over S is defined as the number of edges on the longest root-to-leaf path. Fig. 1
shows the trie constructed for a set of six strings. (These strings can be long or even infinite, but only the first 5 bits are 
shown, which are those used in the example construction.)

Let Hn denote the height of the trie on a set of n binary strings. It is not hard to see that in the worst case Hn is 
unbounded, due to the existence of two of the strings sharing an arbitrary long common prefix. In the uniform distribution 
model, bits of si are independent and identically distributed (i.i.d.) Bernoulli random variables each of which takes 1 with 
probability p = 0.5. The asymptotic behavior of the trie height Hn under the uniform distribution model had been well 
studied in the 1980s [3–5,8,11–13,15,16], and it is known that asymptotically almost surely (a.a.s.)
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Fig. 1. The trie constructed for S = {s1 = 00001 . . . , s2 = 00111 . . . , s3 = 01100 . . . , s4 = 01111 . . . , s5 = 11010 . . . , s6 = 11111 . . .}.

Fig. 2. The patricia trie constructed for S = {s1 = 00001 . . . , s2 = 00111 . . . , s3 = 01100 . . . , s4 = 01111 . . . , s5 = 11010 . . . , s6 = 11111 . . .}.

Hn/ log2 n → 2, when n → ∞.

A patricia trie, or a compact trie, is a space-optimized variant of the trie data structure, in which every node with only one 
child is merged with its child. Such a data structure was firstly proposed by Morrison [9] in 1968, and then well analyzed 
in “The art of computer programming” by Knuth [7] in 1973. Fig. 2 shows the patricia trie constructed for the same set of 
six strings used in Fig. 1. Again let Hn denote the height of the patricia trie on a set of n binary strings. In the worst case, 
Hn = n − 1, where si is in the form 11 . . . 100 . . . with a prefix consisting of i − 1 consecutive 1’s. Under the same uniform 
distribution model assumed for an average case analysis on the trie height, Pittel showed that a.a.s. the heights of patricia 
tries are only 50% of the heights of tries [11], that is,

Hn/ log2 n → 1, when n → ∞.

The average case analysis is intended to provide insights on the algorithm’s practical performance as a string indexing 
structure. In 2002, Nilsson and Tikkanen [10] experimentally investigated the heights of patricia tries and other search 
structures. In particular, they showed that the heights of the patricia tries on sets of 50,000 random uniformly distributed 
strings are 15.9 on average and 20 at most. For real datasets consisting of 19,461 strings from geometric data on drill holes, 
16,542 ASCII character strings from a book, and 38,367 strings from Internet routing tables, the heights of the patricia tries 
are on average 20.8, 20.2, 18.6, respectively, and at most 30, 41, 24, respectively.

Theoretically speaking, these experimental results suggest that worst-case instances are perhaps only isolated peaks in 
the instance space. This hypothesis is partially supported by the average case analysis on the heights of tries and patricia 
tries, under the uniform distribution model, that suggests the heights are a.a.s. logarithmic. Nevertheless, these average 
case analyses on the specific random instances generated under the uniform distribution model could be inconclusive, 
because the specific random instances have very special properties inherited from the model, and thus would distinguish 
themselves from real-world instances. Because real-world instances are not captured by a single probabilistic distribution, 
Spielman and Teng [14] introduced the idea of smoothed analysis, which can be considered as a hybrid of the worst-case 
and the average-case analyses, and inherits the advantages of both. Given an instance that is a set of strings, we generate 
the instance neighborhood through perturbation, by adding a slight random noise to each bit in every string of the given 
instance; we then evaluate the average height on this neighborhood of perturbed instances, and this local average height
is associated with the given instance. The smoothed height is defined as the worst (largest) among all the local average 
heights, over all instances. One can imagine that when the magnitude of random noise approaches 0, the smoothed analysis 
becomes the worst case analysis; when the magnitude of random noise approaches infinity, the smoothed analysis becomes 
the average case analysis under the probabilistic distribution assumed for the random noise. In practice, such a magnitude 
is set to be small; a good smoothed analysis result under certain reasonable probabilistic distribution assumed for the 
random noise implies good practical performance in real world applications. One key reason underlying this hypothesis is 
that real world instances are often subject to some amount of noise, especially when they are obtained from measurements 
of real world phenomena. The classic example is the Simplex method combined with shadow pivoting rule for solving 
linear programming. Though it needs exponential running time to terminate in the worst case, it is good in practise, and 
even outperforms many other polynomial time algorithms for linear programming in the real applications. Spielman and 
Teng [14] showed that the Simplex method with the shadow pivoting rule has polynomial smoothed running time, which 
well-explained its practical performance.

Here we conduct a smoothed analysis on the heights of tries and patricia tries, to reveal certain essential properties of 
these two data structures. In the next section, we first introduce the string perturbation model, and show an a.a.s. upper 
bound O (log n) and an a.a.s. lower bound �(log n) on the trie height Hn . The conclusion is that the smoothed height of the 
trie on n strings is in �(log n). In Section 3, we achieve similar results for the smoothed height of the patricia trie on a set 
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of n strings, that is, Hn ∈ �(log n), which explains the practical performance of patricia tries in the experiments conducted 
by Nilsson and Tikkanen [10].

2. The smoothed heights of tries

We consider an arbitrary set S = {s1, s2, . . . , sn} of n strings over the alphabet {0, 1}, where each string may be infinitely 
long. Let si(�) denote the �-th bit in the string si , for i = 1, 2, . . . , n and � = 1, 2, 3, . . .. Every string si is perturbed by adding 
a noise string νi , giving rise to the perturbed string s̃i = si ⊕ νi , where ⊕ is the bitwise XOR operation, that is s̃i(�) = si(�)

if and only if νi(�) = 0. The noise string νi is independently generated by a memoryless source, which assigns 1 to every 
bit of string νi independently and with a small probability ε ∈ [0, 0.5]. More formally,

Pr{νi(�) = 1} = ε for each � = 1,2,3, . . . .

One clearly sees that the perturbation essentially flips each bit of every string independently and with a probability ε . Let 
S̃ = {s̃1, ̃s2, . . . , ̃sn} denote the set of perturbed strings.

Let p�
i j be the probability of the event {s̃i(�) = s̃ j(�)}. We have

p�
i j =

{
2ε(1 − ε)

�= p, if si(�) �= s j(�),

ε2 + (1 − ε)2 = 1 − p
�= q, if si(�) = s j(�).

(2.1)

We can clearly note that q ≥ p, since ε ≤ 0.5. Let Cij denote the length of the longest common prefix between s̃i and s̃ j . 
Since Cij = k if and only if s̃i(�) = s̃ j(�) for � = 1, 2, . . . , k but not for � = k + 1, the probability of {Cij = k} for any k ≥ 0 is

Pr{Cij = k} =
(

k∏
�=1

p�
i j

)
(1 − pk+1

i j ).

From the fact that {Cij = k} and {Cij = m} are disjoint events when k �= m, we have for any k ≥ 1

Pr{Cij < k} =
k−1∑
m=0

(
m∏

�=1

p�
i j −

m+1∏
�=1

p�
i j

)
= 1 −

k∏
�=1

p�
i j .

Consequently, the probability that the longest common prefix between s̃i and s̃ j has length at least k is

Pr{Cij ≥ k} = 1 − Pr{Cij < k} =
k∏

�=1

p�
i j. (2.2)

2.1. An a.a.s. upper bound

In a slight abuse of notation, we use Hn to also denote the height of the trie constructed for S̃ . We can express Hn in 
terms of Cij as

Hn = max
1≤i< j≤n

Cij + 1.

By Boole inequality [2], we have

Pr{Hn > k} = Pr

{
max

1≤i< j≤n
Cij ≥ k

}
≤

(
n

2

) k∏
�=1

p�
i j ≤

(
n

2

)
qk,

where the last equality holds when all the n strings {s1, s2, . . . , sn} have the same prefix of length k. By setting k =
2(1 + δ) log1/q n for a constant δ > 0, we have

Pr{Hn > k} ≤
(

n

2

)
q2(1+δ) log1/q n ≤ n−2δ → 0,

as n → ∞. Therefore, Hn ≤ 2 log1/q n with high probability, when n approaches infinity.
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2.2. An a.a.s. lower bound

To estimate a lower bound, we use the following Chunge–Erdös formulation of the second moment method on a set of 
events:

Lemma 1 (Chunge–Erdös). (See [1].) For any set of events E1, E2, . . . , En,

Pr{∪n
i=1 Ei} ≥

(∑n
i=1 Pr{Ei}

)2∑n
i=1 Pr{Ei} + ∑

i �= j Pr{Ei ∩ E j} .

Let Aij denote the event {Cij ≥ k}, for every pair {i, j} such that 1 ≤ i < j ≤ n; also define the following two sums:

S1
�= ∑

1≤i< j≤n Pr{Aij}, and

S2
�= ∑

{i, j}�={s,t} Pr{Aij ∩ Ast}.
Then by Chunge–Erdös formulation (Lemma 1), we have

Pr{Hn > k} = Pr{∪1≤i< j≤n Aij} ≥ S2
1

S1 + S2
. (2.3)

We first derive an estimate for S1. From Eq. (2.2), one clearly sees that

S1 =
∑

1≤i< j≤n

Pr{Aij} =
∑

1≤i< j≤n

k∏
�=1

p�
i j. (2.4)

Recall the definition of p�
i j and its value in Eq. (2.1). The following Lemma 2 is then straight-forward:

Lemma 2. For any � ≥ 1 and any three perturbed strings s̃i, ̃s j, ̃st , if p�
i j = p�

it , then p�
jt = q.

Lemma 3. For any three perturbed strings s̃i, ̃s j, ̃st ,

S0
�=

k∏
�=1

p�
i j +

k∏
�=1

p�
it +

k∏
�=1

p�
jt ≥ 3p

2
3 kq

1
3 k.

Proof. For the string pair (si, s j), let Zij denote the number of (0, 1)-pairs and (1, 0)-pairs in {(si(�), s j(�)), 1 ≤ � ≤ k}, that 
is, the number of bits where si and s j have different values among the first k bits. Clearly from Eq. (2.1),

k∏
�=1

p�
i j = p Zij qk−Zi j .

For the string triple (si, s j, st), let xij denote the number of (0, 0, 1)-triples and (1, 1, 0)-triples in {(si(�), s j(�), st(�)),

1 ≤ � ≤ k}; xit and x jt are similarly defined. Also let y denote the number of (0, 0, 0)-triples and (1, 1, 1)-triples in 
{(si(�), s j(�), st(�)), 1 ≤ � ≤ k}. The following relationships are direct consequences of the definitions:

Zij = xit + x jt,

Zit = xij + x jt,

Z jt = xij + xit,

k = xij + xit + x jt + y.

It follows that

S0
�=

k∏
�=1

p�
i j +

k∏
�=1

p�
it +

k∏
�=1

p�
jt

= pxit+x jt qxi j+y + pxij+x jt qxit+y + pxij+xit qx jt+y

= pk

[(
q

p

)xi j+y

+
(

q

p

)xit+y

+
(

q

p

)x jt+y
]

.
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One can check that, since q ≥ p, the quantity in the last line reaches the minimum when xij = xit = x jt = k/3 and y = 0. 
That is,

S0
�=

k∏
�=1

p�
i j +

k∏
�=1

p�
it +

k∏
�=1

p�
jt ≥ 3p

2
3 kq

1
3 k.

This proves the lemma. �
Note that each string pair (si, s j) is involved in exactly n − 2 string triples (si, s j, st), for t �= i, j. By Lemma 3, Eq. (2.4)

becomes

S1 =
∑

1≤i< j≤n

k∏
�=1

p�
i j

≥ 1

n − 2

(
n

3

)
3p

2
3 kq

1
3 k

=
(

n

2

)
p

2
3 kq

1
3 k. (2.5)

We next estimate S2, which is a bit harder because two events Aij and Ast may not be independent. We split S2 into 
two parts: S2 = S ′

2 + S ′′
2, where

S ′
2

�=
∑

{i, j}∩{s,t}=∅
Pr{Aij ∩ Ast}, and

S ′′
2

�=
∑

{i, j}∩{s,t}�=∅
Pr{Aij ∩ Ast}.

Since two events Cij and Cst are independent when {i, j} ∩ {s, t} = ∅, we can estimate S ′
2 as follows:

S ′
2 =

∑
{i, j}∩{s,t}=∅

(
Pr{Aij}Pr{Ast}

)
≤

⎛
⎝∑

{i, j}
Pr{Aij}

⎞
⎠

2

= S2
1.

The event {Aij ∩ Ait} is equivalent to the event in which the first k bits of all three perturbed strings s̃i, ̃s j , and s̃t are 
identical. Using ε ≤ 0.5, we have

Pr{Aij ∩ Ait} = Pr{s̃i(�) = s̃ j(�) = s̃t(�),1 ≤ � ≤ k} ≤ (
ε3 + (1 − ε)3)k

.

It follows that

S ′′
2 =

∑
{i, j}∩{s,t}�=∅

Pr{Aij ∩ Ast} ≤ 3

(
n

3

)(
ε3 + (1 − ε)3)k ≤ 3

(
n

3

)
,

where the factor 3 arises because a string triple {s̃i, ̃s j, ̃st} gives rise to three events {Aij ∩ Ait}, {Aij ∩ A jt}, and {Ait ∩ A jt}.
Putting S ′

2 and S ′′
2 together, we can upper bound S2 by

S2 = S ′
2 + S ′′

2 ≤ S2
1 + 3

(
n

3

)
. (2.6)

Using the estimates of S1 and S2 in Eqs. (2.5) and (2.6) respectively, Eq. (2.3) becomes

Pr{Hn > k} ≥ S2
1

S1 + S2

= 1

1/S1 + (S ′
2 + S ′′

2)/S2
1

≥ 1

1/S1 + 1 + S ′′
2/S2

1

≥ 1

1 + 1(n
2

)
p

2
3 kq

1
3 k

+ 3
(n

3

)
((n

2

)
p

2
3 kq

1
3 k

)2
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≥ 1

1 + 4n−2 p− 2
3 kq− 1

3 k + 2n−1 p− 4
3 kq− 2

3 k

≥ 1

1 + 4n−2n
1
2 (1−δ) + 2n−1n1−δ

= 1

1 + 4n− 3
2 − 1

2 δ + 2n−δ

≥ 1 − O (n−δ) → 1, (2.7)

where the inequality Eq. (2.7) is achieved by setting

k = 1

2
(1 − δ) logp−2/3q−1/3 n, that is, p− 2

3 kq− 1
3 k = n

1
2 (1−δ),

for a constant δ > 0. Therefore, Hn is larger than 2 logp−2/3q−1/3 n with high probability when n approaches infinity.

Theorem 1. The smoothed height of the trie on n strings is in �(logn), where the bit perturbation model is i.i.d. Bernoulli distribution.

3. The smoothed heights of patricia tries

Here we briefly do the smoothed analysis on the height of the patricia trie on a set of n binary strings, since much of 
the detail is similar to that for tries. We adopt the same i.i.d. Bernoulli bit perturbation model as in the last section. Again, 
we present an a.a.s. upper bound and an a.a.s. lower bound for the smoothed heights.

3.1. An a.a.s. upper bound

Following the work by Pittel [11], on the set of n perturbed strings S̃ = {s̃1, ̃s2, . . . , ̃sn}, we claim that for any fixed 
integers k ≥ 0 and b ≥ 2, the event {Hn ≥ k + b − 1} implies the event that there exist b strings s̃i1 , ̃si2 , . . . , ̃sib such that 
their common prefix has length at least k (denoted as Ci1 i2...ib ≥ k). The correctness of the above claim follows because, in a 
patricia trie, there are no degree-2 nodes (except for the root), and thus a path of length k + b − 1 suggests at least b leaves 
in the subtree rooted at the node at distance k from the patricia trie root.

Similar to the definition of p�
i j in Eq. (2.1), p�

i1 i2...ib
denotes the probability of the event {s̃i1 (�) = s̃i2 (�) = . . . = s̃ib (�)}, for 

any b ≥ 2, which is calculated as follows:

p�
i1i2...ib

= (1 − ε)k0εk1 + (1 − ε)k1εk0 ,

where k0 and k1 are the numbers of 0’s and 1’s among the b bit values si1 (�), si2 (�), . . . , sib (�), respectively. By a similar 
argument as presented for Pr{Cij ≥ k} in Eq. (2.2) in Section 2, we have

Pr{Ci1 i2...ib ≥ k} =
k∏

�=1

p�
i1i2...ib

.

For a fixed b ≥ 2, let qb = εb + (1 − ε)b and k = kb = b(1 + δ/2) log1/qb
n. We have

k = b(1 + δ/2) log1/qb
n

= (1 + δ/2)
lnn

ln q−1/b
b

= (1 + δ/2)
ln n

ln
(
εb + (1 − ε)b

)−1/b

≤ (1 + δ/2)
ln n

ln
(
ε2 + (1 − ε)2

)−1/2

= 2(1 + δ/2) log1/q n, (3.1)

where the inequality in Eq. (3.1) holds for any b ≥ 2. Setting b = δ log1/q n, it follows that

Pr{Hn ≥ 2(1 + δ) log1/q n} ≤ Pr{Hn ≥ k + b − 1}
≤ Pr{ max Ci1i2...ib ≥ k}
i1,i2,...,ib
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≤ nb
k∏

�=1

p�
i1i2...ib

≤ nbqk
b

∈ O (n−bδ) → 0,

when n → ∞.
In summary, for any δ > 0, we have

Pr{Hn ≥ 2(1 + δ) log1/q n} ∈ O (n−bδ) → 0,

when n approaches infinity, and thus a.a.s. Hn ≤ 2(1 + δ) log1/q n.

3.2. An a.a.s. lower bound

Let Di be the depth of the node labeled s̃i in the patricia trie.
Clearly, Hn = maxn

i=1 Di and the node at the maximum depth must be a leaf node. It follows that if Hn < k, then at least 
one of the 2k possible length-k strings does not appear as a prefix of any perturbed strings s̃1, ̃s2, . . . , ̃sn .

Let Ln = log1/ε n and k = L
n

L ln n . We have

Pr{Hn < k} ≤ 2kPr{no s̃i starts with k 0’s}
≤ 2k(1 − εk)n

≤ 2ke−εkn

= exp{k ln 2 − εkn}
= exp{ln 2 ·L n

L ln n
−L ln n} → 0,

when n approaches infinity, and thus a.a.s. Hn ≥ L
n

L ln n .
In summary, we have the following theorem.

Theorem 2. The smoothed height of the patricia trie on n strings is in �(logn), where the bit perturbation model is i.i.d. Bernoulli 
distribution.

4. Conclusions

Under the i.i.d. Bernoulli bit perturbation model, we have shown that the smoothed heights of both tries and patricia 
tries on n strings are in the order of log n. These theoretical results explain the typical probabilistic behavior of these two 
important data structures on real-world applications.
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