
Theoretical Computer Science 609 (2016) 620–626
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Smoothed heights of tries and patricia tries

Weitian Tong a, Randy Goebel a, Guohui Lin a,b,∗
a Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
b Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 September 2014
Received in revised form 15 January 2015
Accepted 8 February 2015
Available online 12 February 2015

Keywords:
Smoothed analysis
Data structure
Trie
Patricia trie

Tries and patricia tries are two popular data structures for storing strings. Let Hn denote
the height of the trie (the patricia trie, respectively) on a set of n strings. Under the
uniform distribution model on the strings, it is well known that Hn/ log n → 2 for tries and
Hn/ log n → 1 for patricia tries, when n approaches infinity. Nevertheless, in the worst case,
the height of a trie can be unbounded and the height of a patricia trie is in �(n). To better
understand the practical performance of both tries and patricia tries, we investigate these
two classical data structures in a smoothed analysis model. Given a set S = {s1, s2, . . . , sn}
of n binary strings, we perturb the set by adding an i.i.d. Bernoulli random noise to each bit
of every string. We show that the resulting smoothed heights of the trie and the patricia
trie are both in �(logn).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A trie, also known as a digital tree or a prefix tree, is an ordered tree data structure for storing strings over an alphabet �.
It was initially developed and analyzed by Fredkin [6] in 1960 and Knuth [7] in 1973. Such a data structure has been
used for storing a dynamic set to be exploited as an associative array, where keys are strings. There has been much recent
exploitation of such index trees for processing genomic data.

In the simplest form, let the alphabet be � = {0, 1} and consider a set S = {s1, s2, . . . , sn} of n binary strings over �,
where each si can be infinitely long. The trie for storing these n binary strings is an ordered binary tree TS : first, each si

defines a path (infinite if its length |si | is infinite) in the tree, starting from the root, such that a 0 forces a move to the
left and a 1 indicates a move to the right; if one node is the highest in the tree that is passed through by only one string
si ∈ S , then the path defined by si is truncated at this node, which becomes a leaf in the tree and is associated (i.e., labeled)
with si . The height of the trie TS built over S is defined as the number of edges on the longest root-to-leaf path. Fig. 1
shows the trie constructed for a set of six strings. (These strings can be long or even infinite, but only the first 5 bits are
shown, which are those used in the example construction.)

Let Hn denote the height of the trie on a set of n binary strings. It is not hard to see that in the worst case Hn is
unbounded, due to the existence of two of the strings sharing an arbitrary long common prefix. In the uniform distribution
model, bits of si are independent and identically distributed (i.i.d.) Bernoulli random variables each of which takes 1 with
probability p = 0.5. The asymptotic behavior of the trie height Hn under the uniform distribution model had been well
studied in the 1980s [3–5,8,11–13,15,16], and it is known that asymptotically almost surely (a.a.s.)

* Corresponding author at: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. Tel.: +1 (780) 492 3737.
E-mail addresses: weitian@ualberta.ca (W. Tong), rgoebel@ualberta.ca (R. Goebel), guohui@ualberta.ca (G. Lin).
http://dx.doi.org/10.1016/j.tcs.2015.02.009
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.02.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:weitian@ualberta.ca
mailto:rgoebel@ualberta.ca
mailto:guohui@ualberta.ca
http://dx.doi.org/10.1016/j.tcs.2015.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.02.009&domain=pdf

W. Tong et al. / Theoretical Computer Science 609 (2016) 620–626 621
Fig. 1. The trie constructed for S = {s1 = 00001 . . . , s2 = 00111 . . . , s3 = 01100 . . . , s4 = 01111 . . . , s5 = 11010 . . . , s6 = 11111 . . .}.

Fig. 2. The patricia trie constructed for S = {s1 = 00001 . . . , s2 = 00111 . . . , s3 = 01100 . . . , s4 = 01111 . . . , s5 = 11010 . . . , s6 = 11111 . . .}.

Hn/ log2 n → 2, when n → ∞.

A patricia trie, or a compact trie, is a space-optimized variant of the trie data structure, in which every node with only one
child is merged with its child. Such a data structure was firstly proposed by Morrison [9] in 1968, and then well analyzed
in “The art of computer programming” by Knuth [7] in 1973. Fig. 2 shows the patricia trie constructed for the same set of
six strings used in Fig. 1. Again let Hn denote the height of the patricia trie on a set of n binary strings. In the worst case,
Hn = n − 1, where si is in the form 11 . . . 100 . . . with a prefix consisting of i − 1 consecutive 1’s. Under the same uniform
distribution model assumed for an average case analysis on the trie height, Pittel showed that a.a.s. the heights of patricia
tries are only 50% of the heights of tries [11], that is,

Hn/ log2 n → 1, when n → ∞.

The average case analysis is intended to provide insights on the algorithm’s practical performance as a string indexing
structure. In 2002, Nilsson and Tikkanen [10] experimentally investigated the heights of patricia tries and other search
structures. In particular, they showed that the heights of the patricia tries on sets of 50,000 random uniformly distributed
strings are 15.9 on average and 20 at most. For real datasets consisting of 19,461 strings from geometric data on drill holes,
16,542 ASCII character strings from a book, and 38,367 strings from Internet routing tables, the heights of the patricia tries
are on average 20.8, 20.2, 18.6, respectively, and at most 30, 41, 24, respectively.

Theoretically speaking, these experimental results suggest that worst-case instances are perhaps only isolated peaks in
the instance space. This hypothesis is partially supported by the average case analysis on the heights of tries and patricia
tries, under the uniform distribution model, that suggests the heights are a.a.s. logarithmic. Nevertheless, these average
case analyses on the specific random instances generated under the uniform distribution model could be inconclusive,
because the specific random instances have very special properties inherited from the model, and thus would distinguish
themselves from real-world instances. Because real-world instances are not captured by a single probabilistic distribution,
Spielman and Teng [14] introduced the idea of smoothed analysis, which can be considered as a hybrid of the worst-case
and the average-case analyses, and inherits the advantages of both. Given an instance that is a set of strings, we generate
the instance neighborhood through perturbation, by adding a slight random noise to each bit in every string of the given
instance; we then evaluate the average height on this neighborhood of perturbed instances, and this local average height
is associated with the given instance. The smoothed height is defined as the worst (largest) among all the local average
heights, over all instances. One can imagine that when the magnitude of random noise approaches 0, the smoothed analysis
becomes the worst case analysis; when the magnitude of random noise approaches infinity, the smoothed analysis becomes
the average case analysis under the probabilistic distribution assumed for the random noise. In practice, such a magnitude
is set to be small; a good smoothed analysis result under certain reasonable probabilistic distribution assumed for the
random noise implies good practical performance in real world applications. One key reason underlying this hypothesis is
that real world instances are often subject to some amount of noise, especially when they are obtained from measurements
of real world phenomena. The classic example is the Simplex method combined with shadow pivoting rule for solving
linear programming. Though it needs exponential running time to terminate in the worst case, it is good in practise, and
even outperforms many other polynomial time algorithms for linear programming in the real applications. Spielman and
Teng [14] showed that the Simplex method with the shadow pivoting rule has polynomial smoothed running time, which
well-explained its practical performance.

Here we conduct a smoothed analysis on the heights of tries and patricia tries, to reveal certain essential properties of
these two data structures. In the next section, we first introduce the string perturbation model, and show an a.a.s. upper
bound O (log n) and an a.a.s. lower bound �(log n) on the trie height Hn . The conclusion is that the smoothed height of the
trie on n strings is in �(log n). In Section 3, we achieve similar results for the smoothed height of the patricia trie on a set

622 W. Tong et al. / Theoretical Computer Science 609 (2016) 620–626
of n strings, that is, Hn ∈ �(log n), which explains the practical performance of patricia tries in the experiments conducted
by Nilsson and Tikkanen [10].

2. The smoothed heights of tries

We consider an arbitrary set S = {s1, s2, . . . , sn} of n strings over the alphabet {0, 1}, where each string may be infinitely
long. Let si(�) denote the �-th bit in the string si , for i = 1, 2, . . . , n and � = 1, 2, 3, Every string si is perturbed by adding
a noise string νi , giving rise to the perturbed string s̃i = si ⊕ νi , where ⊕ is the bitwise XOR operation, that is s̃i(�) = si(�)

if and only if νi(�) = 0. The noise string νi is independently generated by a memoryless source, which assigns 1 to every
bit of string νi independently and with a small probability ε ∈ [0, 0.5]. More formally,

Pr{νi(�) = 1} = ε for each � = 1,2,3,

One clearly sees that the perturbation essentially flips each bit of every string independently and with a probability ε . Let
S̃ = {s̃1, ̃s2, . . . , ̃sn} denote the set of perturbed strings.

Let p�
i j be the probability of the event {s̃i(�) = s̃ j(�)}. We have

p�
i j =

{
2ε(1 − ε)

�= p, if si(�) �= s j(�),

ε2 + (1 − ε)2 = 1 − p
�= q, if si(�) = s j(�).

(2.1)

We can clearly note that q ≥ p, since ε ≤ 0.5. Let Cij denote the length of the longest common prefix between s̃i and s̃ j .
Since Cij = k if and only if s̃i(�) = s̃ j(�) for � = 1, 2, . . . , k but not for � = k + 1, the probability of {Cij = k} for any k ≥ 0 is

Pr{Cij = k} =
(

k∏
�=1

p�
i j

)
(1 − pk+1

i j).

From the fact that {Cij = k} and {Cij = m} are disjoint events when k �= m, we have for any k ≥ 1

Pr{Cij < k} =
k−1∑
m=0

(
m∏

�=1

p�
i j −

m+1∏
�=1

p�
i j

)
= 1 −

k∏
�=1

p�
i j .

Consequently, the probability that the longest common prefix between s̃i and s̃ j has length at least k is

Pr{Cij ≥ k} = 1 − Pr{Cij < k} =
k∏

�=1

p�
i j. (2.2)

2.1. An a.a.s. upper bound

In a slight abuse of notation, we use Hn to also denote the height of the trie constructed for S̃ . We can express Hn in
terms of Cij as

Hn = max
1≤i< j≤n

Cij + 1.

By Boole inequality [2], we have

Pr{Hn > k} = Pr

{
max

1≤i< j≤n
Cij ≥ k

}
≤

(
n

2

) k∏
�=1

p�
i j ≤

(
n

2

)
qk,

where the last equality holds when all the n strings {s1, s2, . . . , sn} have the same prefix of length k. By setting k =
2(1 + δ) log1/q n for a constant δ > 0, we have

Pr{Hn > k} ≤
(

n

2

)
q2(1+δ) log1/q n ≤ n−2δ → 0,

as n → ∞. Therefore, Hn ≤ 2 log1/q n with high probability, when n approaches infinity.

W. Tong et al. / Theoretical Computer Science 609 (2016) 620–626 623
2.2. An a.a.s. lower bound

To estimate a lower bound, we use the following Chunge–Erdös formulation of the second moment method on a set of
events:

Lemma 1 (Chunge–Erdös). (See [1].) For any set of events E1, E2, . . . , En,

Pr{∪n
i=1 Ei} ≥

(∑n
i=1 Pr{Ei}

)2∑n
i=1 Pr{Ei} + ∑

i �= j Pr{Ei ∩ E j} .

Let Aij denote the event {Cij ≥ k}, for every pair {i, j} such that 1 ≤ i < j ≤ n; also define the following two sums:

S1
�= ∑

1≤i< j≤n Pr{Aij}, and

S2
�= ∑

{i, j}�={s,t} Pr{Aij ∩ Ast}.
Then by Chunge–Erdös formulation (Lemma 1), we have

Pr{Hn > k} = Pr{∪1≤i< j≤n Aij} ≥ S2
1

S1 + S2
. (2.3)

We first derive an estimate for S1. From Eq. (2.2), one clearly sees that

S1 =
∑

1≤i< j≤n

Pr{Aij} =
∑

1≤i< j≤n

k∏
�=1

p�
i j. (2.4)

Recall the definition of p�
i j and its value in Eq. (2.1). The following Lemma 2 is then straight-forward:

Lemma 2. For any � ≥ 1 and any three perturbed strings s̃i, ̃s j, ̃st , if p�
i j = p�

it , then p�
jt = q.

Lemma 3. For any three perturbed strings s̃i, ̃s j, ̃st ,

S0
�=

k∏
�=1

p�
i j +

k∏
�=1

p�
it +

k∏
�=1

p�
jt ≥ 3p

2
3 kq

1
3 k.

Proof. For the string pair (si, s j), let Zij denote the number of (0, 1)-pairs and (1, 0)-pairs in {(si(�), s j(�)), 1 ≤ � ≤ k}, that
is, the number of bits where si and s j have different values among the first k bits. Clearly from Eq. (2.1),

k∏
�=1

p�
i j = p Zij qk−Zi j .

For the string triple (si, s j, st), let xij denote the number of (0, 0, 1)-triples and (1, 1, 0)-triples in {(si(�), s j(�), st(�)),

1 ≤ � ≤ k}; xit and x jt are similarly defined. Also let y denote the number of (0, 0, 0)-triples and (1, 1, 1)-triples in
{(si(�), s j(�), st(�)), 1 ≤ � ≤ k}. The following relationships are direct consequences of the definitions:

Zij = xit + x jt,

Zit = xij + x jt,

Z jt = xij + xit,

k = xij + xit + x jt + y.

It follows that

S0
�=

k∏
�=1

p�
i j +

k∏
�=1

p�
it +

k∏
�=1

p�
jt

= pxit+x jt qxi j+y + pxij+x jt qxit+y + pxij+xit qx jt+y

= pk

[(
q

p

)xi j+y

+
(

q

p

)xit+y

+
(

q

p

)x jt+y
]

.

624 W. Tong et al. / Theoretical Computer Science 609 (2016) 620–626
One can check that, since q ≥ p, the quantity in the last line reaches the minimum when xij = xit = x jt = k/3 and y = 0.
That is,

S0
�=

k∏
�=1

p�
i j +

k∏
�=1

p�
it +

k∏
�=1

p�
jt ≥ 3p

2
3 kq

1
3 k.

This proves the lemma. �
Note that each string pair (si, s j) is involved in exactly n − 2 string triples (si, s j, st), for t �= i, j. By Lemma 3, Eq. (2.4)

becomes

S1 =
∑

1≤i< j≤n

k∏
�=1

p�
i j

≥ 1

n − 2

(
n

3

)
3p

2
3 kq

1
3 k

=
(

n

2

)
p

2
3 kq

1
3 k. (2.5)

We next estimate S2, which is a bit harder because two events Aij and Ast may not be independent. We split S2 into
two parts: S2 = S ′

2 + S ′′
2, where

S ′
2

�=
∑

{i, j}∩{s,t}=∅
Pr{Aij ∩ Ast}, and

S ′′
2

�=
∑

{i, j}∩{s,t}�=∅
Pr{Aij ∩ Ast}.

Since two events Cij and Cst are independent when {i, j} ∩ {s, t} = ∅, we can estimate S ′
2 as follows:

S ′
2 =

∑
{i, j}∩{s,t}=∅

(
Pr{Aij}Pr{Ast}

)
≤

⎛
⎝∑

{i, j}
Pr{Aij}

⎞
⎠

2

= S2
1.

The event {Aij ∩ Ait} is equivalent to the event in which the first k bits of all three perturbed strings s̃i, ̃s j , and s̃t are
identical. Using ε ≤ 0.5, we have

Pr{Aij ∩ Ait} = Pr{s̃i(�) = s̃ j(�) = s̃t(�),1 ≤ � ≤ k} ≤ (
ε3 + (1 − ε)3)k

.

It follows that

S ′′
2 =

∑
{i, j}∩{s,t}�=∅

Pr{Aij ∩ Ast} ≤ 3

(
n

3

)(
ε3 + (1 − ε)3)k ≤ 3

(
n

3

)
,

where the factor 3 arises because a string triple {s̃i, ̃s j, ̃st} gives rise to three events {Aij ∩ Ait}, {Aij ∩ A jt}, and {Ait ∩ A jt}.
Putting S ′

2 and S ′′
2 together, we can upper bound S2 by

S2 = S ′
2 + S ′′

2 ≤ S2
1 + 3

(
n

3

)
. (2.6)

Using the estimates of S1 and S2 in Eqs. (2.5) and (2.6) respectively, Eq. (2.3) becomes

Pr{Hn > k} ≥ S2
1

S1 + S2

= 1

1/S1 + (S ′
2 + S ′′

2)/S2
1

≥ 1

1/S1 + 1 + S ′′
2/S2

1

≥ 1

1 + 1(n
2

)
p

2
3 kq

1
3 k

+ 3
(n

3

)
((n

2

)
p

2
3 kq

1
3 k

)2

W. Tong et al. / Theoretical Computer Science 609 (2016) 620–626 625
≥ 1

1 + 4n−2 p− 2
3 kq− 1

3 k + 2n−1 p− 4
3 kq− 2

3 k

≥ 1

1 + 4n−2n
1
2 (1−δ) + 2n−1n1−δ

= 1

1 + 4n− 3
2 − 1

2 δ + 2n−δ

≥ 1 − O (n−δ) → 1, (2.7)

where the inequality Eq. (2.7) is achieved by setting

k = 1

2
(1 − δ) logp−2/3q−1/3 n, that is, p− 2

3 kq− 1
3 k = n

1
2 (1−δ),

for a constant δ > 0. Therefore, Hn is larger than 2 logp−2/3q−1/3 n with high probability when n approaches infinity.

Theorem 1. The smoothed height of the trie on n strings is in �(logn), where the bit perturbation model is i.i.d. Bernoulli distribution.

3. The smoothed heights of patricia tries

Here we briefly do the smoothed analysis on the height of the patricia trie on a set of n binary strings, since much of
the detail is similar to that for tries. We adopt the same i.i.d. Bernoulli bit perturbation model as in the last section. Again,
we present an a.a.s. upper bound and an a.a.s. lower bound for the smoothed heights.

3.1. An a.a.s. upper bound

Following the work by Pittel [11], on the set of n perturbed strings S̃ = {s̃1, ̃s2, . . . , ̃sn}, we claim that for any fixed
integers k ≥ 0 and b ≥ 2, the event {Hn ≥ k + b − 1} implies the event that there exist b strings s̃i1 , ̃si2 , . . . , ̃sib such that
their common prefix has length at least k (denoted as Ci1 i2...ib ≥ k). The correctness of the above claim follows because, in a
patricia trie, there are no degree-2 nodes (except for the root), and thus a path of length k + b − 1 suggests at least b leaves
in the subtree rooted at the node at distance k from the patricia trie root.

Similar to the definition of p�
i j in Eq. (2.1), p�

i1 i2...ib
denotes the probability of the event {s̃i1 (�) = s̃i2 (�) = . . . = s̃ib (�)}, for

any b ≥ 2, which is calculated as follows:

p�
i1i2...ib

= (1 − ε)k0εk1 + (1 − ε)k1εk0 ,

where k0 and k1 are the numbers of 0’s and 1’s among the b bit values si1 (�), si2 (�), . . . , sib (�), respectively. By a similar
argument as presented for Pr{Cij ≥ k} in Eq. (2.2) in Section 2, we have

Pr{Ci1 i2...ib ≥ k} =
k∏

�=1

p�
i1i2...ib

.

For a fixed b ≥ 2, let qb = εb + (1 − ε)b and k = kb = b(1 + δ/2) log1/qb
n. We have

k = b(1 + δ/2) log1/qb
n

= (1 + δ/2)
lnn

ln q−1/b
b

= (1 + δ/2)
ln n

ln
(
εb + (1 − ε)b

)−1/b

≤ (1 + δ/2)
ln n

ln
(
ε2 + (1 − ε)2

)−1/2

= 2(1 + δ/2) log1/q n, (3.1)

where the inequality in Eq. (3.1) holds for any b ≥ 2. Setting b = δ log1/q n, it follows that

Pr{Hn ≥ 2(1 + δ) log1/q n} ≤ Pr{Hn ≥ k + b − 1}
≤ Pr{ max Ci1i2...ib ≥ k}
i1,i2,...,ib

626 W. Tong et al. / Theoretical Computer Science 609 (2016) 620–626
≤ nb
k∏

�=1

p�
i1i2...ib

≤ nbqk
b

∈ O (n−bδ) → 0,

when n → ∞.
In summary, for any δ > 0, we have

Pr{Hn ≥ 2(1 + δ) log1/q n} ∈ O (n−bδ) → 0,

when n approaches infinity, and thus a.a.s. Hn ≤ 2(1 + δ) log1/q n.

3.2. An a.a.s. lower bound

Let Di be the depth of the node labeled s̃i in the patricia trie.
Clearly, Hn = maxn

i=1 Di and the node at the maximum depth must be a leaf node. It follows that if Hn < k, then at least
one of the 2k possible length-k strings does not appear as a prefix of any perturbed strings s̃1, ̃s2, . . . , ̃sn .

Let Ln = log1/ε n and k = L
n

L ln n . We have

Pr{Hn < k} ≤ 2kPr{no s̃i starts with k 0’s}
≤ 2k(1 − εk)n

≤ 2ke−εkn

= exp{k ln 2 − εkn}
= exp{ln 2 ·L n

L ln n
−L ln n} → 0,

when n approaches infinity, and thus a.a.s. Hn ≥ L
n

L ln n .
In summary, we have the following theorem.

Theorem 2. The smoothed height of the patricia trie on n strings is in �(logn), where the bit perturbation model is i.i.d. Bernoulli
distribution.

4. Conclusions

Under the i.i.d. Bernoulli bit perturbation model, we have shown that the smoothed heights of both tries and patricia
tries on n strings are in the order of log n. These theoretical results explain the typical probabilistic behavior of these two
important data structures on real-world applications.

Acknowledgements

This research was supported in part by NSERC and AITF. G.L. was also supported by the Science Foundation of Zhejiang
Sci-Tech University (ZSTU) Grant No. 14062170-Y. G.L.’s work was partially done during his visit to the ZSTU.

References

[1] K.L. Chung, P. Erdös, On the application of the Borel–Cantelli lemma, Trans. Amer. Math. Soc. 72 (1952) 179–186.
[2] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Springer, 1974.
[3] L. Devroye, A probabilistic analysis of the height of tries and of the complexity of triesort, Acta Inform. 21 (1984) 229–237.
[4] P. Flajolet, On the performance evaluation of extendible hashing and trie search, Acta Inform. 20 (1983) 345–369.
[5] P. Flajolet, J.M. Steyaert, A branching process arising in dynamic hashing, trie searching and polynomial factorization, in: Proceedings of the Ninth

International Colloquium on Automata, Languages and Programming, ICALP, in: LNCS, vol. 140, 1982, pp. 239–251.
[6] E. Fredkin, Trie memory, Commun. ACM 3 (1960) 490–499.
[7] D.E. Knuth, The Art of Computer Programming, Volume III: Sorting and Searching, Addison-Wesley, 1973.
[8] H. Mendelson, Analysis of extendible hashing, IEEE Trans. Softw. Eng. 8 (1982) 611–619.
[9] D.R. Morrison, Patricia — practical algorithm to retrieve information coded in alphanumeric, J. ACM 15 (1968) 514–534.

[10] S. Nilsson, M. Tikkanen, An experimental study of compression methods for dynamic tries, Algorithmica 33 (2002) 19–33.
[11] B. Pittel, Asymptotical growth of a class of random trees, Ann. Probab. 13 (1985) 414–427.
[12] B. Pittel, Path in a random digital tree: limiting distributions, Adv. in Appl. Probab. 18 (1986) 139–155.
[13] M. Régnier, On the average height of trees in digital searching and dynamic hashing, Inform. Process. Lett. 13 (1981) 64–66.
[14] D.A. Spielman, S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, J. ACM 51 (2004) 385–463.
[15] W. Szpankowski, Some results on V -ary asymmetric tries, J. Algorithms 9 (1988) 224–244.
[16] W. Szpankowski, Digital data structures and order statistics, in: Proceedings of the 1989 Workshop on Algorithms and Data Structures, WADS, in: LNCS,

vol. 382, 1989, pp. 206–217.

http://refhub.elsevier.com/S0304-3975(15)00106-1/bib43453532s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib436F6D3734s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib4465763834s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib466C613833s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib46533832s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib46533832s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib4672653630s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib4B6E753733s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib4D656E3832s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib4D6F723638s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib4E543032s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib5069743835s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib5069743836s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib5265673831s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib53543034s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib537A703838s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib537A703839s1
http://refhub.elsevier.com/S0304-3975(15)00106-1/bib537A703839s1

	Smoothed heights of tries and patricia tries
	1 Introduction
	2 The smoothed heights of tries
	2.1 An a.a.s. upper bound
	2.2 An a.a.s. lower bound

	3 The smoothed heights of patricia tries
	3.1 An a.a.s. upper bound
	3.2 An a.a.s. lower bound

	4 Conclusions
	Acknowledgements
	References

