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Abstract We investigate a scheduling problem with job delivery coordination in
which the machine has a maintenance time interval. The goal is to minimize the
makespan. In the problem, each job needs to be processed on the machine non-
preemptively for a certain time, and then transported to a distribution center, by one
vehicle with a limited physical capacity. We present a 2-approximation algorithm for
the problem, and show that the performance ratio is tight.

Keywords Scheduling · Machine maintenance · Job delivery · Bin-packing ·
Approximation algorithm · Worst-case performance analysis

1 Introduction

We consider a scheduling problem that arises from supply chain management research
at the operational level, with the goal to show that decision makers at different stages
of a supply chain can make coordinated decisions at the detailed scheduling level,

J. Hu and T. Luo are co-first authors.

B Guohui Lin
guohui@ualberta.ca

1 Department of Mathematics, Zhejiang Sci-Tech University,
Hangzhou 310018, Zhejiang, China

2 Business School, Sichuan University, Chengdu 610065, Sichuan, China

3 Department of Computing Science, University of Alberta,
Edmonton, AB T6G 2E8, Canada

4 State Key Lab for Manufacturing Systems Engineering, Xi’an
710049, Shaanxi, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-015-0939-7&domain=pdf


1646 J. Hu et al.

and achieve substantial efficiency. This problem studies the integrated planning of
production operations and delivery decisions whereby the jobs are to be processed
first in a manufacturing center, and then delivered to a distribution center. We use a
machine to model the manufacturing center, which requires a preventive maintenance
time interval when it is unavailable for processing any jobs. In the literature, such an
unavailability is also referred to as a hole in the machine. Job delivery is performed
by a single vehicle with a limited physical load capacity, between the manufacturing
center and the distribution center. The goal is to minimize the makespan. A special
case of this problem was first considered byWang and Cheng [9], in which all the jobs
have the same volume.

Our target scheduling problem is formally described as follows. We are given a set
of jobsJ = {J1, J2, . . . , Jn}, each of which needs to be processed in a manufacturing
center (themachine) and then delivered to a distribution center (the customer). Each job
Ji requires a non-preemptive processing time of pi in the manufacturing center; when
transported by a vehicle to the distribution center, it occupies a fraction vi of physical
space on the vehicle.We note that in practice there could bemultiple vehicles available
for the transportation purpose, but here we have only one, which captures the essential
“job-packing” process. The vehicle has a normalized space capacity of 1, is initially at
the manufacturing center, and needs to return to the manufacturing center after all jobs
are delivered. Due to the fixed travel condition between the manufacturing center and
the distribution center, it can be reasonably assumed that the vehicle takes a constant
T units of time to deliver a shipment and return back to the manufacturing center. The
manufacturing center, modeled as a single machine, has a known maintenance time
interval [s, t], where 0 ≤ s ≤ t , during which no jobs can be processed. The problem
objective is to minimize the makespan, that is, the time the vehicle returning to the
manufacturing center after all jobs are delivered.

Using the notation of Lee et al. [7] and following Wang and Cheng [9], the prob-
lem under study is denoted as (1, h(1) | non-pmtn, D, vi | Cmax). In this three-field
notation, the first field denotes the machine environment, the second denotes the job
characteristics, and the last denotes the performance measure to be optimized. In our
case, “1” says that there is only a single machine to process the jobs and “h(1)” indi-
cates that there is a hole (i.e. a maintenance interval) in the machine, “non-pmtn”
states that each job needs a continuous processing or, if interrupted by the unavail-
able machine maintenance interval, it has to restart the processing after the machine
becomes available (non-resumable, specified as “nr -a”, has beenused in the literature),
“D” indicates the delivery requirement that jobs must be delivered to the distribution
center after the processing is completed in the manufacturing center, “vi” is the nor-
malized physical volume of job Ji on the single vehicle, and lastly, “Cmax” denotes the
makespan, which is the time the vehicle returning to the manufacturing center after
all jobs are delivered.

For the special case where all jobs have the same volume, that is vi = 1
K for some

positive integer K , Wang and Cheng showed that (1, h(1) | non-pmtn, D, vi = 1
K |

Cmax) is NP-hard, and presented a 3
2 -approximation algorithm based on the shortest

processing time (SPT) rule [9]. Essentially, the SPT rule sorts the jobs into a non-
decreasing order of the processing time and the machine processes the jobs in this
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order. The intuition is to let the machine finish processing as many jobs as possible at
any given time point, to optimally supply the transportation vehicle.

While the SPT rule alone works well in this special uniform-volume case, it can
be very bad in the general case where the jobs have different volumes. Indeed, for
another extremely special case where all jobs have zero processing time, the problem
(1, h(1) | non-pmtn, D, vi | Cmax) reduces to minimizing the number of shipments,
or the classic bin-packing problem, which is NP-hard and APX-complete [2].

In this paper, we show that the next-fit (NF) algorithm [5] designed for the bin-
packing problem can be employed for packing the jobs into a favorable number of
batches, where each batch is a shipment to be delivered by the single vehicle. This is
followed by applying the SPT rule to sequence the batches with delivery coordination.
We show that this algorithm has a worst-case performance guarantee of 2, and this
ratio is tight. In the next section, we present the performance analysis in detail. We
conclude the paper in the last section.

2 The algorithm D-NF-SPT

In our target scheduling problem (1, h(1) | non-pmtn, D, vi | Cmax) we assume
the non-trivial case where

∑n
i=1 pi > s ≥ minni=1 pi , i.e. the machine maintenance

interval does affect the schedule, since otherwise the problem reduces to the problem
(1 | D, vi | Cmax), which has been extensively investigated in the literature [1,4,
6,8,10], and it admits a (best possible) 1.5-approximation algorithm [8]. In the 1.5-
approximation algorithm, when the total volume of the jobs is greater than 1 but
less than or equal to 2, the jobs are packed by the NF algorithm; otherwise, the jobs
are packed by the modified first-fit decreasing (MFFD) algorithm [3]. The resulting
batches are then processed and delivered in the SPT order.

Recall that there are n jobs, and each job Ji , for i = 1, 2, . . . , n, needs to be
processed non-preemptively for pi units of time on the machine, and then transported
to the distribution center by a single vehicle. The machine has a known maintenance
time interval [s, t], during which no jobs can be processed. The job Ji has a physical
volume vi ∈ (0, 1], representing its fractional space requirement on the vehicle during
the transportation.A shipment (i.e., a batch, used interchangeably) can containmultiple
jobs, as long as the total volume of the jobs in the shipment is no greater than 1. The
vehicle takes constant time T to deliver a shipment to the distribution center and
return back to the machine. For ease of presentation, we use � = t − s to denote the
length of the machine maintenance. As mentioned in the introduction, when all the
job processing times are zero, our target problem reduces to the bin-packing problem.
Thus, we have the following lemma:

Proposition 1 The problem (1, h(1) | non-pmtn, D, vi | Cmax) is NP-hard and
APX-hard.

Let π denote a feasible schedule, in which the jobs are transported in κ shipments
denoted as B1, B2, . . . , Bκ in order. We extend the notation to use p(Bj ) (v(Bj ),
respectively) to denote the total processing time (volume, respectively) of the jobs of
Bj , for every j . Note that the jobs of Bj are not necessarily processed before all the
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jobs of Bj+1 on the machine, for every j . Let α denote the smallest batch index such
that

∑α
j=1 p(Bj ) > s. Clearly, 1 ≤ α ≤ κ . Then for every j < α, the jobs of Bj

can be shuffled to be processed before all the jobs of Bj+1 on the machine, without
affecting the purposed makespan; furthermore, the jobs of Bj can be processed on the
machine consecutively in an arbitrary order. In the sequel, we assume, without loss
of generality, that the jobs of B1, B2, . . . , Bα−1 are processed consecutively in this
sequential order. We use δ to denote the length of the machine idling period due to
the pending maintenance. It follows from the concept of “active schedules” (i.e., no
operations can be shifted to an early time without influencing the sequence) that the
machine finishes processing all the jobs at time

∑κ
j=1 p(Bj ) + � + δ. On the other

hand, the total transportation time for this schedule is κT . In the literature, “active
schedules” refer to those without unnecessary machine/vehicle idleness.

Our algorithm D-NF-SPT can be described as follows (see Fig. 1). First (the D-
step), all jobs are sorted into a non-increasing order of the ratio vi

pi
, which we also

call the density. Next (the NF-step), in this order, the jobs are formed into shipments
(batches) by their physical volumes using the next-fit (NF) bin-packing algorithm.
The NF algorithm assigns the job at the head of the order to the last (largest indexed)
shipment if the job fits in, or else to a newly created shipment for the job. This way,
every shipment contains a number of jobs consecutively in the non-increasing density
order. The achieved batch sequence is denoted as 〈B ′

1, B
′
2, . . . , B

′
κ 〉. The processing

times of the shipments are then calculated, and the shipments are sorted into a non-
decreasing order of the processing time (the SPT-step). The final batch sequence is

Algorithm D-NF-SPT:

Step 1. (The D-step) Sort the jobs into a non-increasing order of the ratio vi/pi;

Step 2. (The NF-step) Pack the jobs by volume into a sequence of batches using the
algorithm NF:

2.1. Place the current job into the last existing batch if it fits in;

2.2. Or else create a new batch for the current job;

2.3. The achieved batch sequence is denoted as B1, B2, . . . , Bκ ;

Step 3. (The SPT-step) Sort the batches into a non-decreasing order of the processing
time:

3.1. The achieved batch sequence is denoted as B1, B2, . . . , Bκ ;

Step 4. Process the jobs in this batch order and deliver a finished batch as early as
possible:

4.1. Let α denote the smallest batch index such that α
j=1 p(Bj) > s;

4.2. Batches B1, B2, . . . , Bα−1 are processed before the maintenance start time s;

4.3. Batches Bα, Bα+1, . . . , Bκ are processed starting the maintenance end time t.

Fig. 1 A high-level description of the algorithm D-NF-SPT
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Fig. 2 A visual configuration of the schedule π produced by the D-NF-SPT algorithm

denoted as 〈B1, B2, . . . , Bκ 〉. According to this shipment order, a maximum number
of batches are processed before the maintenance start time s; the other batches are
processed starting themaintenance end time t . For each shipment, its jobs are processed
consecutively and continuously on the machine in an arbitrary order; and a shipment
is transported to the distribution center after all its jobs are finished and the vehicle is
available. We denote the achieved schedule as π , that is π = 〈B1, B2, . . . , Bκ 〉 with
p(B1) ≤ p(B2) ≤ · · · ≤ p(Bκ). Let Bα denote the first shipment processed after the
maintenance end time t ;

δ = s −
α−1∑

j=1

p(Bj ) (2.1)

denotes the length of the machine idle time before the maintenance (see Fig. 2 for the
configuration of π ).

We next prove some structural properties for the schedule π , and estimate its
makespan denoted as Cmax. For ease of presentation, the finish processing time of
the batch Bj on the machine is denoted as C j , and let Dj denote the completion time
at which the vehicle delivers the batch Bj to the distribution center and returns back
to the machine. Clearly, Dj − C j ≥ T , for every j .

Lemma 1 For the schedule π produced by the algorithm D-NF-SPT for the problem
(1, h(1) | non-pmtn, D, vi | Cmax), the makespan is

Cmax =

⎧
⎪⎪⎨

⎪⎪⎩

∑α
j=1 p(Bj ) + � + δ + (κ − α + 1)T, if Cα > Dα−1, Cκ < Dκ−1;

p(B1) + κT, if Cα ≤ Dα−1, Cκ < Dκ−1;
∑κ

j=1 p(Bj ) + � + δ + T, if Cκ ≥ Dκ−1.

Proof Recall that the machine processes the jobs of B1∪B2∪· · ·∪Bα−1 continuously
before the maintenance start time s, and it processes the jobs of Bα ∪ Bα+1 ∪ · · · ∪ Bκ

continuously after the maintenance end time t . Thus for the last job batch Bκ , Cκ =∑κ
j=1 p(Bj ) + � + δ.
If the last batch Bκ has finished the processing while the vehicle is not ready for

transporting it, i.e. Cκ < Dκ−1, we conclude that the vehicle is not idle during the
time interval [Cα,Cκ ], where Cα = ∑α

j=1 p(Bj ) + � + δ. This can be proven by a
simple contradiction, as otherwise there would be a batch Bj for some j > α, such
that C j > Dj−1. Then clearly p(Bj ) = C j − C j−1 > Dj−1 − C j−1 ≥ T . It follows
that all the succeeding batches have a processing time greater than T , by the SPT rule.
This indicates that for every successive batch, including Bκ , the vehicle must be idle
for a while before delivering it.

Using the same argument, if the vehicle idles inside the time interval [C1,Cα]
(note that the vehicle has to wait for the first batch B1 to finish its processing), then
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there must be Cα > Dα−1 and thus the vehicle must have delivered all the batches
B1, B2, . . . , Bα−1 at timeCα . In this case, themakespan isCmax = ∑α

j=1 p(Bj )+�+
δ+(κ−α+1)T . If the vehicle is not idle before timeCα , that is,

∑α
j=2 p(Bj )+�+δ ≤

(α − 1)T , then the makespan is Cmax = p(B1) + κT .
If the last batch Bκ has finished the processing and the vehicle is ready for transport-

ing it, i.e. Cκ ≥ Dκ−1, then the makespan is the completion time of the batch Bκ plus
one shipment delivery time by the vehicle, which isCmax = ∑κ

j=1 p(Bj )+�+δ+T .
	


From the Proof of Lemma 1, we have the following corollary.

Corollary 1 For the scheduleπ produced by the algorithmD-NF-SPT for the problem
(1, h(1) | non-pmtn, D, vi | Cmax), the vehicle idles inside the time interval [C1,Cα]
if and only if Cα > Dα−1.

Consider the associated instance I of the bin-packing problem to pack all the jobs
of J = {J1, J2, . . . , Jn} by their volumes into the minimum number of batches
(of capacity 1); let κo denote this minimum number of batches. It is known that
κ ≤ 2κo−1 [5], where κ is the number of batches by the algorithmNF. The algorithm
NF is one of the simplest approximation algorithms designed for the bin-packing
problem, but not the best in terms of approximation ratio. Nevertheless, there are
important properties of the packing result achieved by the algorithm NF, stated in the
next two lemmas.

Lemma 2 Consider the job batch sequence 〈B ′
1, B

′
2, . . . , B

′
κ 〉 produced by the algo-

rithm D-NF-SPT in Step 2. LetJ ′ be any subset of jobs, and assume all its jobs can be
packed into k′ batches. Then, for any k, if

∑k
j=1 v(B ′

j ) ≤ v(J ′), we have k ≤ 2k′ −1.

Proof From the execution of the NF algorithm, we know that every two adjacent
batches, B ′

j and B ′
j+1, have a total volume strictly greater than 1. If k is odd, then

∑k
j=1 v(B ′

j ) > k−1
2 ; otherwise,

∑k
j=1 v(B ′

j ) > k
2 . On the other hand, every one of

the k′ batches for J ′ has a volume at most 1, and thus the volume of J ′ is v(J ′) ≤ k′.
Putting the inequalities together, we have

k′ ≥ v(J ′) ≥
k∑

j=1

v(B ′
j ) >

{
k−1
2 , when k is odd;

k
2 , when k is even.

Since k′ is an integer, we have k′ ≥ k−1
2 + 1 = k+1

2 . This proves the lemma. 	

Lemma 3 Consider the job batch sequence 〈B ′

1, B
′
2, . . . , B

′
κ 〉 produced by the algo-

rithm D-NF-SPT in Step 2. Let J ′ be any subset of jobs. For any k, if
∑k

j=1 p(B
′
j ) >

p(J ′), then
∑k

j=1 v(B ′
j ) > v(J ′).

Proof Recall that in Step 1 of the algorithm D-NF-SPT, all the jobs of J are sorted
by non-increasing density vi

pi
. Assume to the contrary that

∑k
j=1 p(B

′
j ) > p(J ′) and

∑k
j=1 v(B ′

j ) ≤ v(J ′). Then,
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v(J ′)
p(J ′)

>

∑k
j=1 v(B ′

j )
∑k

j=1 p(B
′
j )

.

Since v(J ′)
p(J ′) is the average density of the job subset J ′, there must exist at least one

job J ∈ J ′\
(
∪k

j=1B
′
j

)
, such that

v(J )

p(J )
≥ v(J ′)

p(J ′)
>

∑k
j=1 v(B ′

j )
∑k

j=1 p(B
′
j )

≥ v(J ′)
p(J ′)

,

where the job J ′ is the last job packed into the batch B ′
k by the algorithm D-NF-SPT

in Step 2. However, this is a contradiction since such a job J must have been packed
into one of the first k batches B ′

1, B
′
2, . . . , B

′
k by the algorithm D-NF-SPT in Step 2

(the NF algorithm). This proves the lemma. 	

Let π∗ denote an optimal schedule, in which there are κ∗ job batches B∗

1 , B
∗
2 , . . .,

B∗
κ∗ , when finished, delivered in this order. We assume that the batch B∗

α∗ is the first
one in this order containing a job processed after the maintenance end time t ; and use
δ∗ to denote the length of the machine idle time before the maintenance. It is important
to note that we may assume without loss of generality that the jobs of B∗

j , for each
j < α∗, are processed continuously (in an arbitrary order), but no specific processing
order can be assumed for the jobs of B∗

α∗ , B∗
α∗+1, . . . , B

∗
κ∗ .

The makespan of the optimal schedule π∗ is denoted as C∗
max. Again for ease of

presentation, the finish processing time of the batch B∗
j on the machine is denoted as

C∗
j , and let D

∗
j denote the completion time at which the vehicle delivers the batch B∗

j
to the distribution center and returns back to the machine. Clearly, D∗

j −C∗
j ≥ T , for

every j .

Lemma 4 For the optimal schedule π∗ for the problem (1, h(1) | non-pmtn, D,

vi | Cmax), the makespan is

C∗
max ≥ max

⎧
⎨

⎩
p(B∗

1 ) + κ∗T,

κ∗
∑

j=1

p(B∗
j ) + � + δ∗ + T

⎫
⎬

⎭
.

Proof Since after the first batch B∗
1 is processed on the machine, the vehicle needs to

deliver all the κ∗ batches; thus the makespan is at least p(B∗
1 ) + κ∗T .

On the other hand, the finish processing time of the last batch B∗
κ∗ on the machine

is C∗
κ∗ = ∑κ∗

j=1 p(B
∗
j ) + � + δ∗, and afterwards it has to be delivered; hence the

makespan is at least
∑κ∗

j=1 p(B
∗
j ) + � + δ∗ + T . This completes the proof. 	


Now we are ready to prove the main theorem.

Theorem 1 The algorithm D-NF-SPT is an O(n log n)-time 2-approximation for the
problem (1, h(1) | non-pmtn, D, vi | Cmax).
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Proof First, if
∑n

i=1 pi ≤ s, i.e. all the jobs can be processed before themachinemain-
tenance, the target problem reduces to the problem (1 | D, vi | Cmax), which admits a
1.5-approximation algorithm [8]. We thus assume in the following that

∑n
i=1 pi > s.

Consequently, 1 ≤ α ≤ κ and 1 ≤ α∗ ≤ κ∗ (and, these four quantities are all well
defined).

If in the schedule π produced by the algorithm D-NF-SPT, Cκ ≥ Dκ−1, then by
Lemma 1 the makespan is Cmax = ∑κ

j=1 p(Bj ) + � + δ + T . On the other hand,

from Lemma 4 we have C∗
max ≥ ∑κ∗

j=1 p(B
∗
j ) + � + δ∗ + T . Clearly, δ < p(Bα) ≤

∑κ
j=1 p(Bj ) = ∑κ∗

j=1 p(B
∗
j ). It follows that

Cmax =
κ∑

j=1

p(Bj ) + � + δ + T < 2
κ∗
∑

j=1

p(B∗
j ) + � + T ≤ 2C∗

max.

That is, the makespan of the schedule π is less than twice of the optimum.
If κ∗ = 1 in the optimal schedule π∗, that is, all the jobs can form into a single

batch, then we also have κ = 1 in the schedule π , and consequently Cmax = p(B1) +
� + δ + T . As in the previous paragraph the makespan of the schedule π is less than
twice that of the optimum.

In the following we consider Cκ < Dκ−1, κ ≥ 2 and κ∗ ≥ 2, and we separate the
discussion into two cases. Note that in the following D0 = 0, meaning at the beginning
the vehicle is ready.

Case 1 Cα ≤ Dα−1.
From Corollary 1 and Lemma 1, we know that in the schedule π the vehicle is not

idle inside the time interval [C1,Cα] and the makespan is Cmax = p(B1) + κT .
By letting J ′ be the whole set J of jobs in Lemma 2, i.e. J ′ = J , we have

κ ≤ 2k′ − 1 ≤ 2κ∗ − 1, since k′ is the minimum number of batches for all the jobs of
J .

One can check that for every possible value of α, we always haveC2 ≤ D1 because
there is no vehicle idling inside the time interval [C1,Cα], and thus p(B1) ≤ p(B2) =
C2 − C1 ≤ D1 − C1 = T . It follows from Lemma 4 that

Cmax = p(B1) + κT ≤ T + (2κ∗ − 1)T = 2κ∗T ≤ 2C∗
max.

Case 2 Cα > Dα−1.
Note that we haveCκ < Dκ−1, and thus α ≤ κ−1. FromCorollary 1 and Lemma 1,

we know that in the schedule π , the vehicle idles inside the time interval [C1,Cα] and
the makespan is Cmax = ∑α

j=1 p(Bj ) + � + δ + (κ − α + 1)T .
If α > 2 and the vehicle idles inside the time interval [C1,Cα−1], then p(Bα−1) >

T . Consequently, p(Bκ) > T too, which contradicts Cκ < Dκ−1. In the remaining
situation, either α = 1 (i.e., no jobs processed before the machine maintenance),
or 2 ≤ α ≤ κ − 1 and the vehicle idles only inside the time interval [Cα−1,Cα].
Thus we always have p(Bα) ≤ p(Bα+1) ≤ T (again, as otherwise Cκ > Dκ−1, a
contradiction).
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Subcase 2.1 α∗ = 1. In this subcase, in the optimal schedule π∗ all the batches are
finished after the maintenance end time t , and thus C∗

max ≥ t + κ∗T . It follows from
p(Bα) ≤ T and κ ≤ 2κ∗ − 1 [5] that

Cmax = t + p(Bα) + (κ − α + 1)T ≤ t + T + 2κ∗T − αT ≤ t + 2k∗T ≤ 2C∗
max.

Subcase 2.2 α∗ ≥ 2. In this subcase,C∗
max ≥ max{t + (κ∗ −α∗ +1)T, p(B∗

1 )+κ∗T }.
Let J ′ denote the subset of jobs that are processed before the maintenance start

time s in the optimal schedule π∗, and J ′′ = J −J ′. Clearly,
∑α

j=1 p(Bj ) > p(J ′)
since not all the jobs of Bα can be processed before the maintenance start time s. On
the other hand, the batch sequence 〈B1, B2, . . . , Bκ 〉 is the rearrangement of the batch
sequence 〈B ′

1, B
′
2, . . . , B

′
κ 〉 in the SPT order; therefore,

∑α
j=1 p(Bj ) ≤ ∑α

j=1 p(B
′
j ).

That is,

α∑

j=1

p(B ′
j ) ≥

α∑

j=1

p(Bj ) > p(J ′).

By Lemma 3 we have

α∑

j=1

v(B ′
j ) > v(J ′),

and thus

κ∑

j=α+1

v(B ′
j ) < v(J ′′).

From Lemma 2 and that the jobs of J ′′ are in κ∗ − α∗ + 1 batches, we conclude that

κ − α ≤ 2(κ∗ − α∗ + 1) − 1.

It follows from p(Bα) ≤ T that

Cmax = t + p(Bα) + (κ − α + 1)T

≤ t + T + 2(κ∗ − α∗ + 1)T

= (t + (κ∗ − α∗ + 1)T ) + (κ∗ − α∗ + 2)T

≤ 2C∗
max.

That is, in the remaining situation of Case 2 we also have Cmax ≤ 2C∗
max. Hence the

algorithm D-NF-SPT is a 2-approximation.
The O(n log n) running time of the algorithm D-NF-SPT, where n is the number of

jobs, is clearly seen, because the job sorting by density and the later job batch sorting
by processing time take an O(n log n)-time, and the algorithmNF takes an O(n)-time.
This proves the theorem. 	
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We next give an instance to show that the worst-case performance ratio of the algo-
rithm D-NF-SPT is tight. In this instance I there are 2n jobs, J = {J1, J2, . . . , J2n},
with n being even. The processing time and the volume of the job Ji is (pi , vi ), and
here J2i−1 = (iε, 1

2 ) and J2i = ((2i +1)ε2, ε) for every i = 1, 2, . . . , n. The positive
constant ε is small such that ε < 1

2n+1 . Themachinemaintenance time interval is [s, t]
where s = 1

2n(n − 1)ε + (n − 1)(n + 1)ε2 + 1
2 (2n − 1)ε2 and t = s + 1

2 (2n − 1)ε2,
i.e. � = 1

2 (2n − 1)ε2. The one shipment delivery time is T = 1.
Clearly, vi

pi
= 1

(i+1)ε for every i = 1, 2, . . . , 2n and therefore the job order after Step
1 of the algorithm D-NF-SPT is 〈J1, J2, . . . , J2n〉. Using this job order, the algorithm
NF packs the jobs into a sequence of n batches B ′

j = {J2 j−1, J2 j }, j = 1, 2, . . . , n.

Clearly, v(B ′
j ) = 1

2 + ε for all j , and p(B ′
j ) = jε + (2 j + 1)ε2. Therefore, Bj = B ′

j
for every j , and the final batch order is 〈B1, B2, . . . , Bn〉. Note that

s = 1

2
n(n − 1)ε + (n − 1)(n + 1)ε2 + 1

2
(2n − 1)ε2 =

n−1∑

j=1

p(Bj ) + 1

2
(2n − 1)ε2.

Since p(Bj ) = jε + (2 j + 1)ε2 < T for every j , Cn−1 < s < t < Cn−1 + p(Bn)

and (2n − 1)ε2 + p(Bn) < T , for the achieved schedule π its makespan is

Cmax = p(B1) + nT = ε + 3ε2 + nT . (2.2)

Consider a feasible schedule in which there are n
2 + 1 batches where B∗

j =
{J4 j−3, J4 j−1} for each j = 1, 2, . . . , n

2 , and B∗
n
2+1 = {J2, J4, . . . , J2n}. Clearly,

v(B∗
j ) = 1 for all 1 ≤ j ≤ n

2 , v(B∗
n
2+1) = nε, p(B∗

j ) = (4 j − 1)ε for all 1 ≤ j ≤ n
2 ,

and p(B∗
n
2+1) = n(n + 2)ε2. Since

∑ n
2−1
j=1 p(B∗

j ) < s, all the jobs of the batches

B∗
1 , B∗

2 , . . . , B∗
n
2−1 are processed before the maintenance start time s in this feasible

schedule. Due to
∑ n

2+1
j=1 p(B∗

j ) + (2n − 1)ε2 < n
2 − 1, no matter when the jobs of the

batches B∗
n
2
and B∗

n
2+1 are processed, the vehicle has not delivered the batch B∗

n
2−1 and

comes back to the machine. It follows that the makespan of this feasible schedule is
at most p(B∗

1 ) + ( n2 + 1)T = 3ε + ( n2 + 1)T . Therefore, the makespan of an optimal
schedule for the instance I is also

C∗
max ≤ 3ε +

(n

2
+ 1

)
T . (2.3)

Consequently, putting Eqs. (2.2, 2.3) together gives

Cmax

C∗
max

≥ ε + 3ε2 + nT

3ε + ( n2 + 1)T
→ 2, when n → +∞.

123



Machine scheduling with a maintenance interval and job delivery. . . 1655

3 Conclusions

We have investigated the single scheduling problem with job delivery coordination, in
which the machine has an unavailable maintenance interval. A good schedule needs
not only to well organize jobs into a smaller number of shipments to save delivery
time, but also must wisely exploit the machine time period before maintenance. The
first consideration is addressed by employing a good approximation algorithm for the
bin-packing problem,where the item volume is the job physical volume and the bin has
a volume that is the vehicle capacity. Nevertheless, the second consideration implies
that the machine should perhaps process first those jobs of shorter processing times.
We realized that this is not the same as the machine processing first those batches of
shorter processing time. We thus propose to sort the jobs in a non-increasing order
of the density vi/pi , and call the next-fit (NF) bin-packing algorithm to pack the jobs
into batches. Two key properties of the packing results achieved by the algorithm NF
lead to the desired performance analysis.

We also showed that theworst-case performance ratio 2 of the algorithmD-NF-SPT
is tight. Itwould be really interesting to seewhether the problemadmits a better approx-
imation algorithm, for example, by distinguishing the machine availability before and
after the maintenance. From the practical point of view, it is worth investigating the
problem where the machine has multiple maintenance periods, whether they occur
on a regular basis, or irregularly but known in advance. Another further work is to
consider the integer programming formulation for the generalized problem, such as
withmultiplemaintenance periods, parallel machines, or multiple vehicles. Themodel
can then be solved via CPLEX or Gurobi and the constructive heuristic proposed in
this paper can probably be generalized to new problems. Numerically, the average
performance can be then measured.
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