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In this paper, we apply a measure, exemplar adjacency number, which complements and 
extends the well-studied breakpoint distance between two permutations, to measure the 
similarity between two genomes (or in general, between any two sequences drawn from 
the same alphabet). For two genomes G and H drawn from the same set of n gene families 
and containing gene repetitions, we consider the corresponding Exemplar Adjacency 
Number problem (EAN), in which we delete duplicated genes from G and H such that 
the resultant exemplar genomes (permutations) G and H have the maximum adjacency 
number. We obtain the following results. First, we prove that the one-sided 2-repetitive 
EAN problem, i.e., when one of G and H is given exemplar and each gene occurs in the 
other genome at most twice, can be linearly reduced from the Maximum Independent Set 
problem. This implies that EAN does not admit any O (n0.5−ε)-approximation algorithm, for 
any ε > 0, unless P = NP. This hardness result also implies that EAN, parameterized by the 
optimal solution value, is W[1]-hard. Secondly, we show that the two-sided 2-repetitive 
EAN problem has an O (n0.5)-approximation algorithm, which is tight up to a constant 
factor.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In genome comparison and rearrangement studies, the breakpoint distance is one of the most well-known distance 
measures [19]. The implicit idea of breakpoints was initiated as early as in 1936 by Sturtevant and Dobzhansky [18]. While 
gene duplication/loss, etc., is an inseparable part of evolution, due to the difficulty of handling duplicated genes, until only 
a few years ago, in computational genomics it had been largely assumed that every gene appears in a genome exactly once. 
Under this assumption, the genome rearrangement problem is essentially the problem of comparing and sorting unsigned 
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(or signed) permutations [12,10]. Computing the breakpoint distance between two permutations over the same alphabet 
can be done in linear time.

Genomes in the form of permutations are hard to obtain and so far, can only be obtained in several small virus 
genomes. In fact, these kinds of ‘perfect’ genomes do not occur on eukaryotic genomes where paralogous genes are common
[16,17]. In practice, it is important to compute genomic distances between genomes in the form of permutations, such as is 
done by using the Hannenhalli–Pevzner method [12]. However, more often than never, one might have to handle the gene 
duplication problem. (Interested readers are referred to a recent survey on this topic [20].) In 1999, Sankoff proposed a way 
to select, from the duplicated copies of a gene, the common ancestral gene such that the distance between the reduced 
genomes (called exemplar genomes) is minimized. For this case, Sankoff produced a branch-and-bound algorithm [17]. In 
a subsequent work, Nguyen, Tay and Zhang proposed a divide-and-conquer method to compute the exemplar breakpoint 
distance empirically [16].

From the algorithmic complexity research point of view, it has been shown that computing the exemplar signed reversal 
distance and computing the exemplar breakpoint distance between two general genomes (i.e., with gene duplications) are both 
NP-hard [3]. A few years ago, Blin and Rizzi further proved that computing the exemplar conserved interval distance between 
two such genomes is NP-hard [2]; furthermore, it is NP-hard to compute the minimum conserved interval matching, that is, 
without deleting the duplicated copies of genes. On the approximability, for any exemplar genomic distance measure d(·, ·)
satisfying coincidence axiom (i.e., d(G, H) = 0 if and only if G = H or the reversal of H), it was shown that the problem 
does not admit any approximation algorithms, even when each gene appears at most three times in each input genome 
unless P = NP [8,6]. A few years later, this bound was tightened, as deciding when d(G, H) = 0 is NP-complete even if each 
gene appears in the input genomes G and H at most twice [1,13]. It follows that for the exemplar breakpoint distance and 
the exemplar conserved interval distance problems, there are no polynomial time approximation algorithms. Furthermore, 
even under a weaker definition of polynomial time approximation algorithms, the exemplar breakpoint distance problem 
is shown not to admit any weak O (n1−ε)-approximation algorithm, for any 0 < ε < 1, where n is the maximum length 
of the two input genomes [8]. The exemplar conserved interval distance problem is also shown not to admit any weak 
O (n1.5)-approximation algorithm [6,7].

Complementary to the genomic distances, computing certain genomic similarities between two genomes has also been 
studied in [4]. In general, genomic similarity measures do not satisfy coincidence axiom. Among others, Chauve et al. proved 
that computing the maximum exemplar common interval similarity between two general genomes is NP-hard, while leaving 
open the problem approximability [4].

Here we study the exemplar adjacency number between two (general) genomes, which complements the breakpoint dis-
tance measure. Formally, given an alphabet Σ of n genes and two genomes G and H drawn from Σ , the Exemplar Adjacency 
Number problem (EAN for short) is to delete duplicated genes from G and H such that the number of adjacencies between 
the two resultant exemplar genomes (i.e., permutations), G and H , is maximized. The EAN problem is NP-hard, and here 
we study the approximability. When one of the input genomes is already exemplar, the problem is called one-sided EAN; 
the general case is also called two-sided EAN. We first present a linear reduction from the Maximum Independent Set (MIS) 
problem to the one-sided 2-repetitive EAN problem. This reduction implies that the one-sided EAN problem is W[1]-hard, 
and that it does not admit an O (n0.5−ε)-approximation algorithm, for any ε > 0, unless P = NP. The W[1]-hardness (see 
[9] for details) and the recent lower bound results [5] imply that, if k is the optimal solution value to the one-sided EAN 
problem, then barring an unlikely collapse in the parameterized complexity hierarchy, the problem is not solvable in time 
f (k)no(k) , for any function f . Our second positive result is an O (n0.5)-approximation for the two-sided 2-repetitive EAN 
problem. Ignoring constants, the negative hardness result and the positive algorithmic result match perfectly for this case.

The rest of the paper is organized as follows. In Section 2, we summarize some of the necessary background definitions. 
Section 3 presents the linear reduction from the MIS problem to the one-sided EAN problem, and we draw the conclusion 
on inapproximability. The positive algorithmic result is presented in Section 4, with both the design and the analysis of 
the O (n0.5)-approximation algorithm. Section 5 concludes the paper with some discussions.

2. Preliminaries

In the (pairwise) genome comparison and rearrangement problems, we are given two genomes, each of which is a 
sequence of signed (or unsigned) genes. Note that in general a genome can be a set of such sequences (i.e., with multiple 
chromosomes); yet in this paper we focus on such one-sequence genomes, often called singletons. The order of the genes 
in one genome corresponds to their physical positions on the genome, and the sign of a gene indicates which one of the 
two DNA strands the gene is located. In the literature, most of the research assumes that each gene occurs exactly once in 
a genome; such an assumption is problematic in reality for eukaryotic genomes and the like where duplications of genes 
exist [17]. For such a general genome, Sankoff proposed to select an exemplar genome, by deleting duplicated copies of each 
gene, in which every gene appears exactly once. The deletion is to minimize certain genomic distance between the resultant 
exemplar genomes [17].

The following definitions are very much the same as those in [3,8]. In this paper, we consider only unsigned genomes, 
though our results can be applied to signed genomes. We assume a gene alphabet Σ that consists of n distinct genes. 
A genome G is a sequence of elements of Σ , under the constraint that each element occurs at least once in G . We allow 
repetitions of every gene in any genome. Specifically, if each gene occurs exactly once in a genome, then the genome is 
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called exemplar; otherwise non-exemplar. A genome G is called r-repetitive if each gene occurs at most r times in G . For 
example, if Σ = {a, b, c}, then genome G = abcbaa is 3-repetitive.

Given a non-exemplar genome G , for each gene family one can delete all but one duplicated genes to obtain an exemplar 
sub-genome G . In G , each gene from Σ occurs exactly once. Hence G is a permutation of Σ . For example, if Σ = {a, b, c}
and genome G = abcbaa, then there are four distinct exemplar genomes for G by deleting two copies of a and one copy 
of b: G1 = abc, G2 = acb, G3 = bca, and G4 = cba.

For two exemplar genomes G and H drawn from a common n-gene alphabet Σ , a breakpoint in G is a two-gene sub-
string gi gi+1 such that gi gi+1, and its reversal gi+1 gi , do not occur as a substring in H . The number of breakpoints in 
G (symmetrically the number of breakpoints in H) is called the breakpoint distance between G and H , and denoted as 
bd(G, H). For two non-exemplar genomes G and H, their exemplar breakpoint distance ebd(G, H) is the minimum bd(G, H), 
where G and H are exemplar genomes of G and H, respectively.

For two exemplar genomes G and H drawn from a common n-gene alphabet Σ , an adjacency in G is a two-gene 
substring gi gi+1 such that gi gi+1, or its reversal gi+1 gi , also occurs as a substring in H . Likewise, the number of adjacencies 
in G (symmetrically the number of adjacencies in H) is called the adjacency number between G and H , and denoted as 
an(G, H). Similarly, for two non-exemplar genomes G and H, their exemplar adjacency number ean(G, H) is the maximum 
an(G, H), where G and H are exemplar genomes of G and H, respectively. Clearly, for permutations, (exemplar) breakpoint 
distance and (exemplar) adjacency number are complement to each other, and they sum to exactly n − 1.

We comment that the adjacency definition we used is really on permutations, while in [1] the adjacency definition is 
directly on strings without any element deletion. In the latter case, even if two strings P , Q have no breakpoint between 
them, it does not mean P = Q or Q ’s reversal. The recent work on filling scaffolds (to construct a complete genome) also 
uses the latter (string) adjacencies [14,15].

Formally, in the Exemplar Adjacency Number (EAN) problem, we are given two genomes G and H drawn from a common 
n-gene alphabet Σ , and the goal is to compute ean(G, H) and the associated exemplar genomes G and H of G and H
respectively.

The EAN problem is a maximization problem. For any instance I , we use OPT(I) to denote the optimal solution value of I . 
For an approximation algorithm A designed for the EAN problem, we use A(I) to denote the solution value returned by A on 
I . Algorithm A has a performance guarantee of α, if A(I) ≥ OPT(I)/α for all I . In this case, A is also called an α-approximation 
algorithm. We note that an approximation algorithm, by default, runs in polynomial time.

3. Inapproximability result

For (any instance of) the EAN problem, OPT denotes the optimal solution value. We first have the following lemma.

Lemma 1. 0 ≤ OPT ≤ n − 1, where n (≥ 4) is the size of the gene alphabet.

Proof. Let the n (≥ 4) distinct genes be denoted as 1, 2, 3, . . . , n. We only consider the exemplar genomes. The upper 
bound of OPT is achieved by setting G = H ; the lower bound of OPT is achieved by setting G = 123 . . . (n − 1)n (the identity 
permutation) and H as follows:

H =
{

(n − 1)(n − 3) . . . 531n(n − 2) . . . 642, if n is even,
(n − 1)(n − 3) . . . 642n135 . . . (n − 4)(n − 2), otherwise.

It can be easily confirmed that between this pair of G and H there is no adjacency. �
It is interesting to note that, given G and H, whether or not OPT = 0 can be easily decided in polynomial time. For 

instance, one can use a brute-force method on each pair of distinct genes to check whether it is possible to make them 
into an adjacency. Such an observation implies that there is a trivial O (n)-approximation algorithm for the EAN problem. 
Note that the complement Exemplar Breakpoint Distance problem is different, which does not admit any polynomial time 
approximation at all since deciding whether its optimal solution value is zero is NP-complete [8,1,13]. The next theorem 
shows that the one-sided EAN problem does not admit any O (n0.5−ε )-approximation algorithm, for any 0 < ε < 0.5.

Theorem 1. Even if one of G and H is exemplar and the other is 2-repetitive, the EAN problem does not admit any O (n0.5−ε)-ap-
proximation algorithm, for any 0 < ε < 0.5, unless P = NP, where n is the size of the gene alphabet.

Proof. It is easy to see that the decision version of the EAN problem is in NP. We next present a reduction from the 
Maximum Independent Set (MIS) problem to the EAN problem in which the optimal solution value is preserved. The MIS 
problem is a well known NP-hard problem that cannot be approximated within a factor of |V |1−ε , for any 0 < ε < 1, unless 
P = NP, where V is the vertex set of the input graph [21].

Let (V , E) be an instance of the MIS problem, where V is the vertex set and E is the edge set. Let N = |V | and M = |E|, 
and the vertices of V are v1, v2, v3, . . . , v N , the edges of E are e1, e2, e3, . . . , eM . We construct a gene alphabet Σ and two 
genomes G and H as follows. For each vertex vi , two distinct genes vi and v ′ are created; for each edge e j , three distinct 
i
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Fig. 1. Illustration of a simple graph for the reduction.

genes e j , x j and x′
j are created. The alphabet Σ contains in total 2N + 3M distinct genes. Let Ai denote the sequence of all 

edges incident at vertex vi , sorted by their indices. Let Yi = vi Ai v ′
i , for i = 1, 2, . . . , N , and Y N+ j = x j x′

j , for j = 1, 2, . . . , M .
Let

G = v1 v ′
1 v2 v ′

2 . . . v N v ′
N x1e1x′

1x2e2x′
2 . . . xMeM x′

M .

Clearly, G is exemplar. We distinguish two cases to construct H (as in the proof of Lemma 1):

H =
{

Y N+M−1Y N+M−3 . . . Y1Y N+M Y N+M−2 . . . Y2, if N + M is even,
Y N+M−1Y N+M−3 . . . Y2Y N+M Y1Y3 . . . Y N+M−2, otherwise.

Clearly, in either case, H is 2-repetitive. The remaining argument is identical for both cases.
We claim that the graph (V , E) has a maximum independent set of size k iff ean(G, H) = k. First of all, since G is 

exemplar, G = G . If the graph (V , E) has an independent set of size k, then the claim is trivial. To see this, we construct 
the exemplar genome H as follows. For all i, if vi is in the independent set, then we delete Ai from Yi = vi Ai v ′

i . Next, all 
other redundant edges can be arbitrarily deleted to form H . This way, vi v ′

i is an adjacency between G and H , and thus 
ean(G, H) = k. On the other hand, if ean(G, H) = k, the first thing to notice is that Y j = x j x′

j (N + 1 ≤ j ≤ N + M) cannot 
give us any adjacency; so the adjacency between G and H must all come from Yi = vi Ai v ′

i (1 ≤ i ≤ N), with Ai being 
deleted to create an adjacency vi v ′

i . It follows that there are exactly k such Ai ’s being deleted. For any two such deleted Ai
and A j , there is no edge between vi and v j , for otherwise both copies of the edge would be deleted and consequently H
would not be exemplar. Therefore, these vertices form into an independent set in graph (V , E).

The above reduction takes polynomial time. Since n = |Σ | = 2N + 3M ∈ O (N2) and the MIS problem does not ad-
mit any O (N1−ε)-approximation algorithm, for any 0 < ε < 1, unless P = NP, our EAN problem does not admit any 
O (n0.5−ε)-approximation algorithm, with ε subsequently scaled to 0 < ε < 0.5. �

In the example shown in Fig. 1, we have
G : v1 v ′

1 v2 v ′
2 v3 v ′

3 v4 v ′
4 v5 v ′

5x1e1x′
1x2e2x′

2x3e3x′
3x4e4x′

4x5e5x′
5 and

H : x4x′
4x2x′

2 v5e4e5 v ′
5 v3e1 v ′

3 v1e1e2 v ′
1x5x′

5x3x′
3x1x′

1 v4e3e5 v ′
4 v2e2e3e4 v ′

2.
Corresponding to the optimal independent set {v3, v4}, we have

H : x4x′
4x2x′

2 v5e5 v ′
5 v3 v ′

3 v1e1e2 v ′
1x5x′

5x3x′
3x1x′

1 v4 v ′
4 v2e3e4 v ′

2. The two adjacencies are [v3 v ′
3] and [v4 v ′

4].
It is natural to consider using fixed-parameter tractable (FPT) algorithms for this kind of problems. However, regarding 

the FPT-tractability of the EAN problem, parameterized by the optimal solution value k, we note that the above reduction 
is an FPT-reduction. This is due to that, in the constructed EAN instance, the optimal solution value only depends on the 
size of the independent set (and not on the rest of the input at all). Hence, EAN is as hard as the parameterized version 
of Independent Set, which is W[1]-hard. (See [9] for the details regarding the hierarchies on the parameterized complexity, 
e.g., W[1].) This implies that, unless an unlikely collapse of the parameterized complexity hierarchies occurs, EAN cannot be 
solved in time f (k)no(k) , where f is any computable function [5]. We hence have the following corollary.

Corollary 1. Even if one of G and H is exemplar and the other is 2-repetitive, the EAN problem parameterized by the optimal solution 
value k is W[1]-hard.

4. An O (n0.5)-approximation algorithm

Here we consider the two-sided 2-repetitive EAN problem in this section. Let Σ = {1, 2, . . . , n} be the gene alphabet, and 
G = (g1 g2 . . . gp) and H = (h1h2 . . .hq) be the two 2-repetitive genomes. For the ease of presentation, for each gene i ∈ Σ , 
an occurrence in G or its exemplar sub-genomes is denoted by i+ , while an occurrence in H or its exemplar sub-genomes is 
denoted by i− . To implement our algorithm, we construct an interval element y+

i between gi and gi+1 for i = 1, ..., p − 1; 
likewise, we construct an interval element y−

j between h j and h j+1 for j = 1, ..., q − 1. Moreover, for each gene i we 
construct a gene element xi .

4.1. The algorithm

Between any two exemplar genomes G and H derived from G and H respectively, an adjacency i j un-ambiguously points 
to two positions i1 and j1 in G and two positions i2 and j2 in H such that {gi1 , g j1 } = {i+, j+} and {hi2 , h j2} = {i−, j−}; 
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Input: Σ = {1,2, . . . ,n} and two 2-repetitive genomes G and H
Output: Two exemplar genomes G and H of G and H respectively

1. Construct set S(i1, j1; i2, j2) for all possible quadruples;
2. Remove infeasible sets and form set collection S;
3. Construct an instance I of Set Packing:

ground set U = Σ+ ∪ Σ− ∪ X ∪ Y + ∪ Y − and collection S;
4. Run the linear time Set Packing approximation algorithm on I:

obtain a solution Approx(I);
5. Extend Approx(I) into exemplar genomes G and H .

Fig. 2. A high-level description of the approximation algorithm A.

furthermore, to obtain G from G , the substring G[i1 + 1.. j1 − 1] is deleted (similarly, to obtain H from H, the substring 
H[i2 + 1.. j2 − 1] is deleted). Motivated by this observation, we create a set S(i1, j1; i2, j2) when {gi1 , g j1 } = {i+, j+} and 
{hi2 , h j2} = {i−, j−} for some pair of distinct genes i and j (i < j), for all possible quadruples 1 ≤ i1 < j1 ≤ p and 1 ≤ i2 <

j2 ≤ q. Set S(i1, j1; i2, j2) contains those genes in G[i1 + 1.. j1 − 1] and those genes in H[i2 + 1.. j2 − 1], and additionally 
j1 − i1 interval elements y+

i1
, y+

i1+1, . . . , y
+
j1−1, j2 − i2 interval elements y−

i2
, y−

i2+1, . . . , y
−
j2−1, and two gene elements xi

and x j . Clearly, the total number of such constructed sets is O (n2).
We next remove some of these constructed sets for further consideration, since they do not correspond to feasible 

adjacencies. There are two cases: In one case, G[i1 + 1.. j1 − 1] contains a gene which occurs only once in G; in the other 
case, G[i1 +1.. j1 −1] contains both copies of a gene. Since deleting the whole substring G[i1 +1.. j1 −1] of genes leads to no 
exemplar sub-genomes of G , gi1 g j1 is not a feasible adjacency. The same procedure applies to H, that if H[i2 + 1.. j2 − 1]
contains a gene which occurs only once in H or contains both copies of a gene, then hi2 h j2 is not a feasible adjacency 
either. Let S denote the collection of the constructed sets after the above removing procedure, where each set corresponds 
to a feasible adjacency.

Let Σ+ = {1+, 2+, . . . , n+}, Σ− = {1−, 2−, . . . , n−}, X = {x1, x2, . . . , xn}, Y + = {y+
1 , y+

2 , . . . , y+
p−1}, and Y − = {y−

1 , y−
2 ,

. . . , y−
q−1}. We construct an instance I of Set Packing using the ground set U = Σ+ ∪Σ− ∪ X ∪ Y + ∪ Y − and the collection S

of subsets of U . Then, the linear time (in |U |) approximation algorithm in [11] for the Set Packing problem can be applied 
on I to produce an approximate solution, which is a sub-collection Approx(I) of S containing mutually disjoint sets. By the 
following Lemma 3, the set of adjacencies extracted from Approx(I) can be extended into an exemplar genome G of G and 
an exemplar genome H of H, such that an(G, H) ≥ |Approx(I)|. We return the pair G and H as the final solution to the EAN 
problem. A high-level description of the approximation algorithm A is in Fig. 2.

4.2. Performance analysis

We first have the following result for the Set Packing problem:

Lemma 2. (See [11].) The Set Packing problem admits an O (|U | + |S|)-time |U |0.5-approximation algorithm, where U is the ground 
set and S is the collection of subsets.

Next, we exploit relationships between the feasible solutions of the EAN and the Set Packing problems.

Lemma 3. If there is a set packing S ′ ⊆ S of size k, then there is a pair of exemplar genomes G and H, derived from G and H
respectively, such that an(G, H) ≥ k.

Proof. Let S1, S2, . . . , Sk be the sets in the set packing S ′ . Note that these k sets are mutually disjoint, i.e., no two of them 
contain a common element from U = Σ+ ∪ Σ− ∪ X ∪ Y + ∪ Y − .

From the construction process of the sets of S , we know each Si is associated with an interval of G and an interval 
of H, and Si contains all the associated interval elements. Two disjoint sets Si and S j are thus associated with two non-
overlapping intervals of G (and of H, respectively). Therefore, all the adjacencies corresponding to sets S1, S2, . . . , Sk can be 
formed by deleting all genes from the intervals associated with sets S1, S2, . . . , Sk . Moreover, if a gene i occurs only once 
in G (in H, respectively), then i+ (i− , respectively) does not belong to any of S1, S2, . . . , Sk . Likewise, if a gene i occurs 
twice in G (in H, respectively), then i+ (i− , respectively) belongs to at most one of S1, S2, . . . , Sk . If it belongs to exactly 
one Si , gene i will form an adjacency together with some other gene. Otherwise, there will still be two copies of the gene 
remaining in each of the two genomes after deleting the intervals associated with S1, S2, . . . , Sk .

In the former case, element xi is covered by exactly one of S1, S2, . . . , Sk and thus gene i is in a unique adjacency. In 
the latter case, we may keep an arbitrary copy of i+ in G and an arbitrary copy of i− in H, while deleting the others if 
any. This way, we obtain an exemplar genome G from G and an exemplar genome H from H, for which all the adjacencies 
corresponding to sets S1, S2, . . . , Sk are kept. That is, an(G, H) ≥ k. This proves the lemma. In addition, we see that such a 
pair of exemplar genomes can be obtained from S ′ in a linear scan through the genomes G and H. �
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Lemma 4. If ean(G, H) = k, then the optimal set packing has size at least k
2 .

Proof. Let G∗ and H∗ denote the exemplar genomes of G and H respectively such that an(G∗, H∗) = ean(G, H). Clearly, 
adjacencies between G∗ and H∗ , when regarded as edges connecting the two involved genes, form disjoint paths. For each 
such path containing � adjacencies, a maximum of 	 �

2 
 disjoint adjacencies can be obtained; here two adjacencies are 
disjoint if they do not share any common gene. It follows from the proof of Lemma 3 that the optimal set packing has size 
at least k

2 . �
Theorem 2. The two-sided 2-repetitive EAN problem admits an O (n3)-time O (n0.5)-approximation algorithm, where n is size of the 
gene alphabet.

Proof. Let the two 2-repetitive genomes be G and H. Their lengths are thus bounded above by 2n. For each position 
pair (i1, j1) in G , we only need to look up at most 4 possibilities to construct sets, each of which contains O (n) elements. 
Therefore, the instance I of Set Packing can be constructed in O (n3) time, with |U | ≤ 7n and |S| ∈ O (n2). Running the 
approximation algorithm for Set Packing on I takes O (n2) time, with the returned solution |Approx(I)| ≤ n. Finally, a pair of 
exemplar genomes G and H can be extended from Approx(I) in O (n) time. Therefore, the overall running time is O (n3).

From Lemmas 2–4,

an(G, H) ≥ ∣∣Approx(I)
∣∣ ≥ ean(G,H)

2

/
|U |0.5 = ean(G,H)

2
√

7n0.5
.

Therefore, our approximation algorithm has a performance ratio in O (n0.5). �
5. Concluding remarks

In this paper we studied the exemplar adjacency number problem, which complements and extends the exemplar break-
point distance problem, between two general genomes (with gene repetitions). (An earlier version of this paper appeared 
at CPM’07, where some different terminologies were used.) We proved that the EAN problem cannot be approximated 
within O (n0.5−ε) for 0 < ε < 0.5, even in the one-sided 2-repetitive case, where n is the size of the gene alphabet. On 
the positive side, we presented a cubic time O (n0.5)-approximation algorithm for the two-sided 2-repetitive EAN problem. 
Therefore, within the context of 2-repetitiveness, our negative inapproximability and positive algorithmic results merge per-
fectly. We believe that our techniques could extend the approximation algorithm for the r-repetitive case, for any fixed r; 
but we are not sure whether the general EAN problem admits an O (n0.5)-approximation algorithm, even in the one-sided 
case.

On the other hand, the approximability for the (complement) one-sided Exemplar Breakpoint Distance problem, even 
when each gene appears in the non-exemplar genome at most twice, is still open. The only known negative result is 
APX-hardness [1], and the only positive result is the trivial O (n)-factor approximation.

Finally, while the EAN problem we discussed in this paper is hard in terms of designing efficient FPT algorithms, using 
FPT algorithms to handle problems in computational genomics, in many situations, is feasible. We refer interested readers 
to the recent survey for the current status of this research direction [20].
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