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RNA interactions are fundamental in many cellular processes, where two or more RNA
molecules can be involved. Multiple RNA interactions are also believed to be much
more complex than pairwise interactions. Recently, multiple RNA interaction prediction
has been formulated as a maximization problem. Here we extensively examine this
optimization problem under several biologically meaningful interaction models. We present
a polynomial time algorithm for the problem when the order of interacting RNAs is known
and pseudoknot interactions are allowed; for the general problem without an assumed RNA
order, we prove the NP-hardness for both variants (allowing and disallowing pseudoknot
interactions), and present a constant ratio approximation algorithm for each of them.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

RNA interaction is one of the fundamental mechanisms underlying many cellular processes, in particular genome regu-
latory code processes, such as mRNA translation, editing, gene silencing, and synthetic self-assembling RNA design. In the
literature, pairwise RNA interaction prediction has been independently formulated as a computational problem by a number
of groups of researchers [15,2,12]. While these variants are all motivated by specific biological considerations, the general
formulation is usually NP-hard and many special scenarios have been extensively studied [13,4,5,16,8,9].

In more complex instances, biologists have found that multiple small nucleolar RNAs (snoRNAs) interact with ribosomal
RNAs (rRNAs) in guiding the methylation of the rRNAs [11], and multiple small nuclear RNAs (snRNA) interact with an mRNA
in the splicing of introns [17]. Multiple RNA interactions are believed much more complex than pairwise RNA interactions,
where only two RNA molecules are involved. In fact, even if we have a perfect computational framework for pairwise RNA
interactions, it might still be difficult to deal with multiple RNA interactions since, for a given pool of RNA molecules, it is
non-trivial to predict their interaction order without sufficient prior biological knowledge.

Motivated by biological goals, Ahmed et al. have developed a system for multiple RNA interaction prediction, denoted
as MRIP [1]. Here we provide basic definitions to formally introduce the MRIP problem. An RNA molecule is a sequence of
nucleotides (A, C, G, and U). A basepair in the RNA is presented as (i, j), where i < j, indicating that the i-th nucleotide and
the j-th nucleotide form a canonical pairing (i.e., the two nucleotides are either A and U or C and G). The molecule folds
into a structure which is described as a set of basepairs. In general, every nucleotide can participate in at most one basepair,
and if not, it is a free base (or nucleotide). The set of basepairs is nested (a.k.a. secondary structure), if for any two basepairs
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(i1, j1) and (i2, j2) with i1 < i2, either j1 < i2 or j2 < j1; otherwise the set is crossing (a.k.a. tertiary structure) containing
pseudoknots. An interaction between two RNAs is a basepair which consists of one free base from each RNA. In the sequel,
we use interaction and basepair interchangeably.

In the MRIP problem, we are given a pool of RNA sequences denoted as R= {R1, R2, . . . , Rm}. Without loss of generality,
we assume m is even and these RNA sequences have the same length n. We use Ri� to denote the �-th base of Ri . Following
the formulation by Ahmed et al. [1], the possible interactions between every pair of RNAs are assumed known. In fact,
these possible interactions can be predicted using existing pairwise RNA interaction predictors [13,4,5,16,8,9]. For a possible
interaction (Ri1�1 , Ri2�2 ), its weight w(Ri1�1 , Ri2�2 ) can be set using a probabilistic model or using an energy model or
simply at 1 to indicate its contribution to the structure stability. The problem goal is to find out the order of RNAs in which
they interact, that the first RNA interacts with the second RNA, which in turn interacts with the third RNA, and so on, and
how every two consecutive RNAs interact, so as to maximize the total weight of the interactions (to achieve the most stable
structure). Throughout this paper, we consider the uni-weight case, that is to maximize the total number of interactions.
Two interactions (Ri1�1 , Ri2�2 ) and (Ri1k1 , Ri2k2 ) are pseudoknot-like if �1 < k1 but �2 > k2. The MRIP problem can allow or
disallow pseudoknot-like interactions, depending on application details similar to RNA structure prediction.

For a very special case of MRIP (the Pegs and Rubber Bands problem in [1]), where the order of interacting RNAs is
assumed and pseudoknot-like interactions are disallowed, Ahmed et al. proved its NP-hardness and presented a polynomial-
time approximation scheme [1]. Given that predicting the interaction order is difficult, they also proposed a heuristic for
the more general case with unknown interacting order but still disallowing pseudoknot-like interactions.

In this paper, we first observe that the MRIP allowing pseudoknot-like interactions and with an assumed RNA interaction
order can be solved in polynomial time.

Secondly, notice that the interactions are nucleotide basepairs and thus follow the Watson–Crick basepairing rule. For
four RNA sequences Ri1 , Ri2 , Ri3 , Ri4 , when there are possible interactions (Ri1�1 , Ri2�2 ), (Ri2�2 , Ri3�3 ), (Ri3�3 , Ri4�4 ) (for ex-
ample, if they are basepairs (A, U), (U, A), (A, U), respectively), then it is naturally to assume another possible interaction
(Ri1�1 , Ri4�4 ) between RNAs Ri1 and Ri4 . If the given interactions satisfy the above property then the MRIP problem is said
to have the “transitivity” property, or transitive MRIP. We show that the transitive MRIP problem without an assumed RNA
interaction order, either allowing or disallowing pseudoknot-like interactions, is NP-hard. On the positive side, we present a
constant ratio approximation algorithm for each variant.

2. Algorithmic and hardness results

2.1. MRIP with a known RNA interaction order

In this subsection, we consider the MRIP problem with a known RNA interaction order, and we assume the order is
(R1, R2, . . . , Rm). When disallowing pseudoknot-like interactions, Ahmed et al. [1] showed that the problem is NP-hard via
a reduction from the Longest Common Subsequence problem.

Theorem 1. (See [1].) The MRIP problem disallowing pseudoknot-like interactions is NP-hard.

When allowing pseudoknot-like interactions, we first construct a graph H = (U , F ) where every vertex ui� corresponds to
nucleotide Ri� and two vertices are connected by an edge if there is a given possible interaction between them. Clearly, one
can see that a matching M of graph H gives a feasible solution to the MRIP problem allowing pseudoknot-like interactions,
and vice versa. Therefore, the MRIP problem allowing pseudoknot-like interactions can be solved in polynomial time.

2.2. The general MRIP

By general MRIP, we mean the MRIP problem in which no RNA interaction order is assumed. The possible interactions
are still given for every pair of RNAs and the problem goal is to find an interaction order and to achieve the maximum
number of interactions.

Theorem 2. The general MRIP problem, either allowing or disallowing pseudo-knot-like interactions, is NP-hard.

Proof. Given a 0–1 matrix Am×n , two consecutive 1’s in a column of the matrix is said to form a bandpass. When counting
the total number of bandpasses in the matrix, no two bandpasses in the same column are allowed to share any com-
mon 1. The Bandpass problem is to find a row permutation for the input matrix to achieve the maximum total number of
bandpasses. Lin proved that the Bandpass problem is NP-hard via a reduction from the Hamiltonian Path problem [10].

Let the i-th RNA be the i-th row of matrix A, so there is a possible interaction between Ri1�1 and Ri2�2 if and only
if both positions have a 1. Though such constructed RNAs and interactions are not necessarily biologically meaningful, this
reduction shows the general MRIP problem is NP-hard. Furthermore, no two possible interactions between a pair of RNAs are
crossing each other, and thus there are no pseudoknot-like interactions in this reduction. Hence, the general MRIP problem,
either allowing or disallowing pseudoknot-like interactions, is NP-hard. �
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Input: m RNAs Ri , i = 1,2, . . . ,m;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1) ,

for i = 1,2, . . . ,m − 1

1. for each RNA pair Ri and R j ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri , R j);

2. construct edge-weighted complete graph G;
3. compute a maximum weight matching M∗ of G;
4. stack RNA pairs in M∗ arbitrarily to form a permutation π ;
5. output π and the interactions in w(Rπ(i), Rπ(i+1)).

Fig. 1. A high-level description of Approx I.

Given an instance I of a maximization problem Π , let C∗(I) (C(I), respectively) denote the value of the optimal solution
(the value of the solution produced by an algorithm, respectively). The performance ratio of the algorithm on I is C(I)

C∗(I) . The

algorithm is a ρ-approximation if infI
C(I)

C∗(I) ≥ ρ , that is, it guarantees, on any instance, a solution of value at least a fraction
ρ of the optimum.

Using the possible interactions between the pair of RNAs Ri and R j , we construct a bipartite graph BG(i, j) = (V i ∪
V j, E(i, j)), where the vertex subset V i (V j , respectively) corresponds to the set of nucleotides in Ri (R j , respectively)
and the edge set E(i, j) corresponds to the set of given possible interactions between Ri and R j . That is, (Ri�1 , R j�2 )

is a possible interaction if and only if there is an edge between Ri�1 and R j� j in BG(i, j). One clearly sees that, when
allowing pseudoknot-like interactions, the size of the maximum matching in BG(i, j) is exactly the maximum total number
of interactions between RNAs Ri and R j ; when pseudoknot-like interactions are not allowed, the maximum total number of
interactions between RNAs Ri and R j can be computed by a dynamic programming algorithm similar to one for computing
the longest common subsequence between two given sequences. Either way, this maximum number of interactions can be
computed in polynomial time, and it is set as the weight between RNAs Ri and R j , denoted as w(Ri, R j).

We next construct an edge-weighted complete graph G , in which a vertex corresponds to an RNA sequence and the
weight between two vertices (RNAs) Ri and R j is w(Ri, R j) computed above. Since the optimal solution to the MRIP
problem, either allowing or disallowing pseudoknot-like interactions, can be decomposed into two matchings in graph G by
including alternate edges in the solution, the maximum weight matching M∗ of graph G has a weight that is at least half
of the total number of interactions in the optimal solution. It follows that this maximum weight matching-based algorithm,
described in Fig. 1, is a 0.5-approximation to the MRIP problem.

Theorem 3. Approx I is a 0.5-approximation algorithm for the general MRIP problem, either allowing or disallowing pseudoknot-like
interactions.

Proof. When allowing pseudoknot-like interactions, w(Ri, R j) can be computed by a maximum matching algorithm in
O (n3) time, where n is the (common) length of the given RNAs.

When disallowing pseudoknot-like interactions, w(Ri, R j) can be computed by a dynamic programming algorithm in
O (n2) time.

It follows that the time for constructing graph G is O (m2n3). Graph G contains m vertices, and this its maximum weight
matching M∗ can be computed in O (m3) time. Subsequent construction of the solution permutation π takes linear time.

Therefore, Approx I is an O (max{m3,m2n3})-time 0.5-approximation algorithm for the MRIP problem allowing
pseudoknot-like interactions. For the MRIP problem disallowing pseudoknot-like interactions, it is an O (max{m3,m2n2})-
time 0.5-approximation algorithm. �
3. Better approximations for general transitive MRIP

In the previous section, we proved the NP-hardness for the general MRIP problem, and presented a 0.5-approximation
algorithm. One can imagine that this performance ratio of 0.5 must be tight, if the given possible interactions are arbitrary.
Consider for example an instance of m RNAs R = {R1, R2, . . . , Rm} each of length n (n ≥ m). The only possible interactions
are (Ri,i, Ri+1,i), for i = 1,2, . . . ,m − 1. One can see that the optimal permutation is 〈1,2, . . . ,m〉, which contains m − 1
interactions; while algorithm Approx I can produce a permutation containing only �m

2 � interactions.
Now we consider a biologically meaningful special case where the given possible interactions are transitive, that is, for

any four RNA sequences Ri1 , Ri2 , Ri3 , Ri4 , when there are possible interactions (Ri1�1 , Ri2�2 ), (Ri2�2 , Ri3�3 ), (Ri3�3 , Ri4�4 ) (for
example, they are basepairs (A, U), (U, A), (A, U), respectively), then (Ri1�1 , Ri4�4 ) is also a possible interaction between
RNAs Ri1 and Ri4 . We call it the general transitive MRIP problem. Note that in the proof of NP-hardness in Theorem 2,
the constructed instance of the MRIP problem satisfies the transitivity property. Therefore the general transitive MRIP prob-
lem, either allowing or disallowing pseudoknot-like interactions, is still NP-hard. We next show that we can explore the
transitivity property to design approximation algorithms with performance ratios better than 0.5.
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Input: m RNAs Ri , i = 1,2, . . . ,m, with transitivity;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1) ,

for i = 1,2, . . . ,m − 1

1. for each RNA pair Ri and R j ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri , R j) disallowing pseudoknot-like interactions;

2. construct edge-weighted complete graph G using edge weight function w;
3. compute a maximum weight matching M∗ of G;

3.1. delete nucleotides involved in the interactions of M∗;
3.2. reconstruct bipartite graph BG(i, j);
3.3. compute w ′(Ri , R j) disallowing pseudoknot-like interactions;

4. construct edge-weighted complete graph G ′ using edge weight function w ′;
4.1. compute a maximum weight 4-matching C of G ′;
4.2. compute an approximate acyclic 2-matching P of G ′;
4.3. compute a matching M out of C and P to extend M∗;

5. stack RNA paths in G[M∗ ∪ M] arbitrarily to form a permutation π ;
6. output π and the interactions in w(Rπ(i), Rπ(i+1)) + w ′(Rπ(i), Rπ(i+1)).

Fig. 2. A high-level description of Approx II.

3.1. A 0.5328-approximation for disallowing pseudoknots

The improved approximation algorithm for the general transitive MRIP disallowing pseudoknot-like interactions is de-
noted as Approx II, and its high-level description is provided in Fig. 2.

Note that to compute the maximum number of interactions between two RNAs Ri and R j (Step 1.2) while disallow-
ing pseudoknot-like interactions, we can use the same dynamic programming algorithm used in Approx I, which runs in
O (n2)-time. In Step 4.2, the best approximation algorithm for the Maximum-TSP (with a performance ratio of 7

9 [14]) is
used to compute an acyclic 2-matching. In Step 4.3, to compute a matching M to extend M∗ , the union of the edge sets
of M and M∗ , i.e. G[M ∪ M∗], is an acyclic 2-matching (sub-tour is an alternative terminology often used in the literature).
Basically algorithm Approx II adds to the maximum weight matching M∗ of graph G a subset of edges that contains a
proven fraction of interactions.

Let I denote the set of interactions in the optimal solution. Let J be the set of interactions extracted from the weights
of the edges in the maximum weight matching M∗ of graph G . Note that neither I nor J contains crossing interactions.
Similarly as in the MRIP problem with a known RNA interaction order (Section 2), we construct another graph H = (U , F )

for the instance where every vertex ui� corresponds to nucleotide Ri� and two vertices are connected by an edge if there is
a given possible interaction between them. With respect to graph H , both I and J are non-crossing matchings. Therefore,
the subgraph of H induced by the interactions of I and J , H[I ∪ J ], is a 2-matching of graph H , denoted by T . Using this
2-matching T , we partition I into 4 subsets of interactions, I = I1 ∪ I2 ∪ I3 ∪ I4, and at the same time partition J into 4
subsets of interactions, J = J1 ∪ J2 ∪ J3 ∪ J4.

Here is the partitioning scheme. Since T is a 2-matching, there are only alternating paths and cycles in T . First we
consider paths. For a path of length 1, say P = 〈u1, u2〉, if its only edge/interaction is in I ∩ J , then the edge belongs to I1
and belongs to J1 too; if the edge is in I − J , then the edge belongs to I4; if the edge is in J − I , then the edge belongs to
J4. For a path of length 3, say P = 〈u1, u2, u3, u4〉, if (u1, u2), (u3, u4) ∈ I , then they belong to I2 and edge (u2, u3) belongs
to J2. For a path other than the above cases, the edges of I all belong to I3 and the edges of J all belong to J3. And for
each cycle, the edges of I all belong to I3 and the edges of J all belong to J3.

Lemma 1. Let |Xi | denote the size of, that is the number of interactions in, set Xi , for X = I, J and i = 1,2,3,4. We have | J1| = |I1|,
| J2| = 1

2 |I2|, and | J3| ≥ 2
3 |I3|.

Proof. By the definition of I1, J1, I2, J2, we can easily see | J1| = |I1| and | J2| = 1
2 |I2|. For I3 and J3, from each path or

cycle, the number of edges assigned to J3 is either greater than or equal to the number of edges assigned to I3, or 1 less;
but in the latter case the length of the path must be at least 5. Therefore, the worst case happens when two and three
edges are assigned to J3 and I3 respectively, which implies | J3| ≥ 2

3 |I3|. �
Corollary 1. We have the following relationships:

|I| = |I1| + |I2| + |I3| + |I4|, (3.1)

w
(
M∗) = | J1| + | J2| + | J3| + | J4|, (3.2)

w
(
M∗) ≥ |I1| + 1

2
|I2| + 2

3
|I3|, (3.3)

w
(
M∗) ≥ 1

2
|I| = 1

2

(|I1| + |I2| + |I3| + |I4|
)
. (3.4)
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Proof. The first two equations are straightforward, following the description of partitioning process and that w(M∗) = | J |.
The last two inequalities follow from Lemma 1 and Theorem 3, respectively. �

After deleting the bases involved in the interactions of the maximum weight matching M∗ , graph G ′ is constructed
the same as graph G except using the residual weight function w ′ . For a path of length 3, P = 〈u1, u2, u3, u4〉, such that
(u1, u2), (u3, u4) ∈ I2, the transitivity property ensures that there is a possible interaction between u1 and u4. Clearly, this
interaction is left in graph G ′ , and such an interaction is called an induced interaction. Let G ′

s be the subgraph of G ′ that
contains exactly those edges each of which is contributed by at least one induced interaction.

Lemma 2. G ′
s is a 4-matching in G ′ , and its weight w ′(G ′

s) ≥ 1
2 |I2|.

Proof. To prove the first part, we only need to prove that every RNA can have induced interactions with at most 4 other
RNAs. By the definition of I2, there is an induced interaction (u1, u4) if and only if there is an alternating length-3 path
P = 〈u1, u2, u3, u4〉, such that (u1, u2), (u3, u4) ∈ I and (u2, u3) ∈ J . Suppose uk ∈ Rik , for k = 1,2,3,4. It follows that
Ri1 , Ri2 (Ri3 , Ri4 , respectively) are adjacent in the optimal permutation and Ri2 , Ri3 are matched in M∗ . Since each RNA
can be adjacent to at most two other RNAs in the optimal solution, Ri1 and every RNA can have induced interactions with
at most 4 other RNAs.

The second part of the lemma follows directly from the definition of an induced interaction, which corresponds to a
distinct pair of interactions of I2. �

It is known that in O (n2.5) time, a 4-matching can be decomposed into two 2-matchings [6,7], and a 2-matching can be
further decomposed for our purpose in the next few lemmas.

Lemma 3. (See [3,18].) Let C be a 2-matching of graph G such that M∗ ∩ C = ∅. Then, we can partition the edge set of C into
4 matchings X0, X1, X2, X3 each of which extends M∗ . Moreover, the partitioning takes O (nα(n)) time, where α(n) is the inverse
Ackerman function.

The maximum weight 4-matching C of graph G ′ can be decomposed into two 2-matchings C1 and C2. By Lemma 3, C1
can be partitioned into 4 matchings X0, X1, X2, X3 and C2 can be partitioned into 4 matchings Y0, Y1, Y2, Y3, each of which
extends M∗ .

Lemma 4. (See [18].) Let C be a 4-matching of graph G such that M∗ ∩ C = ∅. Then, we can partition the edge set of C into 8 matchings
such that each of them extends M∗ and the maximum weight among them is at least 2

15 w ′(C). Moreover, the partitioning takes O (n2.5)

time.

Lemma 5. The maximum weight acyclic 2-matching D of graph G ′ has weight w ′(D) ≥ |I4|.

Proof. Note that graph G ′ contains all interactions of I4 because the only bases deleted are those involved in the interactions
of M∗ . The subgraph of graph G ′ containing exactly the edges contributed by at least one interaction of I4 is a subgraph of
the optimal solution, and thus it is an acyclic 2-matching in graph G ′ . Therefore,

w ′(D) ≥ |I4|.
This proves the lemma. �
Lemma 6. (See [3,18].) Let P be an acyclic 2-matching of G such that M∗ ∩ P = ∅. Then, we can partition the edge set of P into three
matchings Y0, Y1, Y2 each of which extends M∗ . Moreover, the partitioning takes O (nα(n)) time.

Lemma 7. (See [14].) The Max-TSP admits an O (n3)-time 7
9 -approximation algorithm, where n is the number of vertices in the graph.

Corollary 2. The weight of the second matching M in Approx II to extend M∗ has weight w ′(M) ≥ max{ 1
15 |I2|, 7

27 |I4|}.

Proof. Using Lemmas 2 and 4, we have

w ′(M) ≥ 2

15
w ′(C) ≥ 1

15
|I2|.

Using Lemmas 5–7, we have

w ′(M) ≥ 1

3
w ′(P) ≥ 7

27
w ′(D) ≥ 7

27
|I4|.

The corollary holds. �
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Input: m RNAs Ri , i = 1,2, . . . ,m, with transitivity;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1) ,

for i = 1,2, . . . ,m − 1

1. for each RNA pair Ri and R j ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri , R j) allowing pseudoknot-like interactions;

2. construct edge-weighted complete graph G using edge weight function w;
3. compute a maximum weight matching M∗ of G;

3.1. delete nucleotides involved in the interactions of M∗;
3.2. reconstruct bipartite graph BG(i, j);
3.3. compute w ′(Ri , R j) allowing pseudoknot-like interactions;

4. construct edge-weighted complete graph G ′ using edge weight function w ′;
4.1. compute a maximum weight 4-matching C of G ′;
4.2. compute a matching M out of C to extend M∗;

5. stack RNA paths in G[M∗ ∪ M] arbitrarily to form a permutation π ;
6. output π and the interactions in w(Rπ(i), Rπ(i+1)) + w ′(Rπ(i), Rπ(i+1)).

Fig. 3. A high-level description of Approx III.

Theorem 4. Algorithm Approx II is a 0.5328-approximation for the general transitive MRIP problem disallowing pseudoknot-like
interactions.

Proof. Combining Corollaries 1 and 2, we have for any real x, y ∈ [0,1],
w(π) = w

(
M∗) + w ′(M)

≥ x

(
|I1| + 1

2
|I2| + 2

3
|I3|

)
+ (1 − x)

1

2

(|I1| + |I2| + |I3| + |I4|
) + y

1

15
|I2| + (1 − y)

7

27
|I4|

= 1 + x

2
|I1| + 15 + 2y

30
|I2| + 3 + x

6
|I3| + 41 − 27x − 14y

54
|I4|

≥ 255

426
|I1| + 227

426
|I2| + 227

426
|I3| + 227

426
|I4|

≥ 227

426
|I|

> 0.5328|I|,
where the third last inequality holds by setting x = 14

71 and y = 35
71 . �

3.2. A 0.5333-approximation for allowing pseudoknots

The improved approximation algorithm for the general transitive MRIP allowing pseudoknot-like interactions is denoted
as Approx III, and its high-level description is provided in Fig. 3.

Approx III is very similar to Approx II, and only differs at two places. First, since the problem allows pseudoknot-like
interactions, we run a maximum weight bipartite matching algorithm to compute those edge weights, in Steps 1.2 and 3.3.
Second, computing a matching M to extend M∗ is now based only on the maximum weight 4-matching C , of which the
weight can be better estimated because pseudoknot-like interactions are allowed.

The analysis of the algorithm is similar to that of the previous section. We do exactly the same interaction partitioning
for the optimal solution, of which the interaction set is I , and the maximum weight matching M∗ , of which the interaction
set is J . One can easily verify that all Lemma 1, Corollary 1, and Lemma 2 hold again. The following lemma is the key to
the improvement of the performance analysis, which provides an improved lower bound on the weight of the maximum
weight 4-matching.

Lemma 8. The weight of the maximum weight 4-matching C of graph G ′ is

w ′(C) ≥ max

{
1

2
|I2|, 1

4
|I2| + |I4|

}
. (3.5)

Proof. The first component straightly follows from Lemma 2 since G ′
s is a 4-matching in graph G ′ . Note also that graph G ′

contains all the edges of the optimal solution, each of which is contributed by at least one interaction of I4. This remaining
optimal solution, denoted as P , is an acyclic 2-matching in G ′ , and has weight w ′(P) ≥ |I4|.

Since G ′
s is a 4-matching, it can be decomposed into two 2-matchings denoted as D1 and D2. One clearly see that both

P ∪ D1 and P ∪ D2 are 4-matchings in graph G ′ . The interactions of I4 counted toward P are not counted toward G ′
s .

Therefore, we have
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w ′(C) ≥ max
{

w ′(P ∪D1), w ′(P ∪D2)
}

≥ 1

2

(
w ′(D1) + w ′(D2)

) + w ′(P)

= 1

2
w ′(G ′

s

) + |I4|

≥ 1

4
|I2| + |I4|.

This proves the lemma. �
Corollary 3. The weight of the second matching M in Approx III to extend M∗ has weight w ′(M) ≥ 1

30 |I2| + 2
15 |I4|.

Proof. Using Lemmas 2 and 8, we have

w ′(M) ≥ 2

15
w ′(C) ≥ 1

30
|I2| + 2

15
|I4|.

The corollary holds. �
Theorem 5. Algorithm Approx III is a 0.5333-approximation for the general transitive MRIP problem allowing pseudoknot-like inter-
actions.

Proof. Combining Corollaries 1 and 3, we have for any real x ∈ [0,1],
w(π) = w

(
M∗) + w ′(M)

≥ x

(
|I1| + 1

2
|I2| + 2

3
|I3|

)
+ (1 − x)

1

2

(|I1| + |I2| + |I3| + |I4|
) + 1

30
|I2| + 2

15
|I4|

= 1 + x

2
|I1| + 8

15
|I2| + 3 + x

6
|I3| + 19 − 15x

30
|I4|

≥ 3

5
|I1| + 8

15
|I2| + 8

15
|I3| + 8

15
|I4|

≥ 8

15
|I|

> 0.5333|I|,
where the third last inequality holds by setting x = 1
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