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High-throughput single nucleotide polymorphism genotyping assays conveniently produce

genotype data for genome-wide genetic linkage and association studies. For pedigree datasets,

the unphased genotype data is used to infer the haplotypes for individuals, according to
Mendelian inheritance rules. Linkage studies can then locate putative chromosomal regions

based on the haplotype allele sharing among the pedigree members and their disease status.

Most existing haplotyping programs require rather strict pedigree structures and return a single

inferred solution for downstream analysis. In this research, we relax the pedigree structure to
contain ungenotyped founders and present a cubic time whole genome haplotyping algorithm to

minimize the number of zero-recombination haplotype blocks. With or without explicitly

enumerating all the haplotyping solutions, the algorithm determines all distinct haplotype allele

identity-by-descent (IBD) sharings among the pedigree members, in linear time in the total
number of haplotyping solutions. Our algorithm is implemented as a computer program iBDD.

Extensive simulation experiments using 2 sets of 16 pedigree structures from previous studies

showed that, in general, there are trillions of haplotyping solutions, but only up to a few
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thousand distinct haplotype allele IBD sharings. iBDD is able to return all these sharings for
downstream genome-wide linkage and association studies.

Keywords: Haplotyping; identical by descent; haplotype allele sharing; linkage analysis.

1. Background

A single nucleotide polymorphism (SNP) is a DNA sequence variation occurring

when a single nucleotide in the genome di®ers between individuals, or between paired

homologous chromosomes in an individual of a diploid species (e.g. humans). SNPs

have been used as genetic markers in linkage analysis and association studies, where

the sharing status of the alleles among members is used to draw inferences on the

inheritable properties. In this research, we have developed a program called iBDD,

which determines all distinct haplotype allele identity-by-descent (IBD) sharings in

one whole genome scan, for the most complex pedigree genotype datasets.

SNPs are believed to contribute to the most genetic variations in human popu-

lations.1 The rapid development of genotyping technology has led to the identi¯ca-

tion of thousands to millions of SNPs for various species; for humans, these common

variants provide the foundation for genome-wide association studies (GWAS) under

the common disease�common variant (CDCV) hypothesis. Recently, GWAS have

achieved a great deal of success,2 but genetic ¯ne-mapping for complex diseases such

as cancer and mental illness is still a great challenge.

Nevertheless, the unphased genotype data is recognized as a fundamental bot-

tleneck in general genetic linkage and association studies, particularly for rare dis-

eases. For diploid species, including humans, at each biallelic SNP locus, the

unphased genotype data contains two alleles (nucleotides), without specifying their

parental origins. A haplotype is a phased genotype which, at each SNP locus, con-

tains the allele of the same parental origin.

In the mapping of disease-susceptible genes in genetic linkage and association

studies, one important assumption is that such disease-susceptible genes are in

linkage disequilibrium to certain SNPs, so that these SNP markers can be the

anchors of disease-susceptible genes. Given its biallelic nature, genetic linkage and

association studies based on SNP genotype in general requires a large number of

samples, positive samples in particular, so that the association study results are

statistically signi¯cant.2 On the other hand, if haplotypes for a large nonrecombinant

chromosomal region can be determined for all the samples, then the disease-

susceptible haplotype alleles may be easily identi¯ed, since the haplotype allele

sharing can be better determined. This approach has been particularly successful for

simple Mendelian disease genetic linkage on pedigree data. For general population-

based GWAS, haplotypes clearly contain more inheritance information than

unphased genotype, and the ideal case is to build the dense SNP haplotype map: this

provides more detailed and deterministic haplotype allelic information for the

mapping of disease-susceptible genes. It should be emphasized that, as SNPs act as
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anchors, it is the allele sharing that is used for linkage inference, and thousands to

millions of haplotype allele con¯gurations provide the identical sharing. Our iBDD

program from this research is designed to determine all distinct haplotype allele

sharings.

Haplotypes can be experimentally determined, but it is very expensive to do so.3

In practice, a less costly alternative is to collect genotype data. Therefore, e±cient

and accurate computational methods for the inference of haplotypes from genotype

data are of considerable value. There is a rich and growing literature on haplotype

inference from genotype data, also commonly referred to as phasing or haplotyping.

Research that focuses on unrelated individuals ��� population data ��� is reviewed in

Refs. 4 and 5, with its recent representative fastPHASE by Scheet and Stephens6;

Research on related individuals ��� pedigree data ��� is reviewed in Ref. 7, including

(exact and approximate) likelihood-based methods8�16 and genetic rule-based

strategies,17�22 with its representative PedPhase by Li and Jiang.17 The likelihood-

based methods usually work for low-density SNP data but not high-density data;

neither can they handle large (in many cases, even moderately large) datasets be-

cause of the extensive computations required. Additional information and assump-

tions, such as Hardy�Weinberg equilibrium and marker recombination rates, are

generally required to calculate the likelihoods.

Rule-based methods for haplotyping exploit the Mendelian laws of inheritance to

minimize the total number of crossover events (also called recombination events or

breakpoints) in all pedigree members7 needed for explaining the observed genotype

data. They generally run faster than likelihood-based methods. Nevertheless, this

computational minimization problem is NP-hard17 in general, indicating that it is

unlikely that there is a fast algorithm that reconstructs such optimal haplotyping

solutions (also called con¯gurations). When no recombination events are allowed and

the pedigree structure is full (i.e. every nonfounder pedigree member has both

parents genotyped), the problem is then to infer zero-recombination haplotypes from

the given pedigree genotypes, which is called the zero-recombination haplotype

con¯guration (ZRHC) problem. ZRHC turns out to be polynomial time solvable.

Li and Jiang17 presented an Oðm3n3Þ time algorithm and a computer program

PedPhase which solves ZRHC by reducing the problem to solving a system of linear

equations over the cyclic group Z2, wherem is the number of loci and n is the number

of members in the pedigree. Doan and Evans23 present another Oð2m 2
m3n2Þ time

algorithm for ZRHC, a consequence of a ¯xed-parameter tractable algorithm for the

general minimization problem.

It should be noted that the PedPhase and related rule-based methods, as well as

those based on likelihood (e.g. PhyloPed16), require (either speci¯cally or conven-

tionally) the full pedigree structure ��� any nonfounder pedigree member must have

both parents genotyped. As an exception, iLinker is rule-based and does not require a

full pedigree, but the pedigree can have only a couple or a single founder.20 In

summary, most existing rule-based haplotyping methods have rather strict pedigree

structure requirements, while a practical pedigree often contains multiple founders,

Whole Genome Identity-by-Descent Determination
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some of them may have passed away and their genotype data can no longer be

collected. For instance, none of the pedigrees used in the seven previous case

studies20,24�29 is full.

In our research, we relax the past pedigree structure requirement in our haplo-

typing algorithm to allow for ungenotyped founders, as long as the pedigree stays

connected and every ungenotyped member appears in exactly one nuclear family. We

note that, while we deal with ungenotyped pedigree members, every genotyped

member must have complete genotype data. There is existing work that deals with

missing genotype data in genotyped members.30 (When there is a large portion of

missing data in a population dataset, there is another line of work that does hap-

lotyping and imputation using the inferred haplotypes6,31�33). Under the zero-

recombination assumption, our novel rule-based haplotyping algorithm has thus the

largest pedigree coverage; it can produce all haplotyping solutions in Oðm3n3Þ time,

where m is the number of loci and n is the number of (genotyped) members in the

pedigree; and it is extended into a whole genome haplotyping algorithm to minimize

the number of zero-recombination chromosomal regions (i.e. haplotype blocks).

Moreover, note that genetic linkage and association studies use allele sharing infor-

mation amongst the individuals to make inferences, but not the detailed haplotype

alleles of each individual.20,34�38 We therefore take advantage of all the haplotyping

solutions (produced implicitly or explicitly) to determine all distinct genome-wide

haplotype allele identity-by-descent (IBD) and identity-by-state (IBS)34 sharings

among all pedigree members, together with their associated numbers of haplotyping

solutions. It is important to point out that the use of sharing properties of haplotypes

adequately addresses the issue of haplotype ambiguity (particularly, the founder

haplotype ambiguity) in linkage analysis and haplotype-based association studies.

All these functions are coded in a Perl program iBDD, which is available upon

request.

2. Materials and Methods

A pedigree describes the parent�o®spring relationship among individuals. In our

discussion of a pedigree, members are present only if they are genotyped. Those

members who have no parents are the founders of the pedigree. A nuclear family in a

pedigree consists of the parent(s) and all the children. In this paper, connected

complex pedigrees are considered, in which a nonpresent parent of a nuclear family

is an ungenotyped founder. Our pedigrees are connected, such that each nuclear

family has at least one parent and an ungenotyped founder appears in exactly one

nuclear family. The genotype at a (biallelic) SNP locus is homozygous if the two

alleles are the same (i.e. AA or BB), or is heterozygous if the two alleles are di®erent

(i.e. AB).

Our haplotyping algorithm is based on the Mendelian laws of inheritance, which

states that, at each locus of a pair of homologous autosomes of a child, one allele is

inherited from her father (the paternal allele) and the other from mother (the

H. Sabaa et al.
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maternal allele). A child does not inherit a complete autosome from each parent,

since crossover (also called recombination) events occur. That is, during the meiosis

process, the two homologous autosomes of a parent may be shu®led and four chro-

matids are generated, each of which is a shu®led copy of the two homologous

autosomes of the parent. One of these chromatids is passed on to the child. Between

any two consecutive SNP loci along an autosome of the parent, if recombination

occurs, then there is a breakpoint site between these two loci; this creates a break-

point between the two loci on the corresponding chromatid passed on to the child.

2.1. Zero-recombination haplotyping

Given a pedigree and the unphased genotype data of its members, Li and Jiang17

presented a constraint-based haplotyping algorithm, PedPhase, under the recom-

bination-free assumption. PedPhase de¯nes a binary parental source (PS) variable zi
for each child z at every SNP locus i, to record the parental origin of the two alleles:

zi ¼ 1 if and only if SNP i is heterozygous and child z inherits allele A from her

mother. Adopting the cyclic group rule \1þ 1 ¼ 0;" PedPhase produces a system of

linear equations as haplotyping constraints, where subsets of equations are collected

trio by trio. For example, let x denote the mother, y denote the father, and z be their

child; let i and j denote two consecutive SNP loci at which x is heterozygous (i.e. x is

homozygous at loci iþ 1; iþ 2; . . . ; j� 1); assume z is heterozygous as well at these

two loci (but z is not necessarily heterozygous at any loci of iþ 1; iþ 2; . . . ; j� 1).

Depending on the genotype of y at these two loci, PedPhase writes down the fol-

lowing set of constraints:

either xi ¼ xj or xi þ xj ¼ 1;

either yi ¼ yj or yi þ yj ¼ 1;

xi þ xj ¼ zi þ zj and=or yi þ yj ¼ zi þ zj:

8><
>:

It has been proven that all the linear equations are satis¯ed if and only if the

extracted haplotyping solution conforms with the input genotype data. Because the

equations are written down for trios, PedPhase requires a full pedigree structure i.e.

every nonfounder member must have both parents genotyped.

We rewrite these haplotyping constraints on a trio (x; y; z) to separate them into

two independent subsets of constraints, for the two parent�child pairs (x; z) and

(y; z) respectively. For example, for the pair (x; z), only one linear constraint is

written down, disregarding what the genotype y has at loci i and j:

xi þ xj þ zi þ zj ¼ 0:

In this way, we relax the pedigree structure to allow for one ungenotyped parent per

nuclear family ��� this factoring provides the advantage of the constraint rewriting

scheme. That is, in the above case, parent y can be ungenotyped. Furthermore, if

indeed y is ungenotyped, then besides the equations for all (x; child) pairs, additional

equations can be expressed to constrain the number of haplotypes for y to be at most

Whole Genome Identity-by-Descent Determination
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two. It should be noted that in the case where the pedigree structure is full, our

rewriting scheme becomes exactly the same as the PedPhase original scheme.

Similarly, it can be shown that these constraints in the rewriting scheme are all

satis¯ed if and only if the corresponding haplotyping solution is feasible. For the

detailed rewriting scheme that handles dozens of distinct scenarios and its mathe-

matical proof of correctness, interested readers may refer to Li and Jiang17 and

Cheng et al.21 Moreover, the total number of linear equations in our new system is

proven to be no more than 7mn, resulting in an Oðm3n3Þ-time haplotyping algo-

rithm, where m is the total number of SNPs along the chromosome and n is the size

of the pedigree.

2.2. Parsimonious whole genome haplotyping

For small chromosomal regions, the zero-recombination assumption can be reason-

able and the genetic linkage and association studies based on zero-recombination

haplotyping solutions are meaningful. For genotype datasets on whole chromosomes,

we need to relax the zero-recombination assumption but take advantage of the zero-

recombination haplotyping algorithm to greedily and optimally determine the

maximal zero-recombination haplotype blocks, and their associated haplotyping

solutions.

The following outlines at a high level on how this is accomplished in iBDD.

Starting with i ¼ 2, the zero-recombination haplotyping algorithm is run to check

whether solutions exist for chromosomal region [1; i], which contains loci 1; 2; . . . ; i.

If a±rmative, i is incremented by 1; and the checking process is repeated until at

some point, there is no solution to the linear system written for chromosomal region

[1; i]. This gives a maximal zero-recombination chromosomal region [1; i� 1], and

all haplotyping solutions are recovered for the region (either implicitly by storing

those determined PS variables or explicitly by listing all haplotype con¯gurations).

Next, chromosomal region [1; i� 1] is chopped, and the haplotyping process moves

on to repeatedly determine the other maximal zero-recombination chromosomal

regions starting SNP locus i.

Note that in this incremental haplotyping process, haplotyping solutions for

chromosomal region [1; j] are fully used in the zero-recombination haplotyping

algorithm to compute the haplotyping solutions for chromosomal region [1; jþ 1].

Our implementation ensures that the total number of linear equations is con¯ned in

OðmnÞ, to guarantee the Oðm3n3Þ running time for the whole genome scan.

2.3. The identity-by-descent determination

Given an explicit haplotyping solution for a zero-recombination haplotype block, or

given an implicit haplotyping solution represented as a solution to the linear system

(i.e. the PS values), we can use genotype data to trace the inheritance of each

haplotype allele of a genotyped founder member within the entire block. Essentially,

we identify for each child's two haplotype alleles their parental source. After this is

H. Sabaa et al.
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done, all the pedigree descendants who share the same founder haplotype allele form

a cluster. The haplotype allele identical-by-descent (IBD) sharing is characterized as

a collection of such clusters labeled with the founder identity. Note that this process

does not require (and thus allows the user to choose to not create) explicit haplo-

typing solutions. The process runs in OðknÞ time, where k is the total number of

maximal zero-recombination haplotype blocks.

3. Results

For our experiments, we use a real dataset from Wirtenberger et al.39 to generate

simulation datasets. This real dataset contains 877 SNPs on chromosome 1 for

independent individuals genotyped by GeneChip Human Mapping 10K Xba array.

To demonstrate the performance of our iBDD, six real pedigree structures are

employed, which have been used in previous genetic linkage and association studies

(Fig. 1 in Lin et al.,20 Fig. 1 in Martin et al.,25 Fig. 2 in Sinsheimer et al.,29 Fig. 2 in

Lin et al.,24 Fig. 1 in Hauser et al.,27 and Fig. 1 in Howell et al.,28 respectively). These

pedigrees vary wildly in size, the number of nuclear families, the number of founders,

and the number of ungenotyped founders. A summary of their structural char-

acteristics is included in Table 1. We followed a trio simulation process which gen-

erates two whole chromosomal haplotypes for a child from her parents' haplotypes

according to the �2ðmÞ-model for crossover events with m ¼ 4.40�42 Using this trio

generation process, the pedigree genotype datasets are simulated, 100 datasets for

each pedigree.

3.1. Breakpoint recovery

One important performance measure of a haplotyping algorithm is whether a true/

simulated breakpoint can be correctly recovered. In the pedigree genotype dataset

simulation process, a simulated parental breakpoint site could arise in between two

consecutive homozygous SNP loci, thus it cannot be precisely recovered by any

computational approach. We adopted the criteria mentioned in previous work16,20,42

to do the mapping between the simulated breakpoint sites and the breakpoint sites

computed by iBDD: a simulated breakpoint site is classi¯ed as recovered if there is a

computed breakpoint site on the same parent such that the SNPs in between these

two locations, if any, are all homozygous; otherwise, the breakpoint is classi¯ed as

missed.

Table 1. Properties of the six pedigrees we used in the

simulation study.

Pedigree No. 1 2 3 4 5 6

#Members 16 19 17 24 10 20
#Generations 3 3 3 5 3 3

#Nuclear families 4 3 4 12 2 4

#Founders 5 4 5 9 3 5

#Ungenotyped 3 2 2 3 1 4

Whole Genome Identity-by-Descent Determination
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The breakpoint recovery precision is de¯ned as the ratio of the number of sim-

ulated breakpoint sites that are recovered (true positives) over the number of

breakpoint sites computed by iBDD (true and false positives). The breakpoint re-

covery recall is de¯ned as the ratio of the number of true positives over the total

number of simulated breakpoint sites. We calculated the precision and recall on each

simulated dataset as the averages over all the haplotyping solutions. The mean

precision and recall values over all 100 datasets associated with the pedigree are

reported in Table 2. The general conclusion on breakpoint recovery is that iBDD

generates slightly fewer breakpoints than the simulated truth, achieving average

precision of 79.3%, to recover most of the true breakpoints (average recall 79.0%).

Figure 1 plots the mean recall (y-axis) versus precision (x-axis) values on the 100

datasets simulated for pedigree No. 1. One can see from this plot and Table 2 that

the breakpoint recovery is quite stable across the 100 datasets for each pedigree,

suggesting its variation depends mostly on the pedigree structure.

3.2. Haplotype allele sharing recovery

We use the F -score from information retrieval to measure the accuracy of haplotype

allele sharing recovery, compared with the simulated sharing. More speci¯cally, we

determine all the zero-recombination chromosomal regions for the simulated hap-

lotype con¯guration. These simulated zero-recombination chromosomal regions in-

tersect with the iBDD zero-recombination chromosomal regions to produce a set of

common zero-recombination chromosomal regions to the simulated sharing and the

iBDD sharing. Note that on each of these zero-recombination chromosomal regions,

the simulated sharing is also a collection of pedigree member clusters labeled with the

founder identity. We ¯rst arbitrarily name the two clusters associated with

the same founder paternal and maternal, respectively. The two clusters asso-

ciated with the same founder in the iBDD sharing are accordingly named, paternal

and maternal, respectively, such that the F -score of the mapping between the sim-

ulated and the iBDD sharings is maximized (over two possible choices). Upon

completing all the founders, the (weighted) F -score for this chromosomal region is

Table 2. The mean breakpoint recovery pre-

cision and recall by iBDD on each of the six
pedigrees, over the averages of 100 simulated

datasets, and their standard deviations.

Pedigree No. Precision Recall

1 0.893� 0.053 0.748� 0.066

2 0.684� 0.064 0.879� 0.061

3 0.862� 0.057 0.793� 0.060
4 0.915� 0.043 0.683� 0.053

5 0.729� 0.082 0.886� 0.065

6 0.678� 0.075 0.751� 0.074

Average 0.793 0.790

H. Sabaa et al.
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computed between the two collections of labeled clusters. The chromosomal F -score

between the simulated and the iBDD haplotype allele IBD sharings is taken as

the weighted average F -score over all maximal zero-recombination chromosomal

regions, where the weight of a region is taken as the number of SNPs in that region.

In addition to the haplotype allele IBD sharing, we have also collected all distinct

haplotype allele IBS sharings produced by iBDD, and calculated the F -score between

the simulated haplotype allele IBS sharing and each iBDD haplotype allele IBS

sharing. That is, on each simulated dataset, we calculated the F -score of each IBD

(IBS, respectively) sharing against the simulated IBD (IBS, respectively) sharing to

demonstrate the performance of haplotype allele sharing recovery by iBDD. The

average F -score over all distinct IBD (IBS, respectively) sharings by iBDD against

the simulated IBD (IBS, respectively) sharing, across all 100 datasets simulated for

each of the six pedigrees, is reported in Table 3. Note that given a haplotyping

solution, the associated haplotype allele IBD sharing is a re¯nement of the associated

haplotype allele IBS sharing. The number of distinct haplotype allele IBS sharings

produced by iBDD is about four times the number of distinct haplotype allele IBD

sharings, for all the 600 datasets in our simulation studies. Figure 2 plots the average

recovery F -scores (i.e. against simulation) on the 100 datasets simulated for pedigree

No. 1. One can see from Fig. 2 and Table 3 that most of the haplotype allele sharings

produced by iBDD are close to the simulated truth, yet some could be a bit far away.
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Fig. 1. The mean recall versus precision values on the 100 datasets simulated for pedigree No. 1.
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This suggests that using only one sharing in linkage and association studies might

not work well, as the sharing could signi¯cantly deviate from the truth.

4. Discussion

Guaranteed by its worst-case cubic running time, iBDD runs fast to produce all

haplotyping solutions, from which it takes only a fraction of time to determine all the

Table 3. The mean haplotype allele sharing F -scores by iBDD

against the simulated ones on each of the six pedigrees, over the
averages of 100 simulated datasets, and their standard deviations.

F -score

Pedigree No. IBD IBS

1 0.978� 0.005 0.996� 0.002
2 0.968� 0.007 0.998� 0.001

3 0.980� 0.003 0.996� 0.002

4 0.984� 0.003 0.999� 0.001

5 0.986� 0.003 0.998� 0.002
6 0.975� 0.004 0.996� 0.002

Average 0.978 0.997

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

IB
D

 F
-s
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re

IBS F-score

line y = x

Fig. 2. The mean F -scores of the haplotype allele IBD and IBS sharings compared with the simulated
sharings, respectively, on the 100 datasets simulated for pedigree No. 1.
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distinct haplotype allele IBD and IBS sharings together with their associated num-

bers of haplotyping solutions. Among the six pedigrees used in our study, pedigree

No. 1 is moderately complex (Table 1). iBDD was able to terminate in about two

minutes on average, using an Intel E6850 3.0GHz processor with 4GB RAM.

4.1. The huge number of haplotyping solutions versus a handful

distinct haplotype allele sharings

Previously, the uncertainty in the inferred multiple haplotyping solutions was con-

jectured to be a potential problem for haplotype-based association studies. By using

the haplotype allele sharing status, we believe that haplotype ambiguities in multiple

haplotyping solutions can be eliminated.

From the simulation study, we observed that for each simulated dataset, the

number of haplotyping solutions by iBDD is always large, in the trillions. Indeed, for

a pedigree of n nonfounders and a total number of H heterozygous loci across all

genomes of all individuals, there could be 2H�n haplotyping solutions. Nevertheless,

there are only a few to dozens of, or up to a few thousand distinct haplotype allele

IBD sharings (i.e. up to 2n), each associated with thousands to millions of haplo-

typing solutions. For example, across the 100 simulated datasets for pedigree No. 1

(plotted in Fig. 3) the average number of distinct haplotype allele IBS sharings is

0
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Fig. 3. The numbers of haplotyping solutions, distinct haplotype allele IBD and IBS sharings on the 100
datasets simulated for pedigree No. 1. It is interesting to note that 2 datasets have a unique IBS sharing���
2 crosses in column 0.
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48.24, the average number of distinct haplotype allele IBD sharings is 235.78, and

their associated numbers of haplotyping solutions are in the range of 260' s.

The observation suggests that using only one or a few inferred haplotyping

solutions in genetic linkage and association studies16,20,26 is not appropriate. Given

that trying all haplotyping solutions is computationally prohibitive, our iBDD

becomes helpful in feasibly enumerating all distinct haplotype allele IBD (or IBS)

sharings.

4.2. Comparison to existing haplotyping methods

Our iBDD is derived from PedPhase,17 and therefore it is reasonable to make

comparison to PedPhase. Unfortunately, since PedPhase requires full pedigree

structure (i.e. every nonfounder member must have both parents genotyped), it does

not run on any of the six pedigrees we used earlier. Moreover, PedPhase is a zero-

recombination haplotyping algorithm only, which has to be extended into a general

haplotyping algorithm for comparison purposes. We thus adopted the parsimony

rule in the same way as in iBDD to extend it to xPedPhase, which determines all

maximal zero-recombination chromosomal regions together with all haplotyping

solutions. We also made a comparison to iLinker,20 another rule-based haplotyping

algorithm which returns only one haplotyping solution. For fair comparison to

iLinker, we adopted the scheme to use the ¯rst haplotyping solutions by iBDD and

xPedPhase, respectively, and made comparison among these three using breakpoint

recovery and haplotype allele IBD sharing recovery.

Note that iLinker accepts only pedigrees with a couple founders or a single

founder, while xPedPhase accepts only full pedigrees. We therefore used another set

of 10 pedigrees in this comparative study, summarized in Table 4. This, however,

makes the direct comparison between iLinker and xPedPhase impossible; so the only

comparison is via iBDD. That is, these 10 pedigrees all have a couple founders, and

thus we can run both iLinker and iBDD. For each of them, missing founders are

added to make the pedigree full, and subsequently, simulation datasets are generated

for running xPedPhase and iBDD. Again, 100 full datasets are simulated for each full

pedigree, from which the genotype data for the missing founders are dropped to form

the nonfull datasets for the corresponding nonfull pedigree. The average breakpoint

precision and recall and haplotype allele IBD sharing F -score are collected, for

Table 4. Properties of pedigrees used to compare the performance of

xPedPhase, iLinker, and iBDD.

Pedigree No. 1 2 3 4 5 6 7 8 9 10

#Members 4 5 7 9 10 13 11 13 15 16
#Generations 2 2 3 3 3 3 3 3 3 3

#Nuclear families 1 1 2 3 3 4 3 3 4 4

#Founders 2 2 3 4 4 5 4 4 5 5

#Ungenotyped 0 0 1 2 2 3 2 2 3 3
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xPedPhase on the full datasets only, for iBDD on both the full datasets and the

nonfull datasets, and for iLinker on the nonfull datasets only.

Figure 4 plots the average recall against average precision on the 10 pedigrees. In

the plot, there are four dots associated with each pedigree, except for the ¯rst two

pedigrees on which xPedPhase regularly failed. These four dots correspond to the

four pairs of (precision, recall) by iLinker on the nonfull datasets, by iBDD on the

nonfull datasets, by xPedPhase on the full datasets, and by iBDD on the full

datasets. They are connected sequentially using red, blue, and green arrows. From

these arrows, one can see the general tendency of improved performance. In terms of

breakpoint recovery, iBDD performance was not signi¯cantly di®erent from xPed-

Phase on the full datasets ��� slightly better recall versus slightly worse precision,

iBDD performed better than iLinker on the nonfull datasets, and nonsurprisingly,

breakpoint recoveries on the full datasets are better than on the corresponding

nonfull datasets. Note that on the full datasets, iBDD and xPedPhase are expected

to perform no di®erently, since they essentially use the same haplotyping algorithm;

yet the slight di®erence we have seen is perhaps due to di®erent implementation.

Besides rule-based haplotyping methods, we have also tried to make comparisons

with likelihood-based haplotyping algorithms, including Haploview,43 fastPHASE,6
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Fig. 4. The mean recall versus precision values of breakpoint recovery for iLinker (red dots) and iBDD

(greed triangles) on 10 non-full pedigrees, and xPedPhase (blue triangles) and iBDD (black diamonds) on
the corresponding full pedigrees, respectively; each pedigree is associated with 100 simulated genotype

datasets.
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and SuperLink.15 Unfortunately, for the most recent versions of all three programs,

Haploview and SuperLink did not produce the complete haplotype for all pedigree

members, while fastPHASE did not seem to follow the pedigree structure, resulting

in haplotyping solutions that break the Mendelian rules of inheritance. Consequently

we do not have results on this comparison to present here.

4.3. Possible reasons for low breakpoint recovery

Section 3 shows that the iBDD haplotype allele sharing recovery is almost perfect,

but the breakpoint recovery is not. Figure 4 shows that for each pair of a full and

the corresponding nonfull pedigrees, iBDD performed much better on the datasets

associated with the full pedigree; the di®erence on average is 0.1324 (or 16.0%) in

precision and 0.1274 (or 14.8%) in recall. This suggests that the nonfull pedigree

structure seems a major reason for low breakpoint recovery. Theoretically, in the face

of nonfull pedigree structure, where some founder members are not genotyped, the

constraints derived from them are only a small subset (less than 50%) of the con-

straints derived from that member if the member is genotyped. Though there are no

parental source (PS) variables de¯ned for ungenotyped founders, this could lead to

a much larger solution space compared to the solution space associated with the

corresponding full pedigree; furthermore, many of these additional solutions may be

farther away from the true haplotyping solution.

4.4. High haplotype allele sharing recovery

While pedigree structure has a major impact on breakpoint recovery, fortunately, as

we showed in Sec. 3, it has relatively minor e®ects to the haplotype allele sharing.

Our comparative study shows that the IBD/IBS sharing recovery di®erence is only

0.0069/0.0020, or 0.7%/0.2%. One possible reason is that the haplotype allele sharing

is the same for many distinct haplotyping solutions, and consequently more robust

against the uncertainties arising from phase inference. This phenomenon also sug-

gests that the use of this more robust haplotype allele sharing directly in genetic

linkage and association studies may resolve the issue of phase ambiguities, which has

been previously observed.8,10,16,35,44,45

4.5. Use of haplotype allele sharing in genetic linkage

Our simulation study shows that for each simulated dataset, trillions of haplotyping

solutions give rise to only a few close, though distinct, haplotype allele IBD (and IBS)

sharings, most of which are very close to the simulation sharing.

We have access to the real genotype data associated with pedigree No. 1, which

was used for the linkage analysis of a family disease20 (data not to be released). We

ran iBDD on this dataset for all haplotyping solutions and for all distinct haplotype

allele IBD sharings. Since member M is the diseased founder, we are interested in the

two clusters of pedigree members who share a haplotype allele with M. There are

H. Sabaa et al.
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4096 distinct haplotype allele IBD sharings found (for 258 haplotyping solutions).

These sharings di®er slightly toward the tail of the chromosome, and they all point to

two chromosomal regions ��� 19.62�20.87Mbps (7 SNPs) and 22.48�29.57Mbps

(68 SNPs) ��� that are shared exclusively by all nine diseased members, including the

diseased founder M. Surprisingly, the LOD score approach13 does not detect signif-

icant linkage. In this sense, the beauty of our iBDD program ��� its ability to

determine the explicit sharing of each haplotype allele ��� is con¯rmed, while the

traditional LOD score approaches for linkage analysis is not really e®ective, in

particular when the pedigree is small.

5. Conclusions

We presented an e±cient Oðm3n3Þ-time whole genome haplotyping algorithm for a

pedigree genotype dataset to minimize the number of zero-recombination haplotype

blocks, where n is the size of the pedigree and m is the number of SNPs, and the

pedigree can contain ungenotyped founders. With or without explicitly enumerating

all the haplotyping solutions, our iBDD program determines all distinct haplotype

allele IBD sharings among the pedigree members. Extensive simulation experiments

supported that iBDD is able to return all these sharings for downstream genome-

wide linkage and association studies. It would be interesting to develop a similar

score as the LOD score in Merlin, such that the score incorporates all distinct

haplotype allele sharings and their associated number of haplotype con¯gurations.

The new score landscape will be more useful in linkage analysis.
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