
Journal of Computer and System Sciences 78 (2012) 720–730
Contents lists available at SciVerse ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

An improved approximation algorithm for the complementary maximal
strip recovery problem

Guohui Lin a,∗, Randy Goebel a, Zhong Li a, Lusheng Wang b

a Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
b Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 May 2011
Received in revised form 3 October 2011
Accepted 21 October 2011
Available online 29 October 2011

Keywords:
Maximal strip recovery
Approximation algorithm
Local amortized analysis
Re-weighting scheme

Given two genomic maps G1 and G2 each represented as a sequence of n gene markers,
the maximal strip recovery (MSR) problem is to retain the maximum number of markers in
both G1 and G2 such that the resultant subsequences, denoted as G∗

1 and G∗
2, can be parti-

tioned into the same set of maximal strips, which are common substrings of length greater
than or equal to two. The complementary maximal strip recovery (CMSR) problem has the
complementary goal to delete the minimum number of markers. Both MSR and CMSR have
been shown to be NP-hard and APX-complete, and they admit a 4-approximation and a
3-approximation respectively. In this paper, we present an improved 7

3 -approximation al-
gorithm for the CMSR problem, with its worst-case performance analysis done through a
local amortization with a re-weighting scheme.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In comparative genomics, one of the first steps is to decompose two given genomes into syntenic blocks — segments of
chromosomes that are deemed homologous in the two input genomes. Many decomposition methods have been proposed,
but they are vulnerable to ambiguities and errors, which are isolated points that do not co-exist with other points in
genomic maps [4,9]. The maximal strip recovery (MSR) problem was formulated for eliminating these noise and ambiguities.
In a more precise formulation, we are given two genomic maps G1 and G2 each represented as a sequence of n distinct
gene markers (which form the alphabet Σ), and we want to retain the maximum number of markers in both G1 and G2
such that the resultant subsequences, denoted as G∗

1 and G∗
2, can be partitioned into the same set of maximal strips, which

are common substrings of length greater than or equal to two. Each retained marker thus belongs to exactly one of these
substrings, which can appear in the reversed and negated form and are taken as nontrivial chromosomal segments. The
deleted markers are regarded as noise or errors.

The MSR problem, and its several close variants, have been shown to be NP-hard [8,2,3]. More recently, it is shown to
be APX-complete [6], admitting a 4-approximation algorithm [3]. This 4-approximation algorithm is a modification of an
earlier heuristics for computing a maximum clique (and its complement, a maximum independent set) [4,9], to convert
the MSR problem to computing the maximum independent set in t-interval graphs, which admits a 2t-approximation [1,
3]. In this paper, we investigate the complementary optimization goal: to minimize the number of deleted markers — the
complementary MSR problem, or CMSR for short. CMSR is certainly NP-hard, and was recently proven to be APX-hard [7],
admitting a 3-approximation algorithm [5]. Our main result is an improved 7

3 -approximation algorithm for CMSR. As we
will show later, the key design technique is a local greedy scheme, on top of six operations of three priority levels, to retain

* Corresponding author.
E-mail addresses: guohui@ualberta.ca (G. Lin), rgoebel@ualberta.ca (R. Goebel), zhong4@ualberta.ca (Z. Li), cswangl@cityu.edu.hk (L. Wang).
0022-0000/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2011.10.014

http://dx.doi.org/10.1016/j.jcss.2011.10.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:guohui@ualberta.ca
mailto:rgoebel@ualberta.ca
mailto:zhong4@ualberta.ca
mailto:cswangl@cityu.edu.hk
http://dx.doi.org/10.1016/j.jcss.2011.10.014

G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730 721
certain isolates while deleting some other ones; and the performance ratio is proven using a novel technique called local
amortized analysis with a re-weighting scheme. Some preliminary ideas of the algorithm design and analysis have appeared
in [5], where the first constant-ratio approximation algorithm is presented.

2. Preliminaries

In the sequel, we use a lower case letter to denote a gene marker. A negation sign together with the succeeding gene
indicate that the gene is in its reversed and negated form. We reserve the bullet symbol “•” for connection use, for example,
a•b in sequence G1 means gene b comes directly after gene a in G1. When a common substring (also called strip, or syntenic
block) of the two current target sequences (i.e., G1 and G2, or their remainders after deleting some letters) is specified, it
is of length greater than or equal to two, unless otherwise explicitly stated that it is a single letter; The substring will
(often) be labeled using a capital letter. We abuse this capital letter a little bit to also denote the set of gene markers in
the substring, when there is no ambiguity. We present several important structural properties of the CMSR problem in this
section, which are used in the design of the approximation algorithm and its performance analysis in the next section.

We first look at a warm-up instance. In this instance, G1 = 〈a,b, c,d, e, f , g,h, i, j,k, �〉 and G2 = 〈−i,−d,−g,− f ,h,

a, c,b,−�,−k,− j,−e〉 (commas are used to separate the gene markers for easier reading). There are a length-2 maximal
common substring f • g (appearing in the reversed and negated form in G2) and a length-3 maximal common substring
j • k • � (appearing in the reversed and negated form in G2), while the other letters do not form into common substrings. If
we delete letter c from both sequences, then another length-2 maximal common substring a•b can be formed. Furthermore,
by deleting markers d, e, and h from both G1 and G2, the remainder sequences are G∗

1 = 〈a,b, f , g, i, j,k, �〉 and G∗
2 =

〈−i,−g,− f ,a,b,−�,−k,− j〉. These two remainder sequences can be decomposed into three maximal common substrings
a • b, f • g • i, and j • k • �. For this small instance, one can prove that the optimal solution to the MSR problem has size 8,
and (consequently) the optimal solution to the CMSR problem has size 4.

In the rest of the paper, we use OPT to denote an optimal solution to the instance of the CMSR problem. That is, OPT is
a minimum-size subset of letters that, deleting them from G1 and G2 gives the remainder sequences, denoted G∗

1 and G∗
2,

respectively, which can be partitioned into maximal common substrings.
For the CMSR instance, in at most quadratic time, we can determine all maximal common substrings of G1 and G2 (of

length at least two) and the isolated letters that do not belong to any of the common substrings. We use unit to refer to
a maximal common substring or an isolated letter. A unit and its reversed and negated form are considered identical. The
units determined above form a common partition of G1 and G2, i.e., every letter occurs in exactly one of these units. For ease
of presentation, these maximal common substrings are called type-0 substrings; the isolated letters are called isolates. In our
algorithm Approx-CMSR to be presented in the next section, all the type-0 substrings are kept in the final sequences and
our goal is to eliminate the isolates, by either deleting them from the input sequences, or to “merge” them into substrings
right after deleting some other isolates from the input sequences. Here “merging” refers to either appending an isolate to
some existing substring, or forming two isolates into a novel common substring, which is called a type-1 substring. That
is, our focus is on the isolates. Note that every isolate appears exactly once in each of the two sequences G1 and G2; for
distinction purpose we use an isolate copy to refer to the isolate in one of the two sequences, while reserve isolate to refer
to both its copies as a whole.

Lemma 1. (See [5].) For any CMSR instance, there exists an optimal solution OPT such that

1) for each type-0 substring S, either S ⊆ OPT or S ∩ OPT = ∅;
2) if |S| � 4, then S ∩ OPT = ∅.

The above Lemma 1 shows that in the optimal solution, for every type-0 substring, either all its letters are deleted or
none of them is deleted. We partition OPT into a subset O 3 of letters residing in the length-3 type-0 substrings, a subset
O 2 of letters residing in the length-2 type-0 substrings, and a subset O 1 of isolates: OPT = O 3 ∪ O 2 ∪ O 1. Recall that the
type-0 substrings and isolates deleted in the optimal solution are referred to as units of OPT.

2.1. Favorable operations

In our algorithm Approx-CMSR to be presented in the next section, all the type-0 substrings are kept in the final se-
quences. The letters whose decision needs to be made are the isolates. Let a and b be two arbitrary isolates. They can form
into a common substring after the letters in between them in the two sequences are all deleted. Therefore, we consider
only such an isolate pair that the letters in between them in the two sequences are all isolates. If there is only one isolate
in between a and b, say x, in the two sequences, then deleting x to merge a and b into a length-2 substring has a gain of at
least one, i.e., deleting one but keeping at least two letters. We distinguish two scenarios. In the first scenario both copies
of x are in between a and b, one in each of the two sequences. That is, a • x • b appears in one of G1 and G2 and a • −x • b
appears in the other (see row 1 in Table 1, or a • x • b appears in one of G1 and G2 and −b • x • −a appears in the other,
which can be analogously discussed). Deleting x and the subsequent merging is referred to as an operation 1, which is given
a high priority.

722 G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730
Table 1
Six different isolate elimination operations with three levels of priorities. In these operations, lower case letters a,b, x, y, s, t, w, z are isolates, while S is
an existing substring at the time of consideration. Assuming the operation is executed in the j-th iteration, U j is the set of isolates deleted and V j is the
set of isolates kept by algorithm Approx-CMSR.

Priority Operation Local configuration Sets Re-weighting

High 1 . . .a • x • b . . . U j = {x}; x : 1
3 ;

. . .a • −x • b . . . V j = {a,b} a,b : 1
3

2 . . . s • a • x • b • t . . . w • z . . . U j = {a,b}; a,b : 1
3 ;

. . . s • x • t . . . w • a • b • z . . . V j = {x, s, t, w, z} s, t, w, z : 1
3

Medium 3 . . .a • x • b . . . U j = {x}; x : 1
3 ;

. . .a • b . . . V j ⊇ {a,b} a,b : 1
3

Low 4 . . .a • x • y • b . . . U j = {x, y}; x, y : 2
3 ;

. . .a • b . . . V j ⊇ {a,b} a,b : 1
3

5 . . .a • x • b . . . U j = {x, y}; x, y : 2
3 ;

. . .a • y • b . . . V j ⊇ {a,b} a,b : 1
3

6 . . .a • x • S . . . U j = {x}; x : 2
3 ;

. . .a • S . . . V j ⊇ {a} a : 1
3

In the second scenario only one copy of x is in between a and b, in one of the two sequences. That is, a • x • b appears
in one of G1 and G2 and a • b appears in the other (see rows 2 and 3 in Table 1). Deleting x enables the merging of a
and b into a novel substring a • b. However, if deleting a and b can merge all their five neighboring isolates into substrings,
see row 2 in Table 1, algorithm Approx-CMSR chooses to delete a and b. Deleting a and b and the subsequent merging
is referred to as an operation 2, which is also given a high priority. In the other case (see row 3 in Table 1), algorithm
Approx-CMSR deletes x and merges a and b into a substring, referred to as an operation 3, which is given a medium (i.e.,
lower than high) priority. Note that in an operation 3, the two neighboring letters of the other copy of x (in the sequence
where a • b appears), might also be merged together when one or both of them are isolates. It follows that the pure gain
of an operation 3, though with only a medium priority, can be as large as 3. In all operations including three more to
be introduced next, the isolates that are merged into substrings lose their isolate identities, and are kept by algorithm
Approx-CMSR.

If merging a and b has to delete exactly two isolate copies of two distinct isolates, say a copy of x and a copy of y,
the operation will have a low priority. We again distinguish two scenarios. In the first scenario both isolate copies are in
between a and b in one of the two sequences. That is, a • x • y • b appears in one of G1 and G2 and a • b appears in the
other (see row 4 in Table 1). In the second scenario one isolate copy is in between a and b in one of the two sequences
while the other isolate copy is in between a and b in the other of the two sequences. That is, a • x • b appears in one of
G1 and G2 and a • y • b appears in the other (see row 5 in Table 1). Note that the negated and reversed gene forms can be
analogously discussed. Deleting x and y and the subsequent merging in the first scenario is referred to as an operation 4,
and in the second scenario is referred to as an operation 5, respectively. Both operations have a gain of 0. It is important to
notice that in both operations 4 and 5, when the two neighboring letters of the other copy of x (y, respectively) are both
isolates, they should not be able to be merged due to the lower operation priority; additionally for an operation 4, if x and
y can potentially be merged by deleting some other isolates, then the number of isolates in between the other copy of x
and the other copy of y should be at least two, again due to the lower operation priority.

In an operation 4 or an operation 5, besides forming the substring a•b, the two neighboring letters of the other copy of x
(y, respectively) might be able to be merged, when exactly one is an isolate and the other one is in an existing substring.
Nevertheless, the gain in this merging process is not counted towards the operation, as the algorithm does not care about
it. Similarly, when none of an operation 1, or 2, or 3 can be executed, the algorithm also looks for a chance to append an
isolate a to an existing substring S (of either type), which happens if there is exactly one isolate copy, say of x, in between
a and S in the two sequences, that is, a • x • S appears in one of G1 and G2 and a • S appears in the other (see row 6
in Table 1). Deleting x and the subsequent appending in this case is referred to as an operation 6, which has the same
priority as operations 4 and 5. This means, when the two neighboring letters of the other copy of x are both isolates and
they are able to be merged after deleting x, we should make it an operation 3 instead of an operation 6; nevertheless, in
this operation 6, deleting x might be able to append another isolate to an existing substring.

Algorithm Approx-CMSR does not consider to merge two isolates a and b that are separated by more than two isolate
copies, neither to append an isolate a to an existing substring S that are separated by more than one isolate copy, in the
two sequences.

3. An improved approximation algorithm

We assume at hand an optimal solution OPT stated in Lemma 1, and it is partitioned as OPT = O 3 ∪ O 2 ∪ O 1.

G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730 723
Algorithm Approx-CMSR:

Input: two sequences (permutations) G1 and G2 on the same set of letters.
Output: two subsequences of G1 and G2 respectively, that can be partitioned

into maximal common substrings of length at least 2.

1. Determines all type-0 substrings of G1 and G2, and retains them;
2. While (there are feasible operations in the current sequences G1 and G2), do

2.1. finds an operation of the currently top priority;
2.2. removes the letters of U j from G1 and G2;
2.3. retains the letters of V j in G1 and G2 by forming appropriate substrings;

3. Deletes all the remaining isolates, the letters of R , from G1 and G2.

Fig. 1. A high-level description of algorithm Approx-CMSR.

3.1. The Approx-CMSR algorithm

In the first step of our approximation algorithm, denoted as Approx-CMSR, it retains all type-0 substrings. That is,
Approx-CMSR will only delete isolates from the input sequences (in the second and the third steps).

In the second step, Approx-CMSR iteratively removes one or two isolates; the candidate isolates have to be in one of
the six cases listed in Table 1, and the operation with the top priority is chosen (tie breaks arbitrarily) for execution at
the time of consideration. In each of the six cases, the isolate removal can give rise to novel common substrings to the
remainder sequences (all except operation 6), and/or allow an isolate to be appended to an existing common substring in
the remainder sequences (all except operations 1 and 2). If a novel common substring is formed, it is referred to as a type-1
substring; if an existing substring is extended, it retains its type for ease of presentation. The involved isolates that are
merged into substrings, in either case, lose their isolate identities and are retained by Approx-CMSR.

Let U = {U1, U2, . . . , Um}, where U j denotes the set of isolates deleted by Approx-CMSR in the j-th iteration of the
second step. Correspondingly, let V j denote the set of isolates that are retained by Approx-CMSR in the j-th iteration. In
Table 1, the U j and V j for each of the six operations are (partially) specified. Let R denote the set of remaining isolates at
the time the algorithm finds no operations to execute (at the end of the m-th iteration). In the last step of the algorithm,
Approx-CMSR deletes all letters of R from the two sequences. A high-level description of the algorithm Approx-CMSR is
depicted in Fig. 1.

3.2. Performance analysis

Let U = ⋃m
j=1 U j and V = ⋃m

j=1 V j . The following two lemmas state some preliminary observations on algorithm
Approx-CMSR.

Lemma 2. The set of all isolates is the union of the disjoint sets U1, U2, . . . , Um, V 1, V 2, . . . , Vm, and R, that is, U ∪ V ∪ R; Algorithm
Approx-CMSR deletes exactly all isolates of U ∪ R.

Lemma 3 (Once adjacent, always adjacent). In the j-th iteration of algorithm Approx-CMSR, for j = 1,2, . . . ,m, if two letters a j
and b j (at least one of them is an isolate of V j , while the other can be in V j too or inside an existing substring) are made adjacent into
a common substring, then a j and b j are maintained adjacent toward the termination of the algorithm. Moreover, in the two original

sequences G1 and G2 , all the letters in between a j and b j belong to
⋃ j

i=1 Ui .

In the sequel, we estimate the size of U ∪ R in terms of the size of OPT. We do this by attributing all isolates of U ∪ R to
the letters of OPT, through a local amortized analysis, and prove that every letter of OPT is attributed with at most 7

3 isolates
of U ∪ R . Note that every letter in U ∪ R is an isolate; for the local amortized analysis to be done, we perform the following
re-weighting scheme to move a fraction of isolatedness of a letter of U to some related letters of V , and subsequently to
attribute all letters of U ∪ V ∪ R to the letters of OPT. We will prove that every letter of OPT is attributed with at most 7

3
isolates, summing over all the letters of U ∪ V ∪ R attributed to it.

For the sake of clarity, from now on we refer to every element of U ∪ V ∪ R as a letter, which carries a certain amount
of isolatedness of U ∪ R . Consider U j . At the beginning, a letter x ∈ U j carries 1 isolate of U ∪ R . If the j-th iteration is a
high or a medium priority operation, we change letter x to carry only 1

3 isolate, while re-distribute the other 2
3 isolates to

two related letters of V j ,
1
3 each. If the j-th iteration is a low priority operation, we change letter x to carry only 2

3 isolates,

while re-distribute the other 1
3 isolate to a unique related letter of V j . The detailed such re-weighting scheme is presented

in the last column of Table 1. Two key remarks: every letter of V j receives 0 or 1
3 isolate, and if it receives 1

3 , it is also

called a 1
3 -isolate of U ∪ R; every letter of U j keeping 1

3 isolate is called a 1
3 -isolate, and grouped into set U 1, while every

letter of U j keeping 2 isolates is called a 2 -isolate, and grouped into set U 2. Notation-wise, we use U 1 to indicate that
3 3 j

724 G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730
a high or medium priority operation is executed by algorithm Approx-CMSR in the j-th iteration; the corresponding V j is
then denoted as V 1

j . Similarly, U 2
j is used to indicate that a low priority operation is executed by algorithm Approx-CMSR

in the j-th iteration; the corresponding V j is then denoted as V 2
j . In the following, we will attribute the total isolatedness

carried by the letters of U ∪ V ∪ R , which is equal to the size of U ∪ R , to the letters of OPT, through a local amortized
analysis, and prove that every letter of OPT is attributed with at most 7

3 isolates of U ∪ R .
Consider the inverse process of deleting units of OPT from G1 and G2 to obtain the optimal subsequences G∗

1 and G∗
2. In

this inverse process, we add the units of OPT back to G∗
1 and G∗

2 using their original positions in G1 and G2 to re-construct
G1 and G2. At the beginning of this inverse process, there are no isolated letters in G∗

1 and G∗
2; each letter of U ∪ V ∪ R thus

either is a unit of O 1, or is in some substring of G∗
1 and G∗

2 but then singled out at some point of the inverse process when
inserting a unit of OPT back into G∗

1 and G∗
2, which breaks the substring (or one of its fragments if already being broken)

into fragments, one of which is this single letter. In either case, this letter of U ∪ V ∪ R is said generated by the inserting
unit of OPT and some portion of the isolatedness carried by this letter is attributed to the letters in the inserting unit. Since
there could be multiple units of OPT that are able to generate this letter of U ∪ V ∪ R , we will set up a rule on how to
attribute all the carried isolatedness to the letters in these units of OPT.

At any time of the inverse process, inserting one unit of OPT back to the current sequences G1 and G2 can break at most
two adjacencies, each by a copy of the inserting unit. Here an adjacency a • b means that a • b is in a common substring of
the current sequences G1 and G2, and broken means a copy of the inserting unit resides in between a and b in at least one
of the two original sequences. It follows that at most four letters of U ∪ V ∪ R , and thus at most four isolates of U ∪ R , can
be generated by the inserting unit. We firstly insert substring units of OPT, one by one; all the isolatedness carried by the
letters of U ∪ V ∪ R that are generated by a substring unit of OPT is attributed to the letters in the substring unit. Lemma 4
summarizes the fact that every letter of O 3 ∪ O 2 is attributed with at most 2 isolates of U ∪ R . The resultant sequences
after inserting all substring units of OPT are denoted as G0

1 and G0
2.

Lemma 4. Every letter of O 3 ∪ O 2 is attributed with at most 2 isolates of U ∪ R.

Proof. Inserting one substring unit of OPT back into the current sequences G1 and G2 generates at most four letters of
U ∪ V ∪ R , each is at most 1-isolate of U ∪ R . Note that every substring unit contains at least two letters. Therefore, every
letter of O 3 ∪ O 2 can be attributed with at most 2 isolates of U ∪ R . �

Recall that we use an isolate/letter copy to refer to the isolate/letter in one of the two sequences, while reserve isolate/letter
to refer to both its copies as a whole.

Lemma 5. In G0
1 and G0

2 , if a • b is an adjacency for some letter a ∈ U ∪ V ∪ R, then no letters of any type-0 substring can reside in
between a and b in any of the original sequences G1 and G2 .

Proof. Note that every type-0 substring of G1 and G2 is present in G0
1 and G0

2. Assume to the contrary that, there is a letter
s from a type-0 substring S that resides in between a and b in G1. From the fact that S is present in G0

1 and G0
2, so is s. It

follows that a • b cannot be an adjacency in G0
1 and G0

2. �
Lemma 6. In G0

1 and G0
2 , if s • v is an adjacency for some letters s /∈ U ∪ V ∪ R, v ∈ V , then there is at least one isolate copy of O 1

that breaks this adjacency.

Proof. Since v is an isolate, there must be some letter that resides in between s and v in at least one of G1 and G2.
Lemma 5 tells that this letter is an isolate, and thus belongs to O 1. This proves the lemma that there is at least one isolate
copy of O 1 that breaks this adjacency s • v . We choose, arbitrarily, one such isolate copy of O 1 and attribute to it the
isolatedness carried by v (see row 1 of Table 2). �

Lemma 7. In G0
1 and G0

2 , if v1 • v2 is an adjacency for some letters v1, v2 ∈ V , then there is at least one isolate copy of O 1 that breaks
this adjacency.

Proof. The same proof as for Lemma 6 applies, by using the fact that v1 is an isolate. Again, we choose arbitrarily one such
isolate copy of O 1 and attribute to it the isolatedness carried by v1 and v2 (see row 2 of Table 2). �
Lemma 8. In G0

1 and G0
2 , if u • v is an adjacency for letters u ∈ U j and v ∈ V , for some j = 1,2, . . . ,m, then either there is one isolate

copy of O 1 ∩ V j that breaks this adjacency, or there are at least two isolate copies of O 1 ∩ V that break this adjacency.

Proof. Assume first v ∈ V j . That is, in the j-th iteration of algorithm Approx-CMSR, u is deleted while v is kept. Assume
v is made adjacent to a in the j-th iteration. It follows that at the beginning of the j-th iteration of algorithm Approx-CMSR,

G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730 725
Table 2
The scheme for attributing the total amount of isolatedness of the two letters in the adjacency to the breaking isolate copies of O 1, based on Lemmas 6–16.

Adjacency Lemma Letter sources Breaking isolate copies of O 1 Attribution

s • v 6 s /∈ U ∪ V ∪ R , v ∈ V o ∈ O 1 � 1
3

v1 • v2 7 v1, v2 ∈ V o ∈ O 1 � 2
3

u • v 8 u ∈ U j , v ∈ V a ∈ O 1 ∩ V j � 1

a1,a2 ∈ O 1 ∩ V � 1
2 each

r • v 9 r ∈ R , v ∈ V o1,o2 ∈ O 1 � 2
3 each

s • u 10 s /∈ U ∪ V ∪ R , u ∈ U a ∈ O 1 ∩ V � 2
3

u1 • u2 11 u1, u2 ∈ U 1
j a ∈ O 1 ∩ V j

2
3

12 u1, u2 ∈ U 2
j o1,o2 ∈ O 1

2
3 each

13 u1 ∈ U 1
i , u2 ∈ U j (i < j) a ∈ O 1 ∩ V i � 1

u1 ∈ Ui , u2 ∈ U j (i < j) o1,o2 ∈ O 1 � 2
3 each

r • u 14 r ∈ R, u ∈ U 1
j a ∈ O 1 ∩ V j

4
3

r ∈ R, u ∈ U j a ∈ O 1 ∩ V , o ∈ O 1
2
3 to o

� 1 to a

s • r 15 s /∈ U ∪ V ∪ R , r ∈ R o1,o2 ∈ O 1
1
2 each

r1 • r2 16 r1, r2 ∈ R o1,o2,o3 ∈ O 1 � 2
3 each

a1,a2 ∈ O 1 ∩ V 1 each

u and v do not form a common substring in the two sequences. Since algorithm Approx-CMSR is impossible to execute an
operation 1 in the j-th iteration, u is in between v and a in exactly one of the two sequences, or equivalently a has to be in
between u and v in exactly one of the two sequences. If a ∈ V j , the lemma is proved; otherwise, a is in an existing type-1
substring S at the beginning of the j-th iteration, and thus this substring S resides in between u and v in one of the two
sequences. Note that a type-1 substring contains at least two isolates of V . This proves there are at least two isolate copies
of O 1 ∩ V that break adjacency u • v .

Secondly, assume v ∈ V i for some i > j. Assume also that in the j-th iteration of algorithm Approx-CMSR u is deleted
to merge a and b. We conclude from Lemma 3 that v does not reside in between a and b in either of the two sequences.
Equivalently, at least one of a and b, say a, resides in between u and v in at least one of the two original sequences. If
a ∈ V j , the lemma is proved; otherwise, a is in an existing type-1 substring S at the beginning of the j-th iteration, and
thus this substring S resides in between u and v in one of the two sequences. Note that a type-1 substring contains at least
two isolates of V . This proves there are at least two isolate copies of O 1 ∩ V that break adjacency u • v .

Lastly, assume v ∈ V i for some i < j. Note that at the beginning of the j-th iteration of algorithm Approx-CMSR, u and
v do not form a common substring in the two sequences. Assume that in the j-th iteration of algorithm Approx-CMSR, u
is deleted to merge a and b. If {a,b} ⊆ V j or v /∈ {a,b}, then we conclude that v does not reside in between a and b in
either of the two sequences. Equivalently, at least one of a and b, say a, resides in between u and v in at least one of the
two original sequences. If a ∈ V j , the lemma is proved; otherwise, a is in an existing type-1 substring S at the beginning
of the j-th iteration, and thus this substring S resides in between u and v in one of the two sequences. Note that a type-1
substring contains at least two isolates of V . This proves there are at least two isolate copies of O 1 ∩ V that break adjacency
u • v . In the other case, v ∈ {a,b}, and assume without loss of generality that v = b, which implies that a ∈ V j . Therefore,
algorithm Approx-CMSR executes an operation 6 in the j-th iteration. That is, u is in between a and v in exactly one of the
two sequences, or equivalently a ∈ V j has to be in between u and v in exactly one of the two sequences. This proves the
lemma.

When there is one isolate copy of O 1 ∩ V j that breaks adjacency u • v for u ∈ U j , we choose one and attribute to it
the isolatedness carried by u and v (see row 3 of Table 2); otherwise, we choose arbitrarily two breaking isolate copies of
O 1 ∩ V and attribute to them the isolatedness carried by u and v , each with no greater than 1

2 (see row 4 of Table 2). �
Lemma 9. In G0

1 and G0
2 , if r • v is an adjacency for some letters r ∈ R and v ∈ V , then there are at least two isolate copies of O 1 that

break this adjacency.

Proof. Note that at the end of the m-th iteration of algorithm Approx-CMSR, both r and v are in the two sequences. Yet
algorithm Approx-CMSR finds no feasible operations to execute. If there is a substring separating r and v in at least one
of the two sequences, this separating substring must be a type-1 substring containing at least two isolates of V ; hence
the lemma is proved. Otherwise, there are at least two isolate copies of R separating r and v in the two sequences; again
the lemma is proved. We choose arbitrarily two such breaking isolate copies of O 1 and attribute to them the isolatedness
carried by r and v , each with no greater than 2

3 (see row 5 of Table 2). �
Lemma 10. In G0

1 and G0
2 , if s • u is an adjacency for letters s /∈ U ∪ V ∪ R and u ∈ U , then there is one isolate copy of O 1 ∩ V that

breaks this adjacency.

726 G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730
Proof. Assume u ∈ U j is deleted by algorithm Approx-CMSR in the j-th iteration to merge a and b, for some j = 1,2, . . . ,m.
If s /∈ {a,b}, then s does not reside in between a and b in either of the two sequences. Therefore, in at least one of the two
original sequences, one of a and b resides in between s and u. By Lemma 5, this breaking isolate copy is in O 1 ∩ V , and the
lemma is proved.

In the other case where s ∈ {a,b}, assume without loss of generality that s = b. This implies that a ∈ V j and algorithm
Approx-CMSR executes an operation 6 in the j-th iteration. That is, u is in between a and s in exactly one of the two
sequences, or equivalently a ∈ V j has to be in between s and u in exactly one of the two sequences. The lemma is proved
too. One arbitrarily chosen such breaking isolate copy of O 1 ∩ V is attributed with the isolatedness carried by u (see row 6
of Table 2). �
Lemma 11. In G0

1 and G0
2 , if u1 • u2 is an adjacency for letters u1, u2 ∈ U j , for some j = 1,2, . . . ,m where a high priority operation

is executed, then there is one isolate copy of O 1 ∩ V j that breaks this adjacency.

Proof. Since a high priority operation 2 is executed by algorithm Approx-CMSR in the j-th iteration, we conclude that there
is exactly one isolate x of V j in between u1 and u2 in one of the two sequences at the beginning of the j-th iteration,
a copy of which is attributed with the isolatedness carried by u1 and u2 (row 7 of Table 2). This proves the lemma. �
Lemma 12. In G0

1 and G0
2 , if u1 • u2 is an adjacency for letters u1, u2 ∈ U j , for some j = 1,2, . . . ,m where a low priority operation is

executed, then there are at least two isolate copies of O 1 that break this adjacency.

Proof. Assume that in the j-th iteration of algorithm Approx-CMSR, u1 and u2 are deleted to form a substring denoted as
a • b. Either an operation 4 or an operation 5 is executed. If this is an operation 4, due to its lowest priority we conclude
that at the beginning of the j-th iteration of algorithm Approx-CMSR, u1 and u2 are separated by at least two isolates in
one of the two sequences; hence the lemma is proved. If this is an operation 5, then each of a and b is in between u1 and
u2 in exactly one of the two sequences; again the lemma is proved. We choose arbitrarily two such breaking isolate copies
of O 1 and attribute to them the isolatedness carried by u1 and u2, each with 2

3 (row 8 of Table 2). �
Lemma 13. In G0

1 and G0
2 , if u1 • u2 is an adjacency for letters u1 ∈ Ui and u2 ∈ U j , for some i, j = 1,2, . . . ,m with i < j, then

either there is one isolate copy of O 1 ∩ V i that breaks this adjacency, or there are at least two isolate copies of O 1 ∩ V that break this
adjacency. Furthermore, if there is only one isolate copy of O 1 that breaks this adjacency, then algorithm Approx-CMSR must execute
a high or medium priority operation in the i-th iteration (i.e., u1 is a 1

3 -isolate).

Proof. Assume that u1 is deleted by algorithm Approx-CMSR in the i-th iteration to merge a and b. It follows from i < j
that u2 does not reside in between a and b in either of the two sequences, or equivalently at least one of a and b, say a
resides in between u1 and u2 in at least one of the two original sequences. If a ∈ V i , the lemma is proved; otherwise, a is
in an existing type-1 substring S at the beginning of the i-th iteration, and thus this substring S resides in between u1 and
u2 in one of the two sequences. Note that a type-1 substring contains at least two isolates of V . This proves there are at
least two isolate copies of O 1 ∩ V that break adjacency u1 • u2.

Furthermore, the above proof says that when there is exactly one isolate copy of O 1, which is a copy of a, breaking
adjacency u1 • u2, then algorithm Approx-CMSR must execute a high or medium priority operation to delete u1, since
otherwise it would have to execute a medium priority operation 3 to delete isolate a and to merge u1 and u2. This proves
the lemma.

Rows 9 and 10 in Table 2 are associated with the scenarios covered by this lemma. When there is only one isolate copy
of O 1 that breaks adjacency u1 • u2, a high or medium priority operation is executed in the i-th iteration and thus u1 is a
1
3 -isolate; consequently this breaking isolate copy of O 1 is attributed with at most 1 isolate of U ∪ R (row 9). When there
are more than one isolate copy of O 1 that break adjacency u1 • u2, we select two arbitrarily and attribute to them the
isolatedness carried by u1 and u2, each with at most 2

3 (row 10). �
Lemma 14. In G0

1 and G0
2 , if r • u is an adjacency for letters r ∈ R and u ∈ U j , for some j = 1,2, . . . ,m, then either there is one isolate

copy of O 1 ∩ V j that breaks this adjacency, or there are at least two isolate copies of O 1 ∩ V that break this adjacency. Furthermore,
if there is only one isolate copy of O 1 that breaks this adjacency, then algorithm Approx-CMSR executes a high or medium priority
operation in the j-th iteration (i.e., u ∈ U 1).

Proof. Assume that u is deleted by algorithm Approx-CMSR in the j-th iteration to merge a and b. It follows that r does not
reside in between a and b in either of the two sequences, or equivalently at least one of a and b, say a, resides in between
r and u in at least one of the two original sequences. If a ∈ V j , the lemma is proved; otherwise, a is in an existing type-1
substring S at the beginning of the j-th iteration, and thus this substring S resides in between r and u in one of the two
sequences. Note that a type-1 substring contains at least two isolates of V . This proves there are at least two isolate copies
of O 1 ∩ V that break adjacency r • u.

G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730 727
Furthermore, the above proof says that when there is exactly one isolate copy of O 1, which is a copy of a, breaking
adjacency r •u, then algorithm Approx-CMSR must execute a high or medium priority operation to delete u, since otherwise
it would have to execute a medium priority operation 3 to delete isolate a and to merge r and u. This proves the lemma.

Rows 11 and 12 in Table 2 are associated with the scenarios covered by this lemma. When there is only one isolate
copy of O 1 that breaks adjacency r • u, a high or medium priority operation is executed in the i-th iteration and thus u is
a 1

3 -isolate; consequently this breaking isolate copy of O 1 is attributed with 4
3 isolates of U ∪ R (row 11). When there are

more than one isolate copy of O 1 that break adjacency r • u, at least one of them belongs to V . We select one isolate copy
a of O 1 ∩ V and the other o arbitrarily and attribute to them the isolatedness carried by r and u; we always attribute 2

3 to

o and the rest to a, which is either 1 or 2
3 (row 12). �

Lemma 15. In G0
1 and G0

2 , if s • r is an adjacency for some letters s /∈ U ∪ V ∪ R, r ∈ R, then there are at least two isolate copies of O 1
that break this adjacency.

Proof. If there is no isolate of V that resides in between s and r in either of the two original sequences, then due to the
fact that at the end of the m-th iteration, both s and r are present in the two sequences while algorithm Approx-CMSR
finds no feasible operation to merge them, we conclude there must be at least two isolate copies of O 1 ∩ R that break this
adjacency. In the other case, there is a type-1 substring that resides in between s and r in one of the two sequences at the
end of the m-th iteration. Note that a type-1 substring contains at least two letters of V . Therefore, there must be at least
two isolate copies of O 1 ∩ V that break this adjacency. This proves the lemma. We choose arbitrarily two of the breaking
isolate copies and attribute to them the isolatedness carried by r, each with 1

2 (row 13 of Table 2). �
Lemma 16. In G0

1 and G0
2 , if r1 • r2 is an adjacency for some letters r1, r2 ∈ R, then either there are at least three isolate copies of O 1

that break this adjacency, or there are at least two isolate copies of O 1 ∩ V that break this adjacency.

Proof. If there is no isolate of V that resides in between r1 and r2 in either of the two original sequences, then due to the
fact that at the end of the m-th iteration, both r1 and r2 are present in the two sequences while algorithm Approx-CMSR
finds no feasible operation to merge them, we conclude there must be at least three isolate copies of O 1 ∩ R that break this
adjacency. In the other case, there is a type-1 substring that resides in between r1 and r2 in one of the two sequences at
the end of the m-th iteration. Note that a type-1 substring contains at least two letters of V . Therefore, there must be at
least two isolate copies of O 1 ∩ V that break this adjacency. (In fact, we can prove further that there are at least two isolate
copies of O 1 ∩ V j , for some j = 1,2, . . . ,m, that break this adjacency.) This proves the lemma.

The last two rows in Table 2, that is rows 14 and 15, are associated with the scenarios covered by this lemma. When
there are three or more isolate copies of O 1 that break adjacency r1 • r2, arbitrarily pick three and each of them is attributed
with 2

3 isolates of U ∪ R (row 14). Otherwise, each of the two breaking isolate copies of O 1 ∩ V is attributed with 1 isolate
of U ∪ R (row 15). �

Note that after all units of O 1 are inserted into G0
1 and G0

2 using their positions in the two original sequences, all those
adjacencies in G0

1 and G0
2 involving a letter of U ∪ V ∪ R are broken. Lemmas 6–16 identify all possible scenarios of such

adjacencies, to determine the number of isolate copies of O 1, and their memberships of U , V or R whenever possible,
that should break each kind of adjacency. Subsequently, the total isolatedness carried by the two letters in the adjacency
can be attributed to the (selected) breaking isolate copies of O 1. Table 2 presents the attribution scheme and Lemma 17
summarizes some of the consequences.

Lemma 17. Using the isolatedness attribution scheme presented in Table 2, we have

i) every isolate copy of O 1 ∩ (U ∪ R) is attributed with at most 2
3 isolates of U ∪ R;

ii) every isolate copy of O 1 ∩ V 2
j is attributed with at most 1 isolate of U ∪ R;

iii) every isolate copy of O 1 ∩ V 1
j , on average, is attributed with at most 1 isolate of U ∪ R.

Proof. From Table 2, one can see that an isolate copy attributed with more than 2
3 isolates occurs in rows 3, 9, 11, 12 and

15, each of which belongs to O 1 ∩ V . Therefore, every isolate copy of O 1 ∩ (U ∪ R) is attributed with at most 2
3 isolates.

This proves the first part i).
Note that there is only one scenario where an isolate copy a ∈ V j may be attributed with more than 1 isolate, in row 11

of Table 2, or Lemma 14, where algorithm Approx-CMSR executes a high or medium priority operation in the j-th iteration.
Therefore, every isolate copy of O 1 ∩ V 2

j is attributed with at most 1 isolate. This proves the second part ii).
To prove the last part iii), we examine more carefully the scenario in Lemma 14, where the isolate copy a ∈ O 1 ∩ V j is

attributed with 4
3 isolates of U ∪ R . In this scenario, r ∈ R , u ∈ U 1

j for some j = 1,2, . . . ,m, r • u is the adjacency in G0
1

and G0, and a is the only isolate copy breaking this adjacency. Additionally, in the j-th iteration algorithm Approx-CMSR
2

728 G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730
deletes u to merge the two isolates a and b. For ease of presentation we further assume that r • u occurs in the original
sequence G1. It follows that r • a • u occurs in the original sequence G2. Note that in an operation 1 or an operation 2, the
deleted letter u (or in its reversed and negated form) should not be adjacent to any letter of R , in any of the two original
sequences G1 and G2. We conclude that in the j-th iteration of algorithm Approx-CMSR, a medium operation 3 is executed.
Therefore, U 1

j = {u} and V j ⊇ {a,b} (row 3 in Table 1). We consider two cases.
Case 1: b ∈ O 1. That is, in this case, b is also deleted in the optimal solution.
If the copy of b in the original sequence G2, denoted as b′′ , does not break any adjacency in G0

1 and G0
2, it is attributed

with 0 isolate; if b′′ breaks an adjacency denoted as s • t in G0
1 and G0

2, then due to the fact that u is in G0
1 and G0

2 we
know that exactly one of s and t , say s, resides in between u, inclusive, and b′′ in the original sequence G2. It follows from
Lemma 3 that s ∈ ⋃ j

i=1 Ui .
Case 1.1: s = u. In this situation, letter s carries no more extra isolatedness in the adjacency s • t , as its isolatedness has

been counted in the adjacency r • u (i.e., r • s). If t /∈ R , then it is at most a 2
3 -isolate, and thus b′′ is attributed with at most

2
3 isolates; If t ∈ R , b′′ is attributed with at most 1 isolate, and by Lemma 14 it is attributed with exactly 1 isolate only if

it is the only isolate copy of O 1 breaking adjacency u • t (row 9 in Table 2), or otherwise it is attributed with at most 1
2

isolate (row 10 in Table 2, to combine with the fact that s is a 1
3 -isolate).

Case 1.2: s �= u. In this situation, letter s ∈ ⋃ j−1
i=1 Ui and thus it is at most a 2

3 -isolate. If t /∈ U ∪ V ∪ R , then b′′ is attributed

with at most 2
3 isolates. If t ∈ Uk for some k = 1,2, . . . ,m, then k �= j. If it happens that s ∈ Uk too, Lemma 11 says that b′′

is not attributed with any isolate since b′′ /∈ Vk (note that row 7 in Table 2 applies to b′′ only if b′′ were in Vk); if s ∈ Ui for
some i �= k, for the same reason that b′′ /∈ V i ∪ Vk , Lemma 13 says that b′′ is attributed with at most 2

3 isolates (i.e., row 9

in Table 2 does not, but row 10 applies to b′′). If t ∈ V , Lemma 8 says that b′′ is attributed with at most 1
2 isolate (i.e.,

row 3 in Table 2 does not, but row 4 applies to b′′); The last case of t ∈ R is discussed in Lemma 14. Assume without loss
of generality that s ∈ Ui for some i < j. Again, since b′′ /∈ V i , the lemma says that b′′ is not the only isolate copy breaking
adjacency s • t; but a copy of a letter of Vk for some k � i breaks adjacency s • t as well. Consequently, we can pick b′′ as
the breaking isolate copy o as in row 12 in Table 2, which is subsequently attributed with 2

3 isolates.

In summary, the above two subcases tell that b′′ is attributed with at most 2
3 isolates of U ∪ R , unless otherwise it is

the only breaking isolate copy for the adjacency u • t for some t ∈ R , where it is attributed with 1 isolate. The configuration
of this latter scenario is that, r • u • t occurs in the original sequence G1, and r • a • u • b • t occurs in the original sequence
G2. Recall that r ∈ R too.

Let a′ and b′ denote the copy of letter a and the copy of letter b in the original sequence G1. If they do not break a
common adjacency in G0

1 and G0
2, then each of them breaks an adjacency of which exactly one letter resides in between a

and b in the original sequence G1. Assume that a′ breaks the adjacency w • z, and further that z resides in between a and
b in the original sequence G1. It follows from Lemma 3 that z ∈ ⋃ j−1

i=1 Ui . Subsequently, the above discussion of Case 1.2
applies to a′ , by replacing the triple (b′′, s, t) with (a′, z, w); that is, a′ is attributed with at most 2

3 isolates of U ∪ R . The

same discussion applies to b′ as well, and thus b′ is attributed with at most 2
3 isolates of U ∪ R too. Therefore, in total, all

four copies of a and b are attributed with at most 4
3 + 1 + 2

3 + 2
3 = 11

3 isolates.
Assume next a′ and b′ break a common adjacency denoted as w • z, that is, both a′ and b′ reside in between w and z

in the original sequence G1. When b′′ is attributed with at most 2
3 isolates, or one of w and z is not in R , all four copies of

a and b are attributed with at most max{ 4
3 + 2

3 + 2, 4
3 + 1 + 5

3 } = 4 isolates. In the other case, b′′ is attributed with exactly
1 isolate and w, z ∈ R . From the above two subcases Case 1.1 and Case 1.2, b′′ is the only isolate copy breaking adjacency
u • t , i.e., r • u • t occurs in the original sequence G1, and r • a • u • b • t occurs in the original sequence G2. We conclude
that there must be another isolate copy of O 1 that also breaks adjacency w • z. For contradiction assuming a′ and b′ are the
only isolate copies breaking w • z, i.e., w • a • b • z occurs in the original sequence G1, then in the j-th iteration algorithm
Approx-CMSR would have to execute a high priority operation 2 to delete a and b and to form substrings r • u • t and w • z,
instead of a medium priority operation 3 to delete u and to form a substring a • b. By Lemma 16 (the second last row
in Table 2), each of a′ and b′ is attributed with at most 2

3 isolates of U ∪ R . Subsequently, all four copies of a and b are

attributed with at most 4
3 + 1 + 2

3 + 2
3 = 11

3 isolates. This proves the part iii) in Case 1.
Case 2: b /∈ O 1. That is, b is in G0

1 and G0
2.

In this case, we only need to discuss the copy of a in the original sequence G1, denoted as a′ . Due to the presence of b
in G0

1 and G0
2, a′ either does not break any adjacency and thus is attributed with 0 isolate, or breaks an adjacency of which

exactly one letter resides in between a and b, inclusive, in the original sequence G1. Assume that a′ breaks the adjacency
w • z, and further that z resides in between a and b, inclusive, in the original sequence G1. Since a median priority operation
is executed in the j-th iteration to delete u, we have z �= u; it follows from Lemma 3 that z ∈ ⋃ j−1

i=1 Ui . Subsequently, the
above discussion of Case 1.2 applies to a′ , by replacing the triple (b′′, s, t) with (a′, z, w); that is, a′ is attributed with at
most 2

3 isolates of U ∪ R . Therefore, the two copies of a together are attributed with at most 4
3 + 2

3 = 2 isolates of U ∪ R .
This proves the part iii) in Case 2. �
Theorem 1. Algorithm Approx-CMSR is a 7 -approximation algorithm for the CMSR problem.
3

G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730 729
Proof. Approx-CMSR runs in polynomial time in n, where n is the number of letters in the input sequences, since in each
iteration of the second step the searching-deleting-retaining operation can be done in O (n2) time and there are O (n)

iterations.
From the part i) of Lemma 17, that every isolate copy of O 1 ∩ (U ∪ R) is attributed with at most 2

3 isolates, every

letter of O 1 ∩ (U ∪ R) is attributed with at most 2
3 × 2 + 1 = 7

3 isolates, where 1 comes from the fact that the isolatedness
carried by the letter is attributed to itself. From the part ii), that every isolate copy of O 1 ∩ V 2

j is attributed with at most 1

isolate, every isolate of O 1 ∩ V 2
j is attributed with at most 1 × 2 + 1

3 = 7
3 isolates, where 1

3 comes from the fact that the

isolatedness carried by the letter is attributed to itself. From the part iii) of Lemma 17, for every isolate v ∈ O 1 ∩ V 1
j , its

two copies together are attributed with at most 2 isolates, and thus it is attributed with at most 2 + 1
3 = 7

3 isolates, where

again 1
3 comes from the fact that the isolatedness carried by the letter is attributed to itself. These and Lemma 4 imply that

|U ∪ R| � 7
3 |OPT|. Note from Lemma 2 that U ∪ R is the set of isolates deleted by algorithm Approx-CMSR. Therefore, it is a

7
3 -approximation algorithm. �
4. Conclusions

In this paper, we presented a 7
3 -approximation algorithm Approx-CMSR for the CMSR problem. The key design technique

is a prioritized local greedy scheme to retain a number of isolates while deleting one or two isolates. The three levels of
priorities set for the six operations are crucial in the performance analysis, which is done through a novel local amortized
analysis together with a re-weighting scheme.

Briefly, the analysis is done by examining the isolates which are kept in the optimal solution but deleted by algorithm
Approx-CMSR, and to attribute them to the letters deleted in the optimal solution. By local amortization, an isolate is
attributed to the letters that break the adjacency the isolate is involved. Using the sequential order of the letters, from the
algorithm description, one letter could be attributed with as many as 4 isolates. The re-weighting scheme is introduced
to move a fraction of isolatedness carried by a deleted letter to the letters kept by the algorithm. This scheme, which is
interesting by itself, makes the attribution process much easier to present, to guarantee that one letter is attributed with
at most 7

3 isolates. It is yet to be seen whether these techniques, the prioritized operations, the local amortized analysis,
and the re-weighting scheme, can be further developed to incorporate more complex greedy decisions, to design a better
approximation algorithm.

The following instance shows that the performance ratio 7
3 is tight, even for the unsigned version of the CMSR problem.

In this instance,

G1 = 〈a,b, c, x1, x2, x3,d, e, f , g, y1, y2, y3,h, i, j,k, z1, z2, z3, �〉, and

G2 = 〈k, �, i, x1, y1, z1, j, c,d,a, x2, y2, z2,b, g,h, e, x3, y3, z3, f 〉.
G1 and G2 have no type-0 common substrings, neither does deleting one or two letters from them lead to a novel type-1
common substring. Therefore, Approx-CMSR deletes all the letters. On the other hand, deleting 9 letters, x1, x2, x3, y1, y2,

y3, z1, z2, z3, leads to

G∗
1 = 〈a,b, c,d, e, f , g,h, i, j,k, �〉, and

G∗
2 = 〈k, �, i, j, c,d,a,b, g,h, e, f 〉,

which can be partitioned into six common length-2 substrings: a • b, c • d, e • f , g • h, i • j, and k • �. In fact, one can verify
that this is an optimal solution to the instance. It follows that the performance ratio of Approx-CMSR on this instance is
21
9 = 7

3 . Based on this 21-letter instance, one can construct an infinite series of instances on which the performance ratio of

Approx-CMSR is 7
3 .

Acknowledgments

This research is partially supported by NSERC. The authors would like to thank Dr. Binhai Zhu, and five reviewers from the
Fifth International Frontiers of Algorithmics Workshop (FAW 2011) and the Seventh International Conference on Algorithmic
Aspects of Information and Management (AAIM 2011), for their insightful comments on the extended abstract of this work,
which appears in the joint conference proceedings, LNCS 6681, pp. 46–57. The authors are also grateful to the two reviewers
for this journal version, for their careful validating and their critical comments, particularly on the proof of Lemma 17,
which improve greatly the presentation.

References

[1] R. Bar-Yehuda, M.M. Halldórsson, J.S. Naor, H. Shachnai, I. Shapira, Scheduling split intervals, SIAM J. Comput. 36 (2006) 1–15.
[2] L. Bulteau, G. Fertin, I. Rusu, Maximal strip recovery problem with gaps: hardness and approximation algorithms, in: Proceedings of the 20th Annual

International Symposium on Algorithms and Computation (ISAAC’09), in: Lecture Notes in Comput. Sci., vol. 5878, 2009, pp. 710–719.

730 G. Lin et al. / Journal of Computer and System Sciences 78 (2012) 720–730
[3] Z. Chen, B. Fu, M. Jiang, B. Zhu, On recovering synthetic blocks from comparative maps, J. Comb. Optim. 18 (2009) 307–318.
[4] V. Choi, C. Zheng, Q. Zhu, D. Sankoff, Algorithms for the extraction of syntheny blocks from comparative maps, in: Proceedings of the 7th International

Workshop on Algorithms in Bioinformatics (WABI’07), 2007, pp. 277–288.
[5] H. Jiang, Z. Li, G. Lin, L. Wang, B. Zhu, Exact and approximation algorithms for the complementary maximal strip recovery problem, J. Comb. Optim.

(2010), doi:10.1007/s10878-010-9366-y, in press.
[6] M. Jiang, Inapproximability of maximal strip recovery, in: Proceedings of the 20th Annual International Symposium on Algorithms and Computation

(ISAAC’09), in: Lecture Notes in Comput. Sci., vol. 5878, 2009, pp. 616–625.
[7] M. Jiang, Inapproximability of maximal strip recovery, II, in: Proceedings of the 4th Annual Frontiers of Algorithmics Workshop (FAW’10), in: Lecture

Notes in Comput. Sci., vol. 6213, 2010, pp. 53–64.
[8] L. Wang, B. Zhu, On the tractability of maximal strip recovery, J. Comput. Biol. 17 (2010) 907–914;

L. Wang, B. Zhu, J. Comput. Biol. 18 (2011) 129 (Correction).
[9] C. Zheng, Q. Zhu, D. Sankoff, Removing noise and ambiguities from comparative maps in rearrangement analysis, IEEE/ACM Trans. Comput. Biology

Bioinform. 4 (2007) 515–522.

http://dx.doi.org/10.1007/s10878-010-9366-y

	An improved approximation algorithm for the complementary maximal strip recovery problem
	1 Introduction
	2 Preliminaries
	2.1 Favorable operations

	3 An improved approximation algorithm
	3.1 The Approx-CMSR algorithm
	3.2 Performance analysis

	4 Conclusions
	Acknowledgments
	References

