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a b s t r a c t

In themulticast k-tree routing problem, a data copy is sent from the source node to at most
k destination nodes in every transmission. The goal is to minimize the total cost of sending
data to all destination nodes, which is measured as the sum of the costs of all routing trees.
This problem was formulated out of optical networking and has applications in general
multicasting. Several approximation algorithms, with increasing performance, have been
proposed in the last several years; the most recent ones rely heavily on a tree partitioning
technique. In this paper, we present a further improved approximation algorithm along
the line. The algorithm has a worst-case performance ratio of 5

4ρ +
3
2 , where ρ denotes the

best approximation ratio for the Steinerminimum tree problem. The proofs of the technical
routing lemmas also provide some insights into why such a performance ratio could be the
best possible that one can get using this tree partitioning technique.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Multicast is a point-to-multipoint communication in which a source node sends data to multiple destinations [2,19,
13,11,18]. In computer and communication networks supporting multimedia applications, such as news feed and video
distribution, multicast is an important service. Implementing multicast on local area networks (LANs) is easy because
nodes connected to a LAN usually communicate over a broadcast network. In contrast, implementing multicast on wide
area networks (WANs) is still quite challenging [20,9], because nodes connected to a WAN typically communicate via a
switched/routed network. Basically, to perform multicast in WANs, the source node and all the destination nodes must be
interconnected. So, finding a multicast routing in aWAN is equivalent to finding a multicast tree T in the network such that
T spans the source node and all the destination nodes. The objective of the routing is to minimize the cost of T , which is
defined to be the total weight of edges in T .

In certain networks such as wavelength-division multiplexing (WDM) optical networks with limited light-splitting
capabilities, during each transmission, only a limited number of destination nodes can be assigned to receive the data copies
sent from the source node. A routing model for such networks, called themulti-tree model [14,9,10,12], has been introduced
in the literature. Under this model, we are interested in the problem of finding a collection of routing trees such that each
tree spans the source node and a limited number of destination nodes that are assigned to receive data copies, and every
destination node must be designated to receive a data copy in one of the routing trees. We call this problem the capacitated
multicast routing problem. In particular, when the number of destination nodes in each routing tree is limited to a pre-
specified number k, we call it the multicast k-tree routing (kMTR) problem. Correspondingly, a feasible routing solution is
called a k-tree routing. Compared with the traditional multicast routing model without the capacity constraint — the Steiner
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minimum tree (SMT) problem, which allows any number of receivers in the routing tree, this simpler model makesmulticast
easier and more efficient to be implemented, at the expense of increasing the total routing cost.

Wenext formally define the kMTRproblem. For a graphG, we denote its node set byV (G). The underlying communication
network is modeled as a triple (G, s,D), where G is a simple, undirected, and edge-weighted complete graph, s ∈ V (G) is the
source node, and D = {d1, d2, . . . , dn} ⊆ V (G) − {s} is the set of destination nodes. The weight of each edge e in G, denoted
byw(e), is non-negative and represents the routing cost of e. Theweight (or cost, used interchangeably) of a subgraph T of G,
denoted by w(T ), is the total weight of edges in T . Let k be a given positive integer. The kMTR problem asks for aminimum-
weight k-tree routing, that is, a partition of D into disjoint sets D1,D2, . . . ,Dℓ, such that each Di contains no more than k
destination nodes, and a Steiner tree Ti spanning the source node s and the destination nodes in Di for i = 1, 2, . . . , ℓ, such
that

∑ℓ
i=1 w(Ti) is minimized. It is worth pointing out that the union of all these routing trees does not necessarily remain

as a tree, since some destination nodes in Di could appear as Steiner nodes for purely routing purpose in Tj for j ≠ i (i.e.,
they are not counted as destination nodes towards Dj). In the following, we assume without loss of generality that the edge
weight function (the shortest path metric) satisfies triangle inequality.

When k ≥ |D|, kMTR reduces to the well-known SMT problem. The SMT problem is NP-hard, and its current best
approximation ratio is ρ ≈ 1.55 [8,17]. (We reserve ρ to denote this best approximation ratio throughout the paper.)
On the other hand, when k = 1 or 2, kMTR can be solved efficiently [9,10]. The algorithmically most interesting case is
3 ≤ k < |D|, where kMTR differs from the SMT problem yet remains NP-hard [3,15].

Let {T ∗

1 , T ∗

2 , . . . , T ∗
m} be the set of trees in an optimal k-tree routing. Let w(T ∗

j ) denote the weight of tree T ∗

j , the sum of
the weights of edges in T ∗

j . Let R
∗

=
∑m

j=1 w(T ∗

j ) be the weight of this optimal k-tree routing. Since every destination node
di in tree T ∗

j satisfies w(s, di) ≤ w(T ∗

j ), due to non-negative edge weights, we have

n−
i=1

w(s, di) ≤ k × R∗. (1.1)

Let T be a tree in (G, s,D) containing a subset DT of destination nodes. For ease of presentation, we define the size of tree
T to be |DT |, though T might contain other non-destination nodes. Tree T can be used in a feasible k-tree routing to route as
many as k destination nodes inDT . For doing so, the incurred routing cost will be theweight of tree T ,w(T ), plus a connection
cost, c(T ), which is measured as the minimum weight of edges between the source node s and all nodes in V (T ). It follows
that, if source node s is in V (T ), then c(T ) = 0; in the other cases, we can always have

c(T ) ≤ min
d∈DT

w(s, d) ≤
1

|DT |

−
d∈DT

w(s, d). (1.2)

As noted by Jothi and Raghavachari [12], an algorithm presented by Altinkemer and Gavish [1] about 20 years ago for
a slightly different problem serves as a (2ρ + 1)-approximation algorithm for kMTR. Hu and his colleagues [9,10] were
probably the first to study the kMTR problem, and they presented an approximation algorithm starting with a Hamiltonian
cycle on s ∪ D obtained by the 3

2 -approximation algorithm for the metric Traveling Salesman Problem (TSP) [7], partitioning
it into segments each containing exactly k destination nodes (except one segment), and then connecting these segments to
source node s separately via the minimumweight edge to form a k-tree routing. Note that the weight of an optimal TSP tour
on s ∪ D is upper bounded by 2R∗. By Eqs. (1.1) and (1.2), the connection cost for this k-tree routing is bounded from above
by 1

k

∑n
i=1 w(s, di) ≤ R∗. Therefore, the weight of this k-tree routing is at most ( 3

2 × 2 + 1)R∗
= 4R∗, and their algorithm is

a 4-approximation, an improvement over the (2ρ + 1)-approximation [1,12].
Lin [15] proposed to start with a good Steiner tree on s∪D, obtained by any currently the best approximation algorithms

for the SMT problem, partition it into small trees of size at most k without duplicating any edges (and thus not increase
the weight of the Steiner tree), and then connect each such obtained tree to the source via the minimum weight edge. He
demonstrated that in a top-down fashion the Steiner tree can be partitioned into a collection of feasible routing trees, such
that each tree has size in ( 1

6k, k] and its connection cost is less than or equal to the minimum edge weight of a distinct set
of at least 5

12k source-to-destination edges. Equivalently speaking, on average, each routing tree has size at least 5
12k. By

Eqs. (1.1) and (1.2), the connection cost for this k-tree routing is bounded from above by 12
5 ×

1
k

∑n
i=1 w(s, di) ≤ 2.4R∗. Thus

it is an improved (ρ + 2.4)-approximation algorithm for kMTR.
Subsequently, two groups of researchers [3,6,12] independently designed (ρ + 2)-approximation algorithms for kMTR.

Cai and his colleagues [3,6] continued the study from [9,10,15]; Jothi and Raghavachari [12] were directed from [1] to
consider a variant of kMTR in which the destination nodes have varying integral amounts of request and no destination
nodes can be used as Steiner points to assist the routing. When the given network is completely connected, Jothi and
Raghavachari [12] designed an approximation algorithm for the variant. This approximation algorithm turns out to be a
(ρ+2)-approximation algorithm for kMTR. The two (ρ+2)-approximation algorithms are surprisingly similar in the design
nature, in that both algorithms start with a Steiner tree on s ∪ D, partition it into feasible routing trees without duplicating
any edges, and then connect each such obtained tree to the source via the minimum weight edge. The difference between
them is that the algorithm by Cai et al. partitions the tree in a top-down fashion to guarantee that, equivalently speaking,
each tree has size in the range [

1
2k, k], while the algorithm by Jothi and Raghavachari cuts iteratively from the Steiner tree a
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Table 1
A historical record of the approximation algorithms for
kMTR.
Year References Performance ratio

1988 [1] 2ρ + 1 = 4.10
2004 [9,10] 4
2004/2005 [3,15] ρ + 2.4 = 3.95
2004/2005 [3,12,6] ρ + 2 = 3.55
2008 [16] 4

3ρ +
3
2 = 3.5667

2008 [5] 5
4ρ +

8
5 = 3.5375

2009 [4] 5
4ρ +

√
2089+77

80 = 3.4713

2009 This paper 5
4ρ +

3
2 = 3.4375

subtree of size in the range [
1
2k, k]. It follows from Eqs. (1.1) and (1.2) that the connection costs of both k-tree routings are

at most 2R∗, implying that the two algorithms are both (ρ + 2)-approximations for kMTR.
All the above approximation algorithms [1,9,10,3,6,12] show that the total cost of a k-tree routing consists of two

components: the weight of the initial infeasible solution subgraph (such as a Hamiltonian cycle or a Steiner tree) and the
connection cost depending on the size range of the achieved routing trees using Eqs. (1.1) and (1.2). These two components
are seemingly independent but actually closely related to each other. Efforts have been invested in developing better tree
partitioning schemes without increasing the total weight of the routing trees too much, compared with the weight of the
initial infeasible solution subgraph. For example, Morsy and Nagamochi [16] presented a tree partitioning scheme that can,
roughly speaking, guarantee a lower bound of 2

3k on the size of the routing trees at a cost of 1
3 the weight of the starting

Steiner tree. This gives a new approximation algorithm with a worst-case performance ratio of ( 4
3ρ +

3
2 ). Unfortunately,

this is not an improvement over the (ρ + 2)-approximation algorithms unless ρ < 1.5 [16]. Cai et al. [5] were able to do
better. Last year, they presented at COCOA 2008 a slightly different but better tree partitioning scheme to guarantee a lower
bound of 5

8k on the size of the routing trees at the expense of 1
4 the weight of the starting Steiner tree. Their algorithm is

thus a ( 5
4ρ +

8
5 )-approximation, a genuine improvement over the (ρ + 2)-algorithms, given that ρ ≈ 1.55. Most recently,

Cai et al. [4] further improved their tree partitioning scheme to guarantee a better lower bound of 80
√
2089+77

k on the size of

the routing trees, giving rise to a ( 5
4ρ +

√
2089+77

80 )-approximation algorithm for kMTR.
In this paper, we show that at the same expense of 1

4 the weight of the starting Steiner tree, the lower bound of 2
3k on the

size of the routing trees can be guaranteed. This results in a ( 5
4ρ +

3
2 )-approximation algorithm for the kMTR problem. On

one hand, this algorithm outperforms the previous best by 0.0338; on the other hand, it beats the ( 4
3ρ +

3
2 )-approximation

algorithmbyMorsy andNagamochi [16] for any possible value of ρ. Table 1 contains a historical record of the approximation
algorithms for kMTR, to the best of our knowledge. Nevertheless, it is worth pointing out that our new design and analysis
presented here are nothing but a more careful case analysis, yet we doubt that any further improvement is achievable along
this tree partitioning line of research, if no new techniques are introduced.

2. A ( 5
4ρ +

3
2 )-approximation algorithm for kMTR

Wewant to point out that the readers should also read our precedingworks [5,4] for a full understanding of the following
algorithm.

Following previous design, we first apply the best known ρ-approximation algorithm for the SMT problem to obtain a
Steiner tree T 0 on {s} ∪ D in the underlying network (G, s,D). As discussed earlier, w(T 0) ≤ ρR∗, where R∗ denotes the
weight of an optimal k-tree routing. Root tree T 0 at source s and denote it as T 0

s . One may use n
k copies of tree T 0

s to form a
k-tree routing, which is apparently very expensive. In what follows, we use Tv to denote the rooted subtree at v in T 0

s , and
Dv denotes the associated destination node set of Tv (i.e., Dv = D ∩ Tv). Also, for a child u of v in Tv , the subtree Tu together
with edge (v, u) is called the branch rooted at v and containing u. In the algorithm to be presented, we will iteratively cut
from T 0

s a rooted subtree Tr of certain size if |T 0
s | > 4

3k. This cutting process does not duplicate any edge and thus would not
increase the tree weight. Nonetheless, (at most) one node might need to be duplicated for connectivity purpose. We then
show that, using tree Tr , the destination nodes in Dr can be routed at a cost

≤
5
4
w(Tr) +

3
2

×
1
k

−
d∈Dr

w(s, d). (2.1)

Given the rooted tree T 0
s , for any internal node v, we have the destination node set Dv for the rooted subtree Tv . For ease

of presentation, we say v has size |Dv|. We assume the non-trivial case that source s has size > 4
3k. At each iteration, the

cutting process examines T 0
s in a bottom-up fashion. First of all, for any u1, u2 being two children of v, if the sum of their

sizes is ≤k, then the corresponding two branches are merged into one (via a copy of v, say v′, and a dummy edge (v, v′) of
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cost 0). If the process locates a node r of size in the range [
2
3k, k], it cuts Tr off the tree and the destination nodes in Dr are

routed by Lemma 2.2 with the routing cost bounded by Eq. (2.1); otherwise, define a node as extremely big if its size is >k
but none of its children has size >k. It follows that every extremely big node v has at least two children (of size < 2

3k).
If there exists an extremely big node r having more than two children, the process cuts off exactly three branches rooted

at r , togetherwith a copy of r , to form a three-branch subtree Tr . From the fact that the total size of every pair of two subtrees
is greater than k, one concludes that the size of Tr is in the open interval ( 3

2k, 2k). The destination nodes in Dr are routed by
Lemma 2.4 with the routing cost accordingly bounded by Eq. (2.1). When every extremely big node has only two children,
the process searches for a node of size in the range [

4
3k, 2k].

If such a node is found, say u, then uwill have exactly one descendent, say r , which is extremely big. The process cuts Tu
off the Steiner tree and re-roots it at r , subsequently denoted as Tr . Two cases are distinguished depending on the size of Dr ,
the set of destination nodes in Tr . If |Dr | ≥

3
2k, then these destination nodes are routed again by Lemma 2.4 with the routing

cost accordingly bounded by Eq. (2.1); if |Dr | < 3
2k, then the destination nodes are routed by Lemma 2.3 with the routing

cost accordingly bounded by Eq. (2.1). The remaining case is that every node has size in the range (0, 2
3k]∪ (k, 4

3k)∪ (2k, n],
and every extremely big node has exactly two children.

Now, for any node v of size>2k, if none of its children has size>2k, then v is called extremely huge. Clearly, an extremely
huge node must have at least two children, each of which has size in the range (0, 2

3k] ∪ (k, 4
3k). Note that if there are two

children of size ≤
2
3k, we can merge the two corresponding branches into one two-branch subtree (via a copy of v, say v′,

which becomes an extremely big node, and a dummy edge (v, v′) of cost 0). It follows that we may assume without loss
of generality that there is at most one child of size ≤

2
3k. Consequently, there are at least two children of size in the open

interval (k, 4
3k). The process locates an extremely huge node r , and cuts off exactly two of its branches of size >k, together

with a copy of r , to form a two-branch subtree Tr . The number of destination nodes in this subtree Tr , |Dr |, is thus in the
range (2k, 8

3k). Two cases are distinguished depending on the actual size of Dr : If |Dr | ≤
5
2k, then these destination nodes

are routed by Lemma 2.5 with the routing cost accordingly bounded by Eq. (2.1); if |Dr | > 5
2k, then the destination nodes

are routed by Lemma 2.6 with the routing cost accordingly bounded by Eq. (2.1).
Finally, when no subtree can be cut out of the base Steiner tree, still denoted as T 0

s , we conclude that the size of T 0
s is in

the range (0, 2
3k] ∪ (k, 4

3k). In the former case, this residual tree is taken as a routing tree to route the destination nodes
therein, with routing cost w(T 0

s ); in the latter case, the residual tree is split into two routing trees to route the destination
nodes therein, with the total routing cost ≤w(T 0

s ) +
1
k

∑
d∈Ds

w(s, d) [5]. Summing up, the main result is the following:

Theorem 2.1. kMTR (k ≥ 3) admits a ( 5
4ρ +

3
2 )-approximation algorithm, where ρ is the currently best performance ratio for

approximating the Steiner minimum tree problem.

Proof. Notice that whenever a subtree Tr is cut out of the base Steiner tree T 0
s , we do not increase the weight of the trees,

though we might need to duplicate a certain (Steiner or destination) node for connectivity purposes. The total routing cost
for Tr , as proven in the technical Lemmas 2.2–2.6, is upper bounded by Eq. (2.1): 5

4w(Tr) +
3
2 ×

1
k

∑
d∈Dr

w(s, d). The total
routing cost for the residual Steiner tree is also upper bounded by Eq. (2.1). Therefore, the total routing cost for the output
k-tree routing is R ≤

5
4w(T 0

s )+
3
2 ×

1
k

∑
d∈D w(s, d) ≤

5
4w(T 0

s )+
3
2R

∗, where the last inequality follows from Eq. (1.1). Since
w(T 0

s ) ≤ ρR∗, we have R ≤ ( 5
4ρ +

3
2 )R

∗. �

2.1. Technical lemmas

Lemma 2.2 ([5]). Given a Steiner tree Tr such that

•
2
3k ≤ |Dr | ≤ k,

the routing cost for Tr is ≤w(Tr) +
3
2 ×

1
k

∑
d∈Dr

w(s, d).

The main contribution in this work is the routing design and analysis presented in the proof of the following Lemma 2.3.
Previous designs can only guarantee upper bounds of 5

4w(Tr) +
8
5 ×

1
k

∑
d∈Dr

w(s, d) [5] and 5
4w(Tr) +

√
2089+77

80 ×

1
k

∑
d∈Dr

w(s, d) [4], respectively, on the total routing cost, while our new design ensures an improved upper bound of
5
4w(Tr) +

3
2 ×

1
k

∑
d∈Dr

w(s, d). This eventually leads to Theorem 2.1.

Lemma 2.3. Given a Steiner tree Tr such that

•
4
3k ≤ |Dr | < 3

2k;
• root node r has exactly three child nodes v1, v2, v3; and
• |Dv1 | < 2

3k, |Dv2 | < 2
3k, and |Dv1 | + |Dv2 | > k.

It is always possible to partition Tr into two subtrees of size ≤k, such that the total routing cost for these subtrees is ≤
5
4w(Tr) +

3
2 ×

1
k

∑
d∈Dr

w(s, d).
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Proof. By the conditions in the lemma, |Dv3 | < 1
2k. Without loss of generality, we assume that |Dv1 | ≤ |Dv2 |. Then,

|Dv2 | > 1
2k. For each i ∈ {1, 2, 3}, let Bi be the branch rooted at r and containing vi. We distinguish two cases as follows.

Case 1: [4] |Dv3 | + |Dv2 | ≤ k. In this case, |Dv3 | + |Dv1 | ≤ k. Among the nodes in Dr , we find the 2
3k closest nodes to s,

and form them into a set C . Similarly, among the nodes in Dr , we find the 2
3k farthest nodes from s, and form them into

a set F . Since |Dr | ≥
4
3k, F ∩ C = ∅. Moreover, since |Dvi | < 2

3k for each i ∈ {1, 2, 3}, there are at least two indices
i ∈ {1, 2, 3} such that (Dvi) ∩ C ≠ ∅. If (Dv3) ∩ C = ∅, then we set X1 = B1 and construct X2 by initializing it as the
union of B2 and B3 and then subtract r . Otherwise, we find an index i ∈ {1, 2} with (Dvi) ∩ C ≠ ∅, set X1 = Bi and
construct X2 by initializing it as the union of Bj and B3 and then subtract r , where j is the other index in {1, 2} − {i}. In any
case, |Dr ∩ X1| ≤ k, |Dr ∩ X2| ≤ k, (Dr ∩ X1) ∩ C ≠ ∅, and (Dr ∩ X2) ∩ C ≠ ∅. Obviously, one of Dr ∩ X1 and Dr ∩ X2
contains d′, which is the closest destination node to s among the nodes in Dr . We assume that Dr ∩ X1 contains d′; the other
case is symmetric. Then, c(X1) ≤ w(s, d′) ≤

3
2 ×

1
k

∑
d∈C w(s, d). Moreover, since (Dr ∩ X2) ∩ C ≠ ∅, c(X2) ≤ w(s, d′′),

where d′′ is the farthest destination node from s among the nodes in C . Furthermore, since C ∩ F = ∅, w(s, d′′) ≤ w(s, d′′′),
where d′′′ is the closest destination node to s among the nodes in F . Thus, c(X2) ≤ w(s, d′′′) ≤

3
2 ×

1
k

∑
d∈F w(s, d). Therefore,

c(X1)+c(X2) ≤
3
2 ×

1
k

∑
d∈Dr

w(s, d). Consequently, the total routing cost of X1 and X2 is atmostw(Tr)+ 3
2 ×

1
k

∑
d∈Dr

w(s, d),
and the lemma is proved.

Case 2: |Dv3 | + |Dv2 | > k. We assume that |Dv2 | = ( 1
2 +p)k. Note that, since |Dv1 |+ |Dv2 | > k, we have |Dv1 | > ( 1

2 −p)k;

likewise, we have |Dv3 | > ( 1
2 − p)k. These two together imply that |Dv1 | + |Dv3 | ∈ ((1 − 2p)k, (1 − p)k). Therefore, in the

first routing option, we set X1 = B2 and construct X2 by initializing it as the union of B1 and B3 and then subtract r . It follows
that the connection cost c(X1) ≤

1
1
2 +p

×
1
k

∑
d∈Dv2

w(s, d), and the connection cost c(X2) ≤
1

1−2p ×
1
k

∑
d∈Dv1∪Dv3

w(s, d).

Since p ∈ (0, 1
6 ), the total routing cost of X1 and X2 is w1 ≤ w(Tr) +

1
1
2 +p

×
1
k

∑
d∈Dr

w(s, d).

Next, among the three branches, we select the one having the minimum weight and duplicate it. Assume without loss
of generality that B1 has the minimum weight. Then, w(B1) ≤

1
3w(Tr). We create two routing trees out of this tree: one

is the union of one copy of branch B1 and branch B2 and the other the union of the other copy of branch B1 and branch
B3, and then subtract r . The destination nodes routed by the first routing tree include the ones in Dv2 and a subset of
Dv1 , such that their number is exactly 1

2 |Dr |, which is >( 3
4 −

1
2p)k; the destination nodes routed by the second routing

tree include the ones in Dv3 and the remainder of Dv1 . It follows that the total routing cost of the second routing option is
w2 ≤

4
3w(Tr) +

1
3
4 −

1
2 p

×
1
k

∑
d∈Dr

w(s, d).

Note that min{w1, w2} ≤
1
4w1 +

3
4w2 =

5
4w(Tr) +


1

4( 1
2 +p)

+
3

4( 3
4 −

1
2 p)


×

∑
d∈Dr

w(s, d) =
5
4w(Tr) +

9+10p
(2+4p)(3−2p)

∑
d∈Dr

w(s, d). From 0 < p < 1
6 , we conclude that min{w1, w2} < 5

4w(Tr) +
3
2 ×

1
k

∑
d∈Dr

w(s, d), since
9+10p

(2+4p)(3−2p)−
3
2 =

p(6p−1)
(1+2p)(3−2p) < 0. Therefore, in this case, choosing the better option between the twoproves the lemma. �

Lemma 2.4 ([5]). Given a Steiner tree Tr such that

•
3
2k < |Dr | ≤ 2k;

• root node r has exactly three child nodes v1, v2, v3; and
• |Dv1 | < 2

3k, |Dv2 | < 2
3k, and |Dv1 | + |Dv2 | > k.

It is always possible to partition Tr into two or three subtrees of size ≤k, such that the total routing cost for these subtrees is
≤

5
4w(Tr) +

3
2 ×

1
k

∑
d∈Dr

w(s, d).
Lemma 2.5 ([5]). Given a Steiner tree Tr such that

• 2k < |Dr | ≤
5
2k;

• root node r has exactly two child nodes v1, v2, and k < |Dv1 |, |Dv2 | < 4
3k;

• for i = 1, 2, within Tvi , there is a node ui which has exactly two child nodes xi1 and xi2;
• for i = 1, 2, |Dxi1 | < 2

3k, |Dxi2 | < 2
3k, and |Dxi1 | + |Dxi2 | > k.

It is always possible to partition Tr into three subtrees of size ≤k, such that the total routing cost for these subtrees is ≤
5
4w(Tr) +

3
2 ×

1
k

∑
d∈Dr

w(s, d).
Lemma 2.6 ([4]). Given a Steiner tree Tr such that

•
5
2k < |Dr | < 8

3k;
• root node r has exactly two child nodes v1, v2, and k < |Dv1 |, |Dv2 | < 4

3k;
• for i = 1, 2, within Tvi , there is a node ui which has exactly two child nodes xi1, xi2;
• for i = 1, 2, |Dxi1 | < 2

3k, |Dxi2 | < 2
3k, and |Dxi1 | + |Dxi2 | > k.

It is always possible to partition Tr into three or four subtrees of size ≤k, such that the total routing cost for these subtrees is
≤

5
4w(Tr) +

3
2 ×

1
k

∑
d∈Dr

w(s, d).



Z. Cai et al. / Theoretical Computer Science 412 (2011) 240–245 245

3. Conclusions

We have presented a ( 5
4ρ +

3
2 )-approximation algorithm for kMTR. This performance ratio was targeted in several

previous works [16,5,4], but never achieved. Since every technical lemma takes time that is linear in the number of
destination nodes in the subtree under consideration, provided that for every destination node its distance to the source
node s has been pre-computed, the running time of the complete algorithm is dominated by the running time of the
ρ-approximation algorithm for the Steiner minimum tree problem, whose complexity could be prohibitively high [17].
For the kMTR problem, we conjecture that this ratio of ( 5

4ρ +
3
2 ) is the best possible by this line of tree partitioning based

approximation algorithms. To design better approximations, certain new techniques other than tree partitioningmight need
to be introduced.
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