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Abstract. We present a general formulation of metric learning for co-
embedding, where the goal is to relate objects from different sets. The
framework allows metric learning to be applied to a wide range of
problems—including link prediction, relation learning, multi-label tag-
ging and ranking—while allowing training to be reformulated as con-
vex optimization. For training we provide a fast iterative algorithm
that improves the scalability of existing metric learning approaches.
Empirically, we demonstrate that the proposed method converges to a
global optimum efficiently, and achieves competitive results in a variety
of co-embedding problems such as multi-label classification and multi-
relational prediction.

1 Introduction

The goal of metric learning is to learn a distance function that is tuned to a target
task. For example, a useful distance between person images would be significantly
different when the task is pose estimation versus identity verification. Since
many machine learning algorithms rely on distances, metric learning provides
an important alternative to hand-crafting a distance function for specific prob-
lems. For a single modality, metric learning has been well explored (Xing et al.
2002; Globerson and Roweis 2005; Davis et al. 2007; Weinberger and Saul 2008,
2009; Jain et al. 2012). However, for multi-modal data, such as comparing text
and images, metric learning has been less explored, consisting primarily of a slow
semi-definite programming approach (Zhang et al. 2011) and local alternating
descent approaches (Xie and Xing 2013).

Concurrently, there is a growing literature that tackles co-embedding prob-
lems, where multiple sets or modalities are embedded into a common space to
improve prediction performance, reveal relationships and enable zero-shot learn-
ing. Current approaches to these problems are mainly based on deep neural
networks (Ngiam et al. 2011; Srivastava and Salakhutdinov 2012; Socher et al.
2013a, b; Frome et al. 2013) and simpler non-convex objectives (Chopra et al.
2005; Larochelle et al. 2008; Weston et al. 2010; Cheng 2013; Akata et al. 2013).
Unlike metric learning, the focus of this previous work has been on exploring
heterogeneous data, but without global optimization techniques. This disconnect

An erratum to this chapter is available at DOI: 10.1007/978-3-319-23528-8_45

© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 625-642, 2015.
DOI: 10.1007/978-3-319-23528-8_39



626 F. Mirzazadeh et al.

appears to be unnecessary however, since the standard association scores used
for co-embedding are related to a Euclidean metric.

In this paper, we demonstrate that co-embedding can be cast as metric
learning. Once formalized, this connection allows metric learning methods to
be applied to a wider class of problems, including link prediction, multi-label
and multi-class tagging, and ranking. Previous formulations of co-embedding
as metric learning were either non-convex (Zhai et al. 2013; Duan et al. 2012),
introduced approximation (Akata et al. 2013; Huang et al. 2014), dropped posi-
tive semi-definiteness (Chechik et al. 2009; Kulis et al. 2011), or required all data
to share the same dimensionality (Garreau et al. 2014). Instead, we provide a
convex formulation applicable to heterogeneous data.

Once the general framework has been established, the paper then investi-
gates optimization strategies for metric learning that guarantee convergence to
a global optimum. Although many metric learning approaches have been based
on convex formulations, these typically introduce a semi-definite constraint over
a matrix variable, C' = 0, which hampers scalability. An alternative approach
that has been gaining popularity has been to work with a low-rank factoriza-
tion @ that implicitly maintains positive semi-definiteness through C' = QQ’
(Burer and Monteiro 2003). This approach allows one to optimize over smaller
matrices while avoiding the semi-definite constraint. Recently, Journée et al.
(2010) proved that if @ has more columns than the globally optimal rank, a
locally optimal Q* provides a global solution C* = Q*Q*’, provided that the
objective is smooth and convex in C. This result is often neglected in the metric
learning literature. However, by using this result, we are able to develop a fast
approach to metric learning that improves previous approaches (Journée et al.
2010; Zhang et al. 2012).

The paper then concludes with an empirical investigation of a metric learn-
ing task and two co-embedding tasks: multi-label classification and tagging. We
demonstrate that the diversity of local minima contracts rapidly in these prob-
lems and that local solutions approach global optimality well before the true
rank is attained.

2 Metric Learning

The goal of metric learning is to learn a distance function between data instances
that helps solve prediction problems. To obtain task-specific distances without
extensive manual design, supervised metric learning formulations attempt to
exploit task-specific information to guide the learning process. For example, to
recognize individual people in images a distance function needs to emphasize
certain distinguishing features (such as hair color, etc.), whereas to recognize
person-independent facial expressions in the same data, different features should
be emphasized (such as mouth shape, etc.).

Suppose one has a sample of ¢ observations, x; € X, and a feature map
¢ : X —R"™ Then a training matrix ¢(X) = [p(x1),...,0(x¢)] € R*™* can be
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obtained by applying ¢ to each of the original data points.! A natural distance
function between points x1, xo € X can then be given by a Mahalanobis distance
over the feature space

de(x1,%2) = ($(x1) — d(x2)) Cp(x1) — B(x2)) (1)

specified by some positive semi-definite inverse covariance matrix C' € C C R™*™.

Although an inverse covariance in this form can be learned in an unsupervised
manner, there is often side information that should influence the learning. As
a general framework, Kulis (2013) unifies metric learning problems as learning
a positive semi-definite matrix C' that minimizes a sum of loss functions plus a
regularizer:?

i Li(¢(X) Cp(X C). 2

o3iBec 2 (0(X)'Co(X)) + freg(C) (2)

For example, in large margin nearest neighbor learning, one might want to min-
imize

LX) Co(X) = > dexix)+ > [1+de(xix;) — de(xi %)),

(i,J)€S (1,4,k)ER

where S is a set of “should link” pairs, and R provides a set of triples (4,7, k)
specifying that if (4, j) € S then x; should have a different label than x;.

Although supervised metric learning has typically been used for classification,
it can also be applied to other settings where distances between data points are
useful, such as for kernel regression or ranking. Interestingly, the applicability of
metric learning can be extended well beyond the framework (2) by additionally
observing that co-embedding elements from different sets can also be expressed
as a joint metric learning problem.

3 Co-embedding as Metric Learning

Co-embedding considers the problem of mapping elements from distinct sets
into a common (low dimensional) Euclidean space. Once so embedded, simple
Euclidean proximity can be used to determine associations between elements
from different sets. This idea underlies many useful formulations in machine
learning. For example, in retrieval and recommendation, Bordes et al. (2014) use
co-embedding of questions and answers to rank appropriate answers to a query,
and Yamanishi (2008) embeds nodes of a heterogeneous graph for link prediction.
In natural language processing, Globerson et al. (2007) embed documents, words
and authors for semantic document analysis, while Bordes et al. (2012) embed
words and senses for word sense disambiguation.

! Throughout the paper we extend functions R — R to vectors or matrices element-
wise.

2 Kulis (2013) equivalently places the trade-off parameter on the loss rather than the
regularizer.
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Despite the diversity of these formulations, we show that co-embedding can
be unified in a simple metric learning framework. Such a unification is inspired
by (Mirzazadeh et al. 2014), who proposed a general framework for bi-linear co-
embedding models but did not investigate the extension to metric learning. Here
we develop a full formulation of co-embedding as metric learning and develop
algorithmic advances.

Embedding layer Output layer
Input layer =N Co-embedding 1
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C:>\
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=
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Fig. 1. A neural network view of co-embedding

For co-embedding, assume we are given two sets of data objects X and Y with
feature maps ¢(x) € R™ and ¢(y) € R™ respectively. Without loss of generality,
we assume that the number of samples from Y, t,, is no more than ¢, the number
of samples from A&’; that is, ¢, <t. The goal is to map the elements x € X and
y € Y from each set into a common Euclidean space.?

A standard approach is to consider linear maps into a common d dimensional
space where U € R¥*™ and V € R4*™ are parameters. To provide decision thresh-
olds two dummy items can also be embedded from each space, parameterized by
uy and vq respectively. Figure 1 depicts this standard co-embedding set-up as
a neural network, where the trainable parameters, U, V', ug and v, are in the
first layer. The inputs to the network are the feature representations ¢(x) € R"
and 1 (y) €R™. The first hidden layer, the embedding layer, linearly maps input
to embeddings in a common d dimensional space via:

-

ux) =U¢(x),  (v)=Vy(y):

The second hidden layer, the co-embedding layer, computes the distance func-
tion between embeddings, d(x,y), and decision thresholds, #;(x) and t2(y):

d(x,y) = [[ux) = I 6(x) = [ux) —uol®, taly) = Iy) = Vol (3)

The output layer nonlinearly combines the association scores and thresholds
to predict targets. For example, in a multi-label classification problem, given
an element x € X, its association to each y € ) can be determined via:

3 The extension to more than two sets can be achieved by considering tensor repre-
sentations.
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label(y|x) = sign(t1(x) —d(x,y)). Alternatively, in a symmetric (i.e. undirected)
link prediction problem, the association between a pair of elements xe X, y€)
can be determined by label(x,y) = sign(min(¢;(x),t2(y)) — d(x,y)), and so on.

Although the relationship to metric learning might not be obvious, it is useful
to observe that the quantities in (3) can be expressed in terms of underlying
covariances:

=[50 o] (] = ] @[50
ww= (2] [ [#5] - [ oo
wn= [P vl 7] = [ e %)

where C7, Co and C3 are symmetric positive semi-definite matrices.

Although our previous work on bi-linear coembedding (Mirzazadeh et al.
2014) did not suggest embedding the thresholds, these turn out to be essen-
tial. In fact, to ensure the construction of a common metric space where the
inverse covariances are mutually consistent (but without introducing auxiliary
equality constraints), one must merge C7, Cy and C3 into a common inverse
covariance matrix, C € RP*P p =n +m + 2, via:

C=[UVugvo] [UV ugvo] (4)
From (4), the distance functions d, ¢; and 2, can then be expressed by

d(X,y) = [¢(X)7 —¢(Y)a 0, 0} c [¢(X)7 —1/J(Y)7 0, 0]/
t1(x) = [¢(x), 0, =1, 0] C [¢(x), 0, —1, O] (5)
tQ(Y) = [O’ —¢(Y)7 07 _1] ¢ [07 _"r/)(Y)a O’ _1]/'

This yields a novel distance function representation with mutually consistent
thresholds.

Finally, based on this new representation, we can extend the general frame-
work (2) to encompass co-embedding in a novel formulation. Let Y € Rfvx™
denote the data matrix from the ) space and let &(Y) € R¥™™ denote a
zero-padded version of 9(Y); that is, a matrix whose top ¢, x m block is
»(Y') with the remaining t — ¢, rows being all zero. Then, defining f(X,Y) =
[(X), —(Y),—1,—1) € R*(+m+2) where 1 denotes an all-one vector (of
dimension ¢ in this case), we propose to find C by solving

CGRIJ?FCW Z Li( ) Cf(X,Y)) + Breg(C) . (6)

Duan et al. (2012) developed a similar algorithm for domain adaptation, which
learned a matrix C' > 0 instead of U and V; however, they approached a less
general setting, which, for example, did not include thresholds nor general losses.
Furthermore, their formulation leads to a non-convex optimization problem.
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Regularization. Regularization is also an important consideration since the
risk of over-fitting is ever present. We focus on the most widely used regular-
izer, the Frobenius norm, which if applied to the factors yields the trace norm
regularizer on C":

101 + IVIE + luollE + Ivoll 7 = tx(C) = [Clls-

The trace norm (aka nuclear norm) is the sum of the singular values of C. This is
a common choice for metric learning since it is the tightest convex lower bound to
the rank of a matrix, a widely desired objective for compact learned models and
generalization. Moreover, for metric learning, since we have the constraint C' > 0,
the trace norm simplifies to |C||; = tr(C), which allows efficient optimization.

4 Algorithm

Given the formulation (6), we consider how to efficiently solve it. First note that
the objective can be written, using L(C) =), L;(f(X,Y)'Cf(X,Y)), as
min  f(C) where f(C) = L(C) + ptr(C). (7)

CERPXP,C'>=0

One way to encode the semi-definite constraint is via a change of variable C' =

QQ":
min_ f(QQ) = min L(QQ) + ftr(QQ)). (8)
QERPX

QeRrxd

This optimization, however, becomes non-convex in (. Recently, how-
ever, Journée et al. (2010) showed that local optimization of a related trace
constrained problem attains global solutions for rank-deficient local minima
Q € RPX4; that is, if Q is a local minimum of (8) with rank(Q) < d, then QQ’ is
a global optimum of (7). In what follows, C* will denote an optimum of (7) and
d* its rank. Although we have inequality rather than equality constraints, the
proof follows easily for our case using the techniques developed in (Bach et al.
2008; Journée et al. 2010; Haeffele et al. 2014), and is an easy consequence of
the following, more general result.

Proposition 1. Consider a local solution of (8), yielding a Q such that
VL(QR)Q + BQ = 0. Let uy,...,ux be the eigenvectors corresponding to the
top k positive eigenvalues A1, ..., A\, of =V L(C)— B1. Then, if C is not a solu-
tion to (7), it follows that

1. k>0
2. uy, ...,y are orthogonal to Q, yielding Qr = [Q uy ... ug] such that Cy, =
QrQ, =C+ Zle w;u; satisfies rank(Cy) = rank(C) + k; and

3. the descent direction ), _, u;uj is the solution to

argmin < —VL(C) - pI, Zle uiu;>. (9)
[[ui|<1,i=1,....k
wju;=0,i#j, u;#0
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Proof. Part 1: First, form the Lagrangian of (7), given by L(C) + ptr(C) —
tr(SC) with S > 0, and consider the KKT conditions:

S=VLC)+pI, S=0, Cx0, SC=0. (10)

The problem is strictly feasible, since C' = I is a strictly feasible point; therefore,
Slater’s condition holds and (10) is sufficient for optimality. Consequently, an
optimal solution is reached when —S = 0; that is, the largest eigenvalue of
—VL(C) — BI is negative or zero. We assumed that C' is not optimal, therefore
k> 0.

Part 2: We know that 0 = VL(QQ')Q + SQ = SQ. Therefore, either S = 0, in
which case we are at a global minimum (which we assumed was not the case) or
S is orthogonal to Q. It follows that —\;ulQ = (u}S)Q = ui(S'Q) =u,0 =0
since u; is an eigenvector of S and S is symmetric.

Part 3: To optimize the inner product (9), introduce Lagrange multipliers
& > 0 for the norm constraints. Since —S is symmetric, we can re-express the
inner objective as

argmin g u(—9)u; — E &uju.
ui,...,Ug i i
uju;=0,i#£j, u;#0

Considering the gradients yields % = —Su; — 2§u; = 0, which implies
(=S)u; = 2&u,; that is u; is an eigenvector of —S corresponding to eigen-
value \; = 2§, > 0. O

Corollary 1. Let Q € RP*4. If (i) Q is a local minimum of f(QQ') with

rank(Q) < d or (ii) @ is a critical point of f(QQ") with rank(Q) = p, then QQ’
is a solution of (7).

Proof.  First assume condition (i) holds and argue by contradiction. Assume
QQ’ is not a global optimum of (7), and let u; € R? be as defined as in Proposi-
tion 1. Then, f(QQ’ + fuju}) < f(QQ’) for a sufficiently small 3 > 0. Further-
more, since rank(Q)) < d, there exists an orthogonal matrix V € R?*¢ such that
QV has a zero column. Let @a be the matrix obtained from QV by replacing
this zero column by aui, a = /3. Then lim,_o Q.V' = QVV’' = Q. More-
over, since u; is orthogonal to the columns of @, it is also orthogonal to the
columns of QV, 50 Q. V(Q.V) = QV(QV) + a?uu) = QQ’ + fuyu). There-
fore, f(@a@\;) = f(QQ" + puiu}) < f(QQ') for Q, € RP*4 hence Q is not a
local optimum of f.

Next assume (ii). Since @ is a critical point of f(QQ’), Vf(QQ)Q = 0.
Since @ has rank p, the null-space of Vf(QQ') is of dimension p, yielding that
Vf(QQ) = 0. Since QQ' = 0 and f is convex, C = QQ' is an optimum of
(7). O

To efficiently solve (7), we therefore propose the Iterative Local Algorithm
(ILA) shown in Algorithm 1. ILA iteratively adds multiple columns to an initially
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Algorithm 1 Tterative local algorithm (ILA)
1: Input: L:C—-R, >0
2: Output: Q, such that QQ’ = minc.cy0 L(C) + Btr(C)
3: Q< 0,k 1,e«107% p Note L(QQ') + tr(QQ’) is evaluable without forming
Q'

4: while not converged do

5 {u1,...,u;} < up-to-k-top-positive-eigenvectors(—VL(QQ") — BI)

6: {\1, .-, \j} < up-to-k-top-positive-eigenvalues(—VL(QQ') — 8I)

7. if k=0 or A1 < ¢ then break > converged
8: k—j

9: U« >, wuj
10: (a,b) « argmin L(aQQ’ + bU) + Batr(QQ") + Bbk > Line search

a>0,b>0

11: Qinit — [VaQ, Vbuy, ..., \/Z;uk} > Start local optimization from Q;nt
12: Q « locally _optimize(Qinit, L(QQ’") + Btr(QQ"))
13: k — 2k

14: return C = QQ’

empty @ and performs a local optimization over @ € RP*? until convergence.
The main advantage of this approach over simply setting d = p is that good ini-
tial points are generated, and if d* < p, then incrementally growing d optimizes
over much smaller ) variables. Furthermore, one hopes that when the number
of columns d of Q;,;+ is at least d*, ILA finds the global optimum. In particular,
if the local optimizer in line 12 of ILA always returns a local optimum whose
rank is smaller than d if d > d* (we call this a nice local optimizer), then the
optimality of a rank-deficient local minimum implies that ILA finds the global
optimum when d > d*. While in theory we cannot guarantee such a behavior of
the local algorithm, it always happened in our experiments, similarly to what
was reported in earlier work (Journée et al. 2010; Haeffele et al. 2014).

The main novelty of ILA over previous approaches is in the initialization
and expansion of columns in (), which reduces the number of iterations from
d* to O(logd*) for nice local optimizers. In particular, motivated by Proposi-
tion 1, to generate the candidate columns, ILA uses eigenvectors corresponding
to the top k positive eigenvalues of —VL(C) — 3I capped at 2! columns on
the ith iteration. Such an exponential search quickly covers the space of possible
d, even when d* is large, while still initially optimizing over smaller () matrices.
This approach can be significantly faster than the typical single column incre-
ment (Journée et al. 2010; Zhang et al. 2012), whose complexity typically grows
linearly with d*.*

Compared to earlier work, there are also small differences in the optimization:
Zhang et al. (2012) do not constrain C to be positive semi-definite. Journée et al.
(2010) assume an equality constraint on the trace of C; their Lagrange variable
(i.e., regularization parameter) can therefore be negative. Finally, ILA more effi-

4 One can create problems where adding single columns improves performance, but we
observe in our experiments that the proposed approach is more effective in practice.
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ciently exploits the local algorithm. The convergence analysis of Zhang et al.
(2012) does not include local training. In practice, we find that solely using
boosting (with the top eigenvector as the weak learner) without local optimiza-
tion, results in much slower convergence.

Corollary 1 implies ILA solves (7) when the local optimizer avoids saddle
points.

Corollary 2. Suppose the local optimizer always finds a local optimum, where
d is the number of columns in Q. Then ILA stops with a solution to (7) in line 12
with rank(Q)<d or d=p. If, in addition, the local optimizer is nice, this happens
for d>d*.

Due to the exponential search in ILA, the algorithm stops in essentially at
most log(p) iterations when the local optimizer avoids saddle points, and in
about log(d*) iterations for nice local optimizers. However, ILA can potentially
be slower if there are not enough eigenvectors to add in a given iteration; i.e.,
j < k in line 5.

Similarly to (Journée et al. 2010; Zhang et al. 2012; Haeffele et al. 2014) we
have found that the local optimizer always returns local minima in practice.
However, all of these search-based algorithms risk strange behavior if the local
optimizer returns saddle points. Note that even in this case, if d reaches p in any
iteration, ILA finds an optimum by Corollary 1. However, there is no guarantee
that the rank of () is not reduced in the local optimization step. If this happens
and @ is a local optimum, QQ’ is optimal by Corollary 1 and the algorithm
halts. Unfortunately, this is not the only possibility: in every iteration of ILA
we obtain Q.+ by increasing the rank of the previous @, but the ranks might
be subsequently reduced during the local optimization step. This creates the
potential for a loop where rank(Q) never reaches p.

Such potential effects of saddle points have not been considered in previous
papers. However, we close this section by showing that ILA is still consistent
under mild technical conditions on L, even if the local optimizer can get trapped
in saddle points.

Proposition 2. Suppose that f is v-smooth; that is, |V f(C+S) =V f(O) |t <
vp(S) for all C,S € RP*P, C,S = 0 and some v > 0, where p(S) denotes the
spectral norm of S. Assume furthermore, for simplicity, that L(C) > 0 for all
C = 0. If the local optimizer in line 12 always returns a Q such that V f(QQ")Q =
0, then QQ’ in ILA converges to the globally optimal solution of (7).

Proof. Let Q,, and U, denote the matrix @) and U in ILA when line 10 is exe-
cuted the mth time, and let Q;nit,m denote Qin+ obtained from @,,. Note that
Qinit,m = VaQ.m +VbU,, and Q,, 1 is obtained from Qinit,m via local optimiza-
tion in line 12. Furthermore, let Cp, = @@y, and Cinit.m = QinitmQinit.m =
amCm + b, U U/

If C,, is not a global optimum of (7), then f(Cinit,m) < f(Cm) by Propo-
sition 1. Furthermore, we assume that the local optimizer in line 12 can-
not increase the function value f of Cipitm, hence f(Cpt1) < f(Cinit,m),
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and consequently f(Cp,41) < f(Cy). Note that since L(C,,) > 0, we have
|QmllF = tr(Cp) < f(Cp), thus the entries of Cy, are uniformly bounded for all
m. Therefore, (Cy,)., has a convergent subsequence, and denote its limit point
by C. We will show that C is an optimal solution of (7) by verifying the KKT
conditions (10) with § = Vf(C). First notice that C is positive semi-definite,
Vf(C ) = 0 by continuity since V f(Cy,)Cr, = Vf(QQ)QQ = 0. Thus, we
only need to verify that V f(C ) is positive semi-definite.

To show the latter, we first apply Lemma 1 (provided in the appendix) to
obtain a lower bound ILA’s progress:

F(Cms1) < f(Cinit.ms1) = f(aCr + BUnU,) < f(Cr + bUmUL,)
< f(Con) + (UL, V£ (Cm)) + 5 p(BUnUL, )
vi?

= f(Cp) + tr(bU" V f(Cp)U, )+7 (11)

for any b > 0, where the last equality holds since U, U/ has k,, eigenvalues
equal 1, and p — k,,, equal 0, where k,,, denotes the number of columns of U,,.
Now consider

, /
P _ _tr(Ume(Cm)Um) _ tr (U, AmUnm ) = l E Am.is
v

174 v

where Ay > -+ > A;, > 0 are the eigenvalues of —Vf(Cy,), and A,
is the diagonal matrix of the eigenvalues padded with p — my zeros. Then
tr(bU! YV f(Cn)Up) = —vb?, hence (11) yields

2

f(Cm) = f(Cry1) > g V(Z/\mz> Z@.

By our assumptions, f(Cp) > 0, and so using the monotonicity of f(C,,), we
have

F(CO) 2 Jim_f(C0) = F(Co) = lim 3250 = £(Chn) 2 5 3 N
=0 m=0

Therefore, lim;,—co Am,1 = 0. Thus, by continuity, —V f(CA') has no positive
eigenvalues, implying that V f(C) is positive semi-definite, concluding the proof.
]

5 Empirical Computational Complexity

To compare the exponential versus linear rank expansion strategies for ILA we
first consider a standard metric learning problem. In this experiment to control
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Fig. 2. Comparing the run time in minutes (y-axis) of linear versus exponential strate-
gies in ILA as data dimension (x-axis) is increased. Left shows ¢ = 250, middle shows
t = 1000, and right shows ¢ = 2000.

the rank of the solution, we generated synthetic data X € R™*! from a standard
normal distribution, systematically increasing the data dimension from n =1 to
n = 1000 and increasing the sample sizes from ¢ = 250 to ¢ = 2000. The training
objective was set to

min [X'X — X'CX||% + Btr(C) (12)

with a regularization parameter 3 = 0.5.

Figure 2 compares the run times of the linear versus exponential expansion
strategies, both of which optimize over @) of increasing width rather than C' =
QQ’. Both methods used the same local optimizer but differed in how many new
columns were generated for @ in ILA Line 8. For the smaller sample size ¢t = 250,
the exponential search already demonstrates an advantage as data dimension is
increased. However, for larger sample sizes, the advantage of the exponential
approach becomes even more pronounced. In this case, when n is increased from
0 to 1000 the run time of the linear expansion strategy goes from being about
the same as of the exponential strategy to much slower. The trend indicates that
the exponential search becomes more useful as the data dimension and number
of samples increases.

6 Case Study: Multi-label Classification

Next, we evaluated ILA on a challenging problem setting—multi-label
classification—with real data. In this setting one can view the labels themselves
as objects to be co-embedded with data instances; given such an embedding, the
multi-label classification of an input instance x can be determined by compar-
ing the distance of its embedding to the embedded locations of each label. In
particular, given a feature representation ¢(x) € R™ for data instances x € X,
we introduce a simple indicator feature map ¥(y) € R™ over y € )Y, which
specifies a vector of all zeros with a single 1 in the entry corresponding to label
y. From a co-embedding perspective, the training problem then becomes to map
the feature representations of both the input instances x € X and target labels
y € Y into a common Euclidean space.
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Based on this observation, we can then cast multi-label learning as an equiv-
alent metric learning problem where one learns the inverse covariance C. Fol-
lowing the development in Section 3 (but here not using the threshold for y
since it is not needed), the co-embedding parameters U, V and ug can first be
combined into a joint matrix Q = [U, V, uo] € RPX4 where p = n +m + 1.
Then, as in (4), the co-embedding problem of optimizing U, V and ug can be
equivalently expressed as a metric learning problem of optimizing the inverse
covariance C = QQ’ € RP*P,

Training Objective. To develop a novel metric learning based approach to
multi-label classification, we adopt a standard training loss that encourages
small distances between an instance’s embedding and the embeddings of its
associated labels while encouraging large distances to embeddings of disassoci-
ated labels. In particular, we investigate the convex large margin loss suggested
by Mirzazadeh et al. (2014) which was reported to yield good performance for
multi-label classification (in a bilinear co-embedding model but not a metric
learning model):

min 3 tx(C +Z [Sétymfh o (x,y)~to(x)) + st ﬁ(tc(x)fdc(x,y))} (13)

where sftmx,cy(z,) = In Zyey exp(zy), tc(z) = [p(x), 0, —1] C [¢(x), O, —1],
do(x,y) = [6(x), —(y), 0] C [6(x), —6(y), 0 and h(z) = (2 + 2)2/4 if
0 < 2z < 2;(1+ 2); otherwise. Here we are using Y(x) C Y to denote the
subset of labels associated with x, and )7(x) C Y to denote the subset of labels
disassociated with x.

Note that in (13) we also use Frobenius norm regularization on the co-
embedding parameters U, V and ug, which was shown in Section 3 to yield trace
regularization of C: |U]|%+||V||%+]|uol|3 = tr(U'U)+tx(V'V)+uhug = tr(C).

Results. We investigate the behav- Table 1. Data properties for multi-
ior of ILA on five widely used multi- label experiments. 1000 used for train-
label classification data sets, summa- 1&g and the rest for testing (2/3-1/3
rized in Table 1. To establish the suit- SPlit for Emotion).

ability of metric learning for multi-label
classification, we evaluated test perfor-
mance using .three comm.only- used cri- Scene 2407 994 6
teria for multi-label classification: Ham- |y ot 2417 103 14
ming score (Table 2), micro averaged |\ediamill 3000 120 30
F1 measure (Table 3) and macro aver- |Corel5K 4609 499 30
aged F1 measure (Table 4). Here f
was chosen by cross-validation over
{1,0.5,0.1,0.05,0.01,0.005}. We compared the performance of the proposed app-
roach against six standard competitors: BR(SMO), an independent SVM clas-
sifiers for each label (Platt 1998); BR(LOG), an independent logistic regression
(LOG) classifiers for each label (Hastie et al. 2009); CLR(SMO) and CLR(LOG),

Data set |examples features labels
Emotion 593 72 6
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the calibrated pairwise label ranking method of Fiirnkranz et al. (2008) with
SVM and LOG, respectively; and CC(SMO) and CC(LOG), a chain of SVM
classifiers and a chain of logistic regression classifiers for multi-label classifica-
tion by Read et al. (2011). The results in Tables 2—4 are averaged over 10 splits
and demonstrate comparable performance to the best competitors consistently
in all three criteria for all data sets.

Table 2. Comparison of ILA with competitors in terms of Hamming score.

BR(SMO) |BR(LOG)|CLR(SMO)|CLR(LOG)|CC(SMO)|CC(LOG)|ILA

Emotion |80.9 £1.0 |77.1 £1.279.9 £0.7 [76.0 £1.4 |79.0 £0.9 |75.2 £1.1 [80.2 £0.8
Scene  [88.7 £0.4 [81.9 £0.6 [89.7 £0.3 |85.7 £0.4 |88.9 £0.4 |80.9 £0.4 [88.0 £0.5
Yeast  |79.8 £0.2 [77.0 £0.2 |77.2 £0.2 |75.3 £0.3 |78.9 £0.5 [76.0 £0.2 [78.9 £0.3
Mediamill[90.3 £0.1 [87.4 £0.2 |87.8 £0.1 |87.7 £0.1 [89.9 £0.1 [86.3 £0.3 [90.4 £0.5
Corel5K [89.8 +:0.1 [88.5 £0.2 [88.8 £0.1 [88.0 0.1 [89.6 £0.1 |83.1 +0.4 [87.8 +0.4

Table 3. Comparison of ILA with competitors in terms of Micro F1.

BR(SMO)|BR(LOG)|CLR(SMO)|CLR(LOG)|CC(SMO)|CC(LOG) |ILA
Emotion |66.3 £2.3 [63.2 £1.8 [70.1 £ 1.2 |64.5 & 2.1 [65.9 £ 1.8/60.3 £ 1.965.9 = 1.3
Scene  |66.8 £1.0 [49.5 £1.5 [72.2 + 0.7 |61.8 + 1.3 |68.8 + 1.1|50.1 + 1.1/65.9 + 0.8
Yeast  |63.2 £0.3 |62.0 £0.4[65.0 £ 0.3 |61.9 + 0.4 |63.7 £ 0.8/60.0 £ 0.4]62.4 + 0.5
Mediamill[55.4 £0.5 |55.1 £0.6 [59.7 + 0.4 |58.7 & 0.4 |50.7 + 0.9|53.1 + 0.7|58.0 £ 0.7
CorelbK (219 £0.7 |17.4 £0.5 |27.6 & 0.4 [26.3 & 0.5 |21.9 + 0.5|16.7 £+ 0.6|21.9 & 0.6

Table 4. Comparison of ILA with competitors in terms of Macro F1.

BR(SMO)|BR(LOG)|CLR(SMO)|CLR(LOG)|CC(SMO)|CC(LOG)|ILA

Emotion [62.3 £3.1 [62.0 £1.969.0 £1.0 [63.8 £2.0 |64.3 £1.8 [59.3 £2.0 [64.4 £1.4
Scene  |67.6 £0.9 |50.6 £1.6 [73.3 £0.6 |63.3 £1.3 |69.8 £1.0 [50.9 +1.0 [66.8 0.9
Yeast  |32.9 +£0.7 [41.9 £0.8 [40.3 £0.6 |42.6 £0.7 |35.1 +0.4 [40.4 +0.4 [37.8 +0.8
Mediamill|10.0 +0.4 [20.9 £0.7 [21.4 0.7 |31.7 £0.8 [8.9 £1.0 [29.5 +0.8 [16.2 £0.9
Corel5K |17.8 +0.4 [11.6 +0.4 [21.4 £0.5 [22.0 £0.5 [17.6 £0.5 |14.4 £0.6 [17.8 +0.6

Next, to also investigate the properties of the local optima achieved we ran
local optimization from 1000 random initializations of () at successive values
for d, using 8 = 1. The values of the local optima we observed are plotted in
Figure 3 as a function of d.> As expected, the local optimizer always achieves
the globally optimal value when d > d*. Interestingly, for d < d* we see that the
initially wide diversity of local optimum values contracts quickly to a singleton,
with values approaching the global minimum before reaching d = d*. Although
not displayed in the graphs, other useful properties can be observed. First, for
d > d*, the global optimum is achieved by local optimization under random
initialization, but not with initialization to any of the critical points of smaller

5 Note that @ is not unique since C = QQ’ is invariant to transform QR for orthonor-
mal R.
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Fig. 3. Objective values achieved by local optimization given 1000 initializations of
Q € RP*?, For small d a diversity of local minima are observed, but the set of local
optima contracts rapidly as d increases, reaching a singleton at the global optimum by

d=d".

d observed in Figure 3, which traps the optimization in a saddle point. Overall,
empirically and theoretically, we find that ILA quickly finds global solutions for
the multi-label objective, while typically producing good solutions before d = d*.

7 Case Study: Tagging via Tensor Completion

Finally, we investigated Task 2 of the 2009 ECML/PKDD Discovery Challenge: a
multi-relational problem involving users, items and tags, where users have tagged
subsets of the items and the goal is to predict which tags the users will assign to
other items. Here the training data is given in a tensor T, where T'(z,y,2) =1
indicates that x has tagged z with y, T'(x,y, 2) =—1 indicates that y is not a tag
of z according to x, and T'(z,y, z) =0 denotes an unknown entry. The goal is to
predict the unknown values, subject to a constraint that at most five tags can
be active for any user-item pair. The “core at level 10” subsample reduces the
data to 109, 192, 229 unique users, items, and tags respectively (Jaschke et al.
2008). The winner of this challenge (Rendle and Schmidt-Thieme 2009) used a
multi-linear co-embedding model that assumed the completed tensor has a low
rank structure.

Training Objective. To show that this multi-relational prediction problem
can be tackled from the novel perspective of metric learning, we first express
the problem in terms of a multi-way co-embedding where users, tags and items
are mapped to a joint embedding space: x — o, y — 7 and z — p where o,
7, p € R% The training problem can then be expressed in terms of proximi-
ties between embeddings. In particular, following Rendle and Schmidt-Thieme
(2009), we summarize the three-way interaction between a user, item and tag
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Test performance for p = 0.1

0 50 100 150

Fig. 4. F1 measure achieved by ILA on test data with an increasing number of columns
(optimal rank is 84 in this case).

BX.]Oﬁ Tagging, p = 0.01 BX.]Oﬁ Tagging, p = 0.1 10X105 Tagging, p=1

:
& O Global Obj & O Global Obj 8 O Global Obj

5 6

4 4

3 4
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1

00 50 100 150 00 50 100 150 00 50 100 150

Fig. 5. Training objectives for 8 € {0.01,0.1,1} as a function of the rank of C, where
the optimal ranks are 105, 84 and 62 respectively.

by the squared distance between the user and tag embeddings, and between the
item and tag embeddings: d(x,y, 2) := d(z,y) + d(z,y) = |lo — 7| + ||p — 7|].
Given this definition, tags can be predicted from a given user-item pair (z, z)
via

T(x,y,2) =

. 1 if d(x,y, z) among smallest five d(z, -, 2)
—1 otherwise '

The training problem can be expressed as metric learning by exploit-
ing a construction reminiscent of Section 3: the embedding vectors can con-
ceptually be stacked in matrix factor Q = [a, T, p]/, which defines the
inverse covariance C = QQ'. To learn C, we use the same loss proposed by
Rendle and Schmidt-Thieme (2009), regularized by the Frobenius norm over o,
7 and p (which again corresponds to trace regularization of (), yielding the
convex training problem

min ﬂtr(C’)—FZ Z Z L(dC(vaag) —dc(x,z,y)). (14)

C>0
©,2 y€tag(w,z) y¢tag(z,z)

Results. To establish the suitability of metric learning for multi-relational pre-
diction, we first evaluated the test performance achieved on the down-sampled
Discovery Challenge data. Figure 4 shows that ILA efficiently approaches the
state of the art F1 performance of 0.42 reported by Mirzazadeh et al. (2014).
Furthermore, we also investigated the behavior of local minima at different d
by comparing the training objective values achieved by local optimization com-
pared to the global minimum, here using S € {0.01,0.1,1}. Figure 5 shows
that although the optimal rank can be larger in this scenario, the properties of
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the local solutions become even more apparent: interestingly, the local minima
approach the training global minimum at ranks much smaller than the opti-
mum. These results further support the effectiveness of metric learning and the
potential for ILA to solve these problems much more efficiently than standard
semi-definite programming approaches.

8 Conclusion

We have demonstrated a unification of co-embedding and metric learning that
enables a new perspective on several machine learning problems while expand-
ing the range of applicability for metric learning methods. Additionally, by using
recent insights from semi-definite programming theory, we developed a fast local
optimization algorithm that is able to preserve global optimality while signifi-
cantly improving the speed of existing methods. Both the framework and the efli-
cient algorithm were investigated in different contexts, including metric learning,
multi-label classification and multi-relational prediction—demonstrating their
generality. The unified perspective and general algorithm show that a surpris-
ingly large class of problems can be tackled from a simple perspective, while
exhibiting a local-global property that can be usefully exploited to achieve faster
training methods.
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A An Auxiliary Lemma

Lemma 1. Suppose f is v-smooth. Then for any positive semi-definite C, S €
RPXP,

F(C +8) < J(O) +tx(S'VF(C)) + 5p(S)? - (15)
Proof. Define h(n) = f(C +nS) for n € [0, 1]. Note that h(0) = f(C), h(l) =
f(C+S), and ' (n) = tr(S'VF(C +nS)) for any n € (0,1). Then
f(C+8) = f(C) = tx(S'VF(C))

1
= (1) = h(0) = (SVHO)) = [ H(n)dn tx(S'VH(C))
:/ tr(S’Vf(C—i—nS))dn—tr(S’Vf(C)):/ tr (8'(V F(C+nS)~V 1(C)))dy
?. 1 ’ 1 v
< [ S IHC+8) =V HC)liwdn < [ vp(S)otnS)n = [ vap()Pdn = 5o(5)

where the first inequality holds by the Cauchy-Schwarz inequality, and the second
by the Lipschitz condition on Vf. Reordering the inequality establishes the
lemma. ]
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