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Abstract

This paper describes the architecture of an efficient plan verifier that can first detect faults in a planner’s
plans and use these observed errors to identify possible problems in the planner’s knowledge base and

suggest appropriate corrections.

1 Introduction

We routinely hire consultants to use their specialized knowledge of some domain to verify our plans. This
serves two purposes: (i) to confirm that our plans achieve our intended goal, and that these plans cause
no bad side-effects and (¢7) to improve our understanding of the world (by acquiring missing information
and correcting faulty assumptions), to prevent us from producing such faulty plans again. In a multi-agent
environment, other agent(s) can similarly help a planning agent (P) by examining, and correcting, its
proposed plan (I'). In general, as these other agents may have superior knowledge about a certain domain,
or a special facility for recognizing certain types of errors in plans, they can often correct faults in I'. They
can often also find and correct the problems in the planner that led to these faults. This can be an efficient
way for agents to cooperate, as it allows each agent to specialize in certain domains and tasks, rather than
forcing one agent to know everything. This concept of distributed knowledge source is especially useful
in a dynamic situation, where the different agents have access to different information (e.g., if they are
located in different places, etc.). Rather than requesting the other agents to send all of their information
to P, which leads to a major communication problem, these agents could instead simply check P’s plans
for faults, and then communicate only the information necessary to correct the faults found; i.e., telling P
of missing or faulty statements in its knowledge base. Therefore, this plan verification process can lead to
an efficient way for agents to communicate relevant information.

This paper proposes an overall architecture for such a system, one that allows various cooperating
agents (called plan verifiers, or PVs) to efficiently help a planning agent P to produce an effective plan,
and also to inform P of possible errors or missing information in its knowledge base. Section 2 first
summarizes how this work is related to several other research projects. Section 3 then presents a simple
blocks world example, to illustrate the relevant situations. The rest of the paper presents a more formal

description of this overall system. Section 4 lists the assumptions underlying this work. Section 5 describes
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the structure of the overall plan verification system, including descriptions and algorithms for two classes

of PVs. Section 6 discusses the benefits of this “distributed plan verifier” approach.

2 Related Work

Our approach shares many similarities with several other systems. First, many systems exploit the synergy
of multiple agents working together to achieve a single goal. These agents are called “knowledge sources”
(KSs) in BlackBoard systems [HR85]. Our use of these agents is slightly different, as (1) each KS is
assumed to be an expert in its own domain; by contrast, we assume that P and PV share a great deal
of information, but PV knows more of that domain, more accurately. This leads to a second difference:
(2) while a blackboard system’s only objective is to work on the task at hand, one of PV’s goals is to
“enlighten” P.

This ties our Plan Verification approach in with several learning systems. One example of this genre
is the LEAP system [MMS85]. Here again one part of a system verifies the plan of other, and uses this
information to enlighten the “assistant”. It differs in that LEAP tries to educate itself, while PV tries to
educate P. Another difference is that LEAP’s underlying task is to convert a sub-optimal plan into better
one; by contrast, our P-and-PV-system is trying to obtain any acceptable plan.

Our work is also related to cooperative planning. As one example, Malyankar [Mal90] considers how
multiple agents, having different views of the common world, can cooperatively plan a route. In that
work, each agent predicts potential conflicts between its planned route with the others’, and uses these
predictions to determine what the other agents need to know. This approach requires that each agent be
able to produce a plan and have equal “width” of knowledge base, whereas in our approach, the PVs need
not have any explicit planning ability, and their knowledge base needs only be superior to P’s in certain
specific sub-domains.

We use plan verification as a way to critique plans. In many systems, the critic must itself be able
to plan [LS83, Mil83]. This is not required in our work; instead, our critics simply check the plan by
analyzing parts of the planner’s proof and knowledge base that it used to generate the plan. We will see
that this allows the critics to have narrower range of knowledge, yet still be useful, provided it has superior
knowledge in its own sub-domain.

Once incorporated with plan recognition system [AlI83, KA86, SSG78], the PV system can also be
developed into a practical and comprehensive warning system (which was the original objective of this
research), capable of detecting possible problems of some ascribed plan and of giving both warnings and

helpful information.

3 Simple (Blocks World) Example

We start with the classic Al approach to planning [GN87]: Given a goal p, a planning agent P generates
a plan I' (i.e., a sequence of actions) that it thinks will achieve the goal p. (That is, we insist that P
be “rational” [New81, p8].) As an example, consider the simple block world situation shown in Figure 1,

and imagine the goal of our planner, P, is to build a tower with block a on top of block b. — i.e.,
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Figure 1: Blocks world: Initial and Goal configurations
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Figure 2: P’s (Incorrect) Representation of Initial State

p = on(a, b, 7s). If P’s representation of the world is inaccurate or incomplete, then it may generate
inappropriate plans. We consider two classes of problems in plans that have fatal errors: ones that do
not achieve their goals, and that cause bad side-effects. As an example, imagine P’s representation of the

world is as shown in Figure 2: notice it believes that a has a clear top. It may then generate the plan:
I't = on(a, b, PutOn(b, PickUp(a, S0))) (1)

that is, pick up a, then put it on b, as it thinks that this plan will achieve its goal. (Of course, SO represents
the initial state. See Figure 3.)

This plan, of course, will not work. In particular, the fact

On(c, a, SO) (2)
together with the rule
On(?y, 7x, ?s) = —ClearTop(?x, 7s) (3)
mean that
—ClearTop(a, ?7s) (4)

This means that the hand will be unable to simply pick up a, and so P’s plan (of picking up a, etc.) will
not succeed. As P is rational, it would not have produced I'y if it knew Fact 4.
To show how our system would critique P’s plan I'y, assume it includes the plan verifier, PV‘14, that is

an expert on the whereabouts of the block ¢, and its effects.! As it knows, in particular, Facts 2 and 3, it

!This is, of course, a trivial and relatively uninteresting situation. For a more interesting example, imagine that P is
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Figure 3: P’s proof of plan I'y

can conclude Fact 4.

How can PV‘14, who knows this information, help P? As one approach, P could send all it knows (i.e.,
P’s knowledge base KBp) to PV, and have it check and correct errors it finds. (Here PV would observe
that KBp does not include On(c, a, S0), Green(c, S0), Dirty(c, S0), ..., and so would would relay
that information to P. Notice only the first fact is relevant here.) This can be very expensive, as it can
involve arbitrarily difficult derivations; and worse, much of this effort will be irrelevant, as P V‘f‘ may find
many errors that would never be manifest in any of P’s actions.

This paper follows another approach: Here, PV’14 instead checks only the proof tree (called I'y in
Figure 3), and reports errors it finds here. This “as needed” approach can be relatively efficient, as it
allows PV to check only the parts of P’s knowledge base that are actually used for some task, rather than
all of KBp. (Here it only deals with Fact 2

We will soon discuss how PV’14 will deal with this situation. First, observe that this plan verifier can
be partial — that is, only knows about information related to c; if ¢ had been elsewhere, PV4 would have
considered a’s top to be clear,? and so would not have vetoed P’s plan, even that the fact that b is not
clear would also have doomed the plan.

We can, therefore, consider using a set of different plan verifiers, each a specialist in some area, and
each capable of vetoing the overall plan, if necessary. We could, for example, also employ P V’24, an expert
on whereabouts of block d, as well as PV{3 and PV?, experts on the weights of blocks and their effects on
other blocks (resp., the hand). Here, PV’24 would know 0On(d, b, SO) and therefore, that -ClearTop(b, SO)

preparing a drug therapy for a patient; and this PV knows about the effects of some medical condition. We can think of
PVE (discussed later) as an expert on the bad side-effects of some drug; etc.
2This, of course, involves a version of the Closed World Assumption.



using Fact 3). As PV knows
g 1
Weight(a, 1ton) (5)

and
0n(?x, 7y, ?s) & Weight(?x, 1ton) = Break(?y, 7s) (6)

it can conclude Break(b, ?s), which it knows is a bad thing to happen, i.e.,
Break(?x, ?s) = Bad(?s) (7)
PVB is similar to PVE, but includes
PickUp(?x, ?s) & Weight(7x, 1ton) = Break(hand, ?s)

rather than Fact 6. It can, therefore, conclude Break(hand, 7s), which it knows to be a bad effect.

As mentioned above, the fact that P, a rational agent, produced the plan I'y (shown in Equation 1),
means that P thought that its plan would succeed, and would not lead to these bad side-effects. These
errors in P’s plan, therefore, mean that P either (1) misunderstood the preconditions of its intended actions
(or, perhaps, misunderstood some facts), or thought that both a and b were clear; and furthermore, (2) did
not think that either block b or the hand would break as a result of the actions proposed (perhaps because
P was unaware of either a’s weight, or of its effect), or did not realize that breaking things was bad.

As we can see, each of these PV's correctly knows some information that P does not. In the following
section, we develop a plan verification system that can first find certain classes of faults in a planner’s
proposed plan, and then use these observed errors to identify possibly problems in the planner’s knowledge

base.

4 Assumptions and Notation

There are, in general, many ways a plan can go wrong: e.g., it might not lead to its assigned goal, have bad
side effects, be sub-optimal, self-conflicting, etc. This paper considers PVs that attempt to detect faults
of the first two types. Each member of the first, identified as PV{‘, checks whether the proposed plan will
Achieve the goal. The second, PV;B, detects Bad side effects in P’s plan.

To prevent P from committing these same errors again, these PVs also help P find the causes of these
faults. There are several possible causes: the planner may not have correct or complete knowledge of the
relevant parts of the world, or its search during planning may not be adequate, etc. Our PVs deal only
with the first of these, by telling P of differences between P’s encoding of the world and “reality” (that
is, the PV’s knowledge base), based on these observed faulty plans. To simplify our discussion, we will
assume that P’s reasoning is sound and complete.

We assume that each PV’s knowledge base is accurate, though it may not have complete knowledge
about the relevant task. These knowledge bases include both information about some relevant aspects of
the world, and specific information needed to debug plans. For each PV;B, we assume it also knows about
certain types of bad side effects B = {#1,---,5,}, and includes the facts, { 5; = Bad(’s) },. Fach PV



takes as input
e P’s knowledge base, KBp (implicit in Figure 2, etc.)
e P’s plan I' (which involves its intended goal p); (see Equation 1)  and

e the proof tree (X) P used to prove that the plan is sufficient.®> (See Figure 3.)

5 Two Types of PVs

We consider two types of problematic plans:

A: T does not achieve p.

As P is rational, we know that P believes that I' will achieve p; unfortunately, it will not:
KBp = T'=p KB £ T'=p

where KB is an omniscient representation of reality. We’ll use Fp as P’s proof process.

B: T' has a bad side effect (i.e., leads to some 3 € B).
Again by rationality assumption, P believes that I' will not bring any side effect but in fact it will:

KBp T'=Bad KB EI'=B

As mentioned above, we will use PV;4 (resp., PV;B) to represent a plan verifier that checks for problematic
plans of type A (resp., type B). These two types of problems are basically “duals”, in that P believes I
will achieve p but does not believe Bad will happen; but in reality I' will not achieve p and/or will achieve
Bad. We will exploit this property to avoid redundancy and thereby simplify our discussion in the following

subsections.

5.1 The PV# System

There are two ways a PV can confirm that T' will achieve p: The standard (if overly strong) sense requires

that PV4 actually prove that I' will achieve p:
KBpya = I'=p
A weaker, more useful form requires only that I' = p be consistent, i.e.,
KBpya [ [ = p]

We assume that each PV 4 have its own proof process which we can label as “Fpya” which, in general,

corresponds to one of these two processes (i.e., either derivability or consistency).

?Given P’s knowledge base and its plan I', PV could re-construct a derivation of the goal. This practice is, however, very
expensive, and is also unnecessary, as PV is a “collaborator” of P.



Notice that, if one believes all of the statements used in a sound proof, then one must believe the
conclusion. We need, therefore, only confirm all of the elements of 3 to believe that I' = p is accurate.

We can view each PV# process as:

PVACT, p, ©)
Let ¢~ ={0€X|KBpyal/pyac}
%% Recall that X contains the reasons why P thinks T achieves p
%% ®~ contains the elements of KBp that are not

% %derivable from or consistent with KBpya — i.e., may not be true
LA1: it &~ ={}
then %% Plan seems to achieve the goal.
return  SUCCESS
else %% Plan will NOT achieve the goal.
LA2: Tell P: “Plan I' may not achieve goal p”
LA3: Tell P: “The claims in ¢~ are questionable”

return ABORT
end PV4.

Line LA1 is based on the observation that if PV4 agrees with every o € ¥, then it must agree with
the conclusion these statements collectively prove — wviz., that I' = p. Otherwise, PV* does not need to
agree with the conclusion; and tells P this in Line LA2. Line LA3 points to the set that contains exactly
the contraversial elements ¢~

This PV algorithm, of course, depends on Fppa. If Fpya is “derivable”, then each underivable
element in ¥ will be considered as a possible fault and therefore PV will veto I'. The “unconfirmed-plan-
is-faulty” approach means PV# will abort every plan unless it knows everything related to the planning
task. This resembles the situation where a master checks an apprentice’s plan. We might relate it to the
scenario where failure of a plan is catastrophical.

The alternative is to use - pyy4 in the weaker sense: checking whether it is consistent for PV 4 to believe
every element in ¥.* The PV’14 of Section 3 is an example of this algorithm. From its knowledge base, it

can proves that ClearTop(a, S0), a node of X, is false.

5.2 PVP System

Like PVA, each PVP system depends critically on its underlying proof process, Fpy 5. Here, again, there
is an obvious split between those systems which use derivability versus those based on a simpler consistency
checking, and these two proof processes actually lead to two ways of checking ¥ if: (¢) PV® can not prove
that there is no bad side effects versus 1) PV?® can prove that side effects will happen. In our daily life,
few cases exist where we try to prove that bad side effects will not happen. Rather, we assume that bad
side effects, in general, does not happen. meaning, we will pass I' if we can not prove I' leads to some bad
side effect. Likewise, PV accepts a plan if PV? t/py 5 T Bad. The general algorithm is:

* A slight extension of the algorithm would check the consistency of (KB pya UX). This enlarges the extent to which PVA
can find errors in T: to see whether it can prove: Vo € Z KBpya + X' Fpya -0, where &' C Z and o € T,



PVB(KBp, p, ¥ )

LB1: Let  Spys = SUPPORT(ABpys U YX,Bad)

%% Spv lists why (PVP thinks) T leads to bad side effects.
LB2: Let &t ={oc€Spys|KBplipo}
LB3 if ot ={}

then %% plan does lead to bad side effects.
return  SUCCESS
else
LB4: Tell P: “Plan I' leads to bad side effect, (7
LB5: %% ®T lists elements that are true, but not in KBp.
Tell P: “Add 17
return  ABORT
end PVB.

LB1 uses the SUPPORT(---) subroutine, which takes a collection of propositions (a.k.a., a knowledge

base) and a proposition, and returns the support for this proposition from this knowledge base — i.e.,

SuPPORT( KB, o) = 7 if TCKB & tFgp o

(We also insist that this 7 is minimal, in that each proposition in 7 is used in the proof of ¢.)> Line LB2
collects those propositions in @+ that P can not derive and therefore are necessary for it to know, in order
to believe its plan has some bad side effect. The proof process (Fp) in LB2 can be largely simplified to a
‘lookup’ process,see Section 5.3.

For example, as PVP knows Facts 6 and 5, from 0On(a, b, S2)€ % (shown in Figure 3) it is able to
derive Break(b, 52).

5.3 Issues

Two types errors in KBp: As this paper does not deal with faulty reasoning process, (i.e., we assume
that Pis a rational agent with a sound and complete reasoning process), the faults that cause problems in
I' must lie in P’s knowledge base KBp. This work deals with two types of problems in KBp: misbeliefs:
KB p includes some statement that is not true, and missing beliefs: KB p does not include some statement
that is true. PV’s second objective is greatly simplified by the observations that P’s misbeliefs leads to
error type A (i.e., to plans that do not really achieve their goal); and P’s missing beliefs leads to error type
B (i.e., plans with bad side effects).

Efficiency: The verifying process shown here can be very efficient. As shown above, procedures for
identifying the faulty or missing beliefs are essentially the same: each involve examining each element in a
given proof tree, to determine which members are not derivable from or consistent with a given knowledge
base. We use F for this derivability or consistency test only to be completely general. In most situations,
however, this test reduces to the much simpler ¢ € KB test, as the s within the proof tree are, in general,

simple “primitive statements”, that are either explicitly in the knowledge base or, if not, are not derivable

®Technically, there can several support sets for any proposition; i.e., this SUPPORTY(- - -) really should be a multi-function,
rather than a function. This does not lead to any conceptual complications; we use this form to keep the presentation simple.



from the knowledge base. That is, most of these os have the property that, from most knowledge bases,
KB=o iff o€ KB.

Global Problems: There are, of course, certain potential problems with our “multiple cooperating
agents” approach to planning. In particular, this overall system may be unable to detect “global problems”
with a plan, as each verifier only sees that the plan is “locally correct”. (One such plan involves painting

the ladder before painting the ceiling c.f., [Sac77].) This work does not deal with such interactions.

6 Conclusions

In general, a planner must (correctly) know every fact relevant to any goal. This places quite a burden on
both the planner itself, and to its author. One way around this problem is to distribute the information,
forming sub-modules (or “agents”) that can each “specialize” in certain domains. This work describes one
way for these agents to interact: by using one as planner, and the others as critics whose common task is
to find (certain classes of) errors in both the plan produced, and in the knowledge base of the planning
agent that produced the plan. This approach allows each individual agent to specialize in its own area of
expertise, knowing that the other agents will prevent P from forming erroneous plans, and can, in fact,
also correct errors in P’s knowledge base.

Another potential advantage is in terms of the planning-time efliciency — as it can be more efficient
for one agent to produce a possibly-buggy plan and then have another agent fix it, than for a single agent
to produce a correct plan. In general, the time to produce a plan is (roughly) exponential in the number
of facts the planner knows — i.e., O(2"). If we distribute the information, into k agents, then on average
each agent will need to deal with n/k facts. Hence the planner Pwould require the time 0(2%). Of course,
this agent might be wrong, as its plan may, in fact, require the other @n chunks of information, now
resident in the other agents. We therefore expect each of these other agents to confirm P’s plan, each
of these derivation processes also require 0(2%) time. The advantage, here, is that these times can add,
rather than multiply. Hence, the total time requires is only O(k X 2%), which is usually much less than
O(2"). Furthermore, the obvious parallel implementation would require k£ — 1 processors and a throughput
time of only O(2 x 2%) — the first 0(2%) for planning, and the next, for verification. Of course, the overall
system may require several iterations — after some PV; vetos P’s plan, P will produce a correct plan.

Surely this makes many assumptions about the nature of the domain. In particular, this assumes that
the different parts are (at worst) semi-decomposable [Sim69]. More research is required to determine,
empirically or analytically, which domain qualify.

Knowing that we have a separate plan verifier means that we can build a planner that can efficiently
generate plans without having all the information, but that the plans it will produce are as good as the
ones produced by a single agent, but more efficiently. The present architecture describes one efficient way
of checking plans for certain types of errors and of correcting the related errors in the planner’s knowledge
base. Still, this approach could not be verified without an implement. Some interesting future work is

deciding how to deal with the interaction among parts of a plan, and to coordinate multiple agents.
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