
A Distributed Plan Veri�er
�

Yan Xiao
y

Russell Greiner
z

Abstract

This paper describes the architecture of an e�cient plan veri�er that can �rst detect faults in a planner�s

plans and use these observed errors to identify possible problems in the planner�s knowledge base and

suggest appropriate corrections�

� Introduction

We routinely hire consultants to use their specialized knowledge of some domain to verify our plans� This

serves two purposes� �i� to con�rm that our plans achieve our intended goal� and that these plans cause

no bad side�e	ects and �ii� to improve our understanding of the world �by acquiring missing information

and correcting faulty assumptions�� to prevent us from producing such faulty plans again� In a multi�agent

environment� other agent�s� can similarly help a planning agent �P� by examining� and correcting� its

proposed plan �
�� In general� as these other agents may have superior knowledge about a certain domain�

or a special facility for recognizing certain types of errors in plans� they can often correct faults in
� They

can often also �nd and correct the problems in the planner that led to these faults� This can be an e�cient

way for agents to cooperate� as it allows each agent to specialize in certain domains and tasks� rather than

forcing one agent to know everything� This concept of distributed knowledge source is especially useful

in a dynamic situation� where the di	erent agents have access to di	erent information �e�g�� if they are

located in di	erent places� etc��� Rather than requesting the other agents to send all of their information

to P� which leads to a major communication problem� these agents could instead simply check P�s plans

for faults� and then communicate only the information necessary to correct the faults found
 i�e�� telling P

of missing or faulty statements in its knowledge base� Therefore� this plan veri�cation process can lead to

an e�cient way for agents to communicate relevant information�

This paper proposes an overall architecture for such a system� one that allows various cooperating

agents �called plan veri�ers� or PVs� to e�ciently help a planning agent P to produce an e	ective plan�

and also to inform P of possible errors or missing information in its knowledge base� Section � �rst

summarizes how this work is related to several other research projects� Section � then presents a simple

blocks world example� to illustrate the relevant situations� The rest of the paper presents a more formal

description of this overall system� Section � lists the assumptions underlying this work� Section � describes

�This work is supported by an OGS scholarship to the �rst author� and an NSERC operating grant to the second�
yDepartment of Industrial Engineering� University of Toronto� Toronto� Ontario M�S �A�
zDepartment of Computer Science� University of Toronto� Toronto� Ontario M�S �A�

�

the structure of the overall plan veri�cation system� including descriptions and algorithms for two classes

of PVs� Section � discusses the bene�ts of this �distributed plan veri�er� approach�

� Related Work

Our approach shares many similarities with several other systems� First� many systems exploit the synergy

of multiple agents working together to achieve a single goal� These agents are called �knowledge sources�

�KSs� in BlackBoard systems �HR���� Our use of these agents is slightly di	erent� as ��� each KS is

assumed to be an expert in its own domain
 by contrast� we assume that P and PV share a great deal

of information� but PV knows more of that domain� more accurately� This leads to a second di	erence�

��� while a blackboard system�s only objective is to work on the task at hand� one of PV�s goals is to

�enlighten� P�

This ties our Plan Veri�cation approach in with several learning systems� One example of this genre

is the LEAP system �MMS���� Here again one part of a system veri�es the plan of other� and uses this

information to enlighten the �assistant�� It di	ers in that LEAP tries to educate itself� while PV tries to

educate P� Another di	erence is that LEAP�s underlying task is to convert a sub�optimal plan into better

one
 by contrast� our P�and�PV�system is trying to obtain any acceptable plan�

Our work is also related to cooperative planning� As one example� Malyankar �Mal��� considers how

multiple agents� having di	erent views of the common world� can cooperatively plan a route� In that

work� each agent predicts potential con�icts between its planned route with the others�� and uses these

predictions to determine what the other agents need to know� This approach requires that each agent be

able to produce a plan and have equal �width� of knowledge base� whereas in our approach� the PVs need

not have any explicit planning ability� and their knowledge base needs only be superior to P�s in certain

speci�c sub�domains�

We use plan veri�cation as a way to critique plans� In many systems� the critic must itself be able

to plan �LS��� Mil���� This is not required in our work
 instead� our critics simply check the plan by

analyzing parts of the planner�s proof and knowledge base that it used to generate the plan� We will see

that this allows the critics to have narrower range of knowledge� yet still be useful� provided it has superior

knowledge in its own sub�domain�

Once incorporated with plan recognition system �All��� KA��� SSG���� the PV system can also be

developed into a practical and comprehensive warning system �which was the original objective of this

research�� capable of detecting possible problems of some ascribed plan and of giving both warnings and

helpful information�

� Simple �Blocks World� Example

We start with the classic AI approach to planning �GN���� Given a goal �� a planning agent P generates

a plan
 �i�e�� a sequence of actions� that it thinks will achieve the goal �� �That is� we insist that P

be �rational� �New��� p���� As an example� consider the simple block world situation shown in Figure ��

and imagine the goal of our planner� P� is to build a tower with block a on top of block b� � i�e��

a

c

b

d

hand

�Real� Initial World

b

a
c d

Goal State

Figure �� Blocks world� Initial and Goal con�gurations

a b

Figure �� P�s �Incorrect� Representation of Initial State

� � on�a� b� �s�� If P�s representation of the world is inaccurate or incomplete� then it may generate

inappropriate plans� We consider two classes of problems in plans that have fatal errors� ones that do

not achieve their goals� and that cause bad side�e	ects� As an example� imagine P�s representation of the

world is as shown in Figure �� notice it believes that a has a clear top� It may then generate the plan�

� � on�a� b� PutOn�b� PickUp�a� S���� ���

that is� pick up a� then put it on b� as it thinks that this plan will achieve its goal� �Of course� S� represents

the initial state� See Figure ���

This plan� of course� will not work� In particular� the fact

On�c�a� S�� ���

together with the rule

On��y��x� �s� � �ClearTop��x��s� ���

mean that

�ClearTop�a��s� ���

This means that the hand will be unable to simply pick up a� and so P�s plan �of picking up a� etc�� will

not succeed� As P is rational� it would not have produced
� if it knew Fact ��

To show how our system would critique P�s plan
�� assume it includes the plan veri�er� PV
A
� � that is

an expert on the whereabouts of the block c� and its e	ects�� As it knows� in particular� Facts � and �� it

�This is� of course� a trivial and relatively uninteresting situation� For a more interesting example� imagine that P is

ClearTop�a�S�� EmptyHand�S��
ClearTop��x��s��EmptyHand��s�
� InHand��x�PickUp��x��s��

�S� � PickUp�a�S���

InHand�a�S�� ClearTop�b�S��
InHand��x��s��ClearTop��y��s�
� On��x��y� PutOn��y��s��

�S� � PutOn�b�S���

On�a� b� S��

Figure �� P�s proof of plan
�

can conclude Fact ��

How can PV A
� � who knows this information� help P� As one approach� P could send all it knows �i�e��

P�s knowledge base KBP� to PV
A
� � and have it check and correct errors it �nds� �Here PV

A
� would observe

that KBP does not include On�c�a� S��� Green�c�S��� Dirty�c�S��� � � � � and so would would relay

that information to P� Notice only the �rst fact is relevant here�� This can be very expensive� as it can

involve arbitrarily di�cult derivations
 and worse� much of this e	ort will be irrelevant� as PV A
� may �nd

many errors that would never be manifest in any of P�s actions�

This paper follows another approach� Here� PV A
� instead checks only the proof tree �called
� in

Figure ��� and reports errors it �nds here� This �as needed� approach can be relatively e�cient� as it

allows PV to check only the parts of P�s knowledge base that are actually used for some task� rather than

all of KBP � �Here it only deals with Fact �

We will soon discuss how PV A
� will deal with this situation� First� observe that this plan veri�er can

be partial � that is� only knows about information related to c
 if c had been elsewhere� PV A would have

considered a�s top to be clear�� and so would not have vetoed P�s plan� even that the fact that b is not

clear would also have doomed the plan�

We can� therefore� consider using a set of di	erent plan veri�ers� each a specialist in some area� and

each capable of vetoing the overall plan� if necessary� We could� for example� also employ PV A
� � an expert

on whereabouts of block d� as well as PVB
� and PV

B
� � experts on the weights of blocks and their e	ects on

other blocks �resp�� the hand�� Here� PV A
� would know On�d�b� S�� and therefore� that �ClearTop�b�S��

preparing a drug therapy for a patient� and this PV A

� knows about the e	ects of some medical condition� We can think of
PV

B

�
discussed later� as an expert on the bad side�e	ects of some drug� etc�
�This� of course� involves a version of the Closed World Assumption�

�using Fact ��� As PVB
� knows

Weight�a��ton� ���

and

On��x��y� �s� Weight��x��ton� � Break��y��s� ���

it can conclude Break�b��s�� which it knows is a bad thing to happen� i�e��

Break��x��s� � Bad��s� ���

PVB
� is similar to PV

B
� � but includes

PickUp��x��s� Weight��x��ton� � Break�hand��s�

rather than Fact �� It can� therefore� conclude Break�hand��s�� which it knows to be a bad e	ect�

As mentioned above� the fact that P� a rational agent� produced the plan
� �shown in Equation ���

means that P thought that its plan would succeed� and would not lead to these bad side�e	ects� These

errors in P�s plan� therefore� mean that P either ��� misunderstood the preconditions of its intended actions

�or� perhaps� misunderstood some facts�� or thought that both a and b were clear
 and furthermore� ��� did

not think that either block b or the hand would break as a result of the actions proposed �perhaps because

P was unaware of either a�s weight� or of its e	ect�� or did not realize that breaking things was bad�

As we can see� each of these PV s correctly knows some information that P does not� In the following

section� we develop a plan veri�cation system that can �rst �nd certain classes of faults in a planner�s

proposed plan� and then use these observed errors to identify possibly problems in the planner�s knowledge

base�

� Assumptions and Notation

There are� in general� many ways a plan can go wrong� e�g�� it might not lead to its assigned goal� have bad

side e	ects� be sub�optimal� self�con�icting� etc� This paper considers PVs that attempt to detect faults

of the �rst two types� Each member of the �rst� identi�ed as PV A
i � checks whether the proposed plan will

Achieve the goal� The second� PVB
j � detects Bad side e	ects in P�s plan�

To prevent P from committing these same errors again� these PVs also help P �nd the causes of these

faults� There are several possible causes� the planner may not have correct or complete knowledge of the

relevant parts of the world� or its search during planning may not be adequate� etc� Our PVs deal only

with the �rst of these� by telling P of di	erences between P�s encoding of the world and �reality� �that

is� the PV�s knowledge base�� based on these observed faulty plans� To simplify our discussion� we will

assume that P�s reasoning is sound and complete�

We assume that each PV�s knowledge base is accurate� though it may not have complete knowledge

about the relevant task� These knowledge bases include both information about some relevant aspects of

the world� and speci�c information needed to debug plans� For each PVB
j � we assume it also knows about

certain types of bad side e	ects B � f��� � � � � �ng� and includes the facts� f �i � Bad��s� gni��� Each PV

takes as input

� P�s knowledge base� KBP �implicit in Figure �� etc��

� P�s plan
 �which involves its intended goal ��
 �see Equation �� and

� the proof tree �!� P used to prove that the plan is su�cient�� �See Figure ���

� Two Types of PVs

We consider two types of problematic plans�

A�
 does not achieve ��

As P is rational� we know that P believes that
 will achieve �
 unfortunately� it will not�

KBP j�
� � KB �j�
� �

where KB is an omniscient representation of reality� We�ll use �P as P�s proof process�

B�
 has a bad side e	ect �i�e�� leads to some � � B��

Again by rationality assumption� P believes that
 will not bring any side e	ect but in fact it will�

KBP �j�
� Bad KB j�
� B

As mentioned above� we will use PV A
i �resp�� PV

B
j � to represent a plan veri�er that checks for problematic

plans of type A �resp�� type B�� These two types of problems are basically �duals�� in that P believes

will achieve � but does not believe Bad will happen
 but in reality
 will not achieve � and"or will achieve

Bad� We will exploit this property to avoid redundancy and thereby simplify our discussion in the following

subsections�

��� The PV A System

There are two ways a PV A can con�rm that
 will achieve �� The standard �if overly strong� sense requires

that PV A actually prove that
 will achieve ��

KB
PV

A j�
� �

A weaker� more useful form requires only that
� � be consistent� i�e��

KB
PV

A �j� ��
� ��

We assume that each PV A have its own proof process which we can label as ��PV A� which� in general�

corresponds to one of these two processes �i�e�� either derivability or consistency��

�Given P
s knowledge base and its plan �� PV could re�construct a derivation of the goal� This practice is� however� very
expensive� and is also unnecessary� as PV is a �collaborator� of P�

Notice that� if one believes all of the statements used in a sound proof� then one must believe the

conclusion� We need� therefore� only con�rm all of the elements of ! to believe that
� � is accurate�

We can view each PV A process as�

PV A�
� �� ! �

Let #� � f� � ! jKB
PV

A ��PVA �g

�� Recall that ! contains the reasons why P thinks
 achieves �
�� #� contains the elements of KBP that are not
��derivable from or consistent with KBPVA � i�e�� may not be true

LA�	 if #� � fg

then �� Plan seems to achieve the goal�
return SUCCESS

else �� Plan will NOT achieve the goal�
LA�	 Tell P	 �Plan
 may not achieve goal ��
LA
	 Tell P	 �The claims in #� are questionable�

return ABORT

end PV A�

Line LA� is based on the observation that if PV A agrees with every � � !� then it must agree with

the conclusion these statements collectively prove � viz�� that
 � �� Otherwise� PV A does not need to

agree with the conclusion
 and tells P this in Line LA�� Line LA
 points to the set that contains exactly

the contraversial elements #��

This PV A algorithm� of course� depends on �PVA � If �PV A is �derivable�� then each underivable

element in ! will be considered as a possible fault and therefore PV A will veto
� The �uncon�rmed�plan�

is�faulty� approach means PV A will abort every plan unless it knows everything related to the planning

task� This resembles the situation where a master checks an apprentice�s plan� We might relate it to the

scenario where failure of a plan is catastrophical�

The alternative is to use �PV A in the weaker sense� checking whether it is consistent for PV A to believe

every element in !�� The PV A
� of Section � is an example of this algorithm� From its knowledge base� it

can proves that ClearTop�a�S��� a node of !�� is false�

��� PV
B System

Like PV A� each PVB system depends critically on its underlying proof process� �PVB � Here� again� there

is an obvious split between those systems which use derivability versus those based on a simpler consistency

checking� and these two proof processes actually lead to two ways of checking ! if� �i� PVB can not prove

that there is no bad side e	ects versus ii� PVB can prove that side e	ects will happen� In our daily life�

few cases exist where we try to prove that bad side e	ects will not happen� Rather� we assume that bad

side e	ects� in general� does not happen� meaning� we will pass
 if we can not prove
 leads to some bad

side e	ect� Likewise� PVB accepts a plan if PVB ��PVB
 Bad� The general algorithm is�

�A slight extension of the algorithm would check the consistency of
KB
PVA

���� This enlarges the extent to which PV
A

can �nd errors in �� to see whether it can prove� �� � � KBPVA � �� �PVA ��� where �� � � and � �� ���

PVB�KBP � �� ! �
LB�	 Let S

PV
B � Support�KB

PV
B 	 !� Bad�

�� SPV lists why �PVB thinks�
 leads to bad side e�ects�
LB�	 Let #� � f� � S

PV
B jKBP ��P � g

LB
 if #� � fg
then �� plan does lead to bad side e�ects�

return SUCCESS

else

LB�	 Tell P	 �Plan
 leads to bad side effect� ��
LB
	 �� #� lists elements that are true� but not in KBP�

Tell P	 �Add #��
return ABORT

end PVB�

LB� uses the Support�� � �� subroutine� which takes a collection of propositions �a�k�a�� a knowledge

base� and a proposition� and returns the support for this proposition from this knowledge base � i�e��

Support�KB � � � � � if �
 KB � �KB �

�We also insist that this � is minimal� in that each proposition in � is used in the proof of ���� Line LB�

collects those propositions in #� that P can not derive and therefore are necessary for it to know� in order

to believe its plan has some bad side e	ect� The proof process ��P� in LB� can be largely simpli�ed to a

$lookup� process�see Section ����

For example� as PVB
� knows Facts � and �� from On�a�b� S��� !� �shown in Figure �� it is able to

derive Break�b� S���

��� Issues

Two types errors in KBP � As this paper does not deal with faulty reasoning process� �i�e�� we assume

that P is a rational agent with a sound and complete reasoning process�� the faults that cause problems in

 must lie in P�s knowledge base KBP � This work deals with two types of problems in KBP � misbeliefs�

KBP includes some statement that is not true� andmissing beliefs� KBP does not include some statement

that is true� PV�s second objective is greatly simpli�ed by the observations that P�s misbeliefs leads to

error type A �i�e�� to plans that do not really achieve their goal�
 and P�s missing beliefs leads to error type

B �i�e�� plans with bad side e	ects��

E�ciency� The verifying process shown here can be very e�cient� As shown above� procedures for

identifying the faulty or missing beliefs are essentially the same� each involve examining each element in a

given proof tree� to determine which members are not derivable from or consistent with a given knowledge

base� We use � for this derivability or consistency test only to be completely general� In most situations�

however� this test reduces to the much simpler � � KB test� as the �s within the proof tree are� in general�

simple �primitive statements�� that are either explicitly in the knowledge base or� if not� are not derivable

�Technically� there can several support sets for any proposition� i�e�� this Support
� � �� really should be a multi�function�
rather than a function� This does not lead to any conceptual complications� we use this form to keep the presentation simple�

from the knowledge base� That is� most of these �s have the property that� from most knowledge bases�

KB � � iff � � KB �

Global Problems� There are� of course� certain potential problems with our �multiple cooperating

agents� approach to planning� In particular� this overall system may be unable to detect �global problems�

with a plan� as each veri�er only sees that the plan is �locally correct�� �One such plan involves painting

the ladder before painting the ceiling c�f�� �Sac����� This work does not deal with such interactions�

� Conclusions

In general� a planner must �correctly� know every fact relevant to any goal� This places quite a burden on

both the planner itself� and to its author� One way around this problem is to distribute the information�

forming sub�modules �or �agents�� that can each �specialize� in certain domains� This work describes one

way for these agents to interact� by using one as planner� and the others as critics whose common task is

to �nd �certain classes of� errors in both the plan produced� and in the knowledge base of the planning

agent that produced the plan� This approach allows each individual agent to specialize in its own area of

expertise� knowing that the other agents will prevent P from forming erroneous plans� and can� in fact�

also correct errors in P�s knowledge base�

Another potential advantage is in terms of the planning�time e�ciency � as it can be more e�cient

for one agent to produce a possibly�buggy plan and then have another agent �x it� than for a single agent

to produce a correct plan� In general� the time to produce a plan is �roughly� exponential in the number

of facts the planner knows � i�e�� O��n�� If we distribute the information� into k agents� then on average

each agent will need to deal with n�k facts� Hence the planner Pwould require the time O��
n

k �� Of course�

this agent might be wrong� as its plan may� in fact� require the other �k��	
k

n chunks of information� now

resident in the other agents� We therefore expect each of these other agents to con�rm P�s plan� each

of these derivation processes also require O��
n

k � time� The advantage� here� is that these times can add�

rather than multiply� Hence� the total time requires is only O�k � �
n

k �� which is usually much less than

O��n�� Furthermore� the obvious parallel implementation would require k�� processors and a throughput

time of only O����
n

k � � the �rst O��
n

k � for planning� and the next� for veri�cation� Of course� the overall

system may require several iterations � after some PV i vetos P�s plan� P will produce a correct plan�

Surely this makes many assumptions about the nature of the domain� In particular� this assumes that

the di	erent parts are �at worst� semi�decomposable �Sim���� More research is required to determine�

empirically or analytically� which domain qualify�

Knowing that we have a separate plan veri�er means that we can build a planner that can e�ciently

generate plans without having all the information� but that the plans it will produce are as good as the

ones produced by a single agent� but more e�ciently� The present architecture describes one e�cient way

of checking plans for certain types of errors and of correcting the related errors in the planner�s knowledge

base� Still� this approach could not be veri�ed without an implement� Some interesting future work is

deciding how to deal with the interaction among parts of a plan� and to coordinate multiple agents�

References

�All��� James Allen� Recognizing intentions from natural language utterances� In M� Brady and R�C�
Berwick� editors� Computational Models of Discourse� page ���� MIT Press� Cambridge� Mass�
�����

�GN��� Michael R� Genesereth and Nils J� Nilsson� Logical Foundations of Arti	cial Intelligence� Morgan
Kaufmann Publishers� Inc�� Los Altos� CA� �����

�HR��� Barbara Hayes�Roth� A blackboard architecture for control� Arti	cial Intelligence
 An Interna�
tional Journal� ���������%���� July �����

�KA��� H�A� Kautz and J�F� Allen� Generalized plan recognition� In AAAI��
� pages ��%��� �����

�LS��� C�P� Langlotz and E�H� Shortli	e� Adapting a consultation system to critique user plans� Int�
J� Man�Machine Studies� ������%���� �����

�Mal��� Raphael Malyankar� Coorperative Route Planning by Multiple Agents� Master�s Thesis� Univer�
sity of New Hampshire� �����

�Mil��� P�L� Miller� Attending� Critiquing a physician�s management� IEEE Trans� on Pattern Analysis
and Machine Inteligence� PAMI������%���� �����

�MMS��� Thomas M� Mitchell� Sridhar Mahadevan� and Louis I� Steinberg� LEAP� A learning apprentice
for VLSI design� In IJCAI���� pages ���%��� Los Angeles� August �����

�New��� Alan Newell� The knowledge level� AI Magazine� ������%��� Summer �����

�Sac��� E�D� Sacerdoti� A Structure for Plans and Behaviour� Elsevier North�Holland� New York� �����

�Sim��� Herbert Simon� Science Of the Arti	cial� MIT Press� Cambridge� �����

�SSG��� C�F� Schmidt� N�S� Sridharan� and J�L� Goodson� The plan recoginition problem� Arti	cial
Intelligence
 An International Journal� �����%��� �����

