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The relationship between a reinforcement learning (RL) agent and an asynchronous

environment is often ignored. Frequently used models of the interaction between an

agent and its environment, such as Markov Decision Processes (MDP) or Semi-Markov

Decision Processes (SMDP), do not capture the fact that, in an asynchronous

environment, the state of the environment may change during computation performed by

the agent. In an asynchronous environment, minimizing reaction time—the time it takes

for an agent to react to an observation—also minimizes the time in which the state of

the environment may change following observation. In many environments, the reaction

time of an agent directly impacts task performance by permitting the environment to

transition into either an undesirable terminal state or a state where performing the chosen

action is inappropriate. We propose a class of reactive reinforcement learning algorithms

that address this problem of asynchronous environments by immediately acting after

observing new state information. We compare a reactive SARSA learning algorithm

with the conventional SARSA learning algorithm on two asynchronous robotic tasks

(emergency stopping and impact prevention), and show that the reactive RL algorithm

reduces the reaction time of the agent by approximately the duration of the algorithm’s

learning update. This new class of reactive algorithms may facilitate safer control and

faster decision making without any change to standard learning guarantees.

Keywords: reinforcement learning, asynchronous environments, resource-limited systems, reaction time, real-

time machine learning

1. INTRODUCTION

Reinforcement learning (RL) algorithms for solving optimal control problems are comprised of
four distinct components: acting, observing, choosing an action, and learning. This ordering of
components forms a protocol which is used in a variety of applications. Many of these applications
can be described as synchronous environments where the state of the environment remains in
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the same state until the agent acts at which point the
environment immediately returns its new state. In these
synchronous environments, such as Backgammon (Tesauro,
1994) or classic control problems, it is not necessary to
know the computation time to perform any of the protocol’s
components. For this reason, most reinforcement learning
software libraries, such as RL-Glue (Tanner and White, 2009),
BURLAP1 or OpenAI gym2, have functions which accept the
agent’s action, and return the new state and reward immediately.
These functions remain convenient for simulated environments
where the dynamics of the environment can be computed
easily (Sutton and Barto, 1998). However, unlike synchronous
environments, asynchronous environments, also referred to as
dynamic environments, do not wait for an agent to select an
action before they change state (Kober et al., 2013; Pilarski et al.,
2015; Russell and Norvig, 2016). The computation of RL protocol
components (acting, observing, choosing an action, learning)
takes time and an asynchronous environment will continually
change state during this time (Degris and Modayil, 2012; Hester
et al., 2012; Caarls and Schuitema, 2016). This can negatively
affect the performance of the agent. If the agent’s reaction time
is too long, its chosen action may become inappropriate in the
now changed environment. Alternatively, the environment may
have moved into an undesirable terminal state.

In this paper, we explore a very simple alternative arrangement
of the reinforcement learning protocol components. We first
investigate a way to reorder SARSA control algorithms so
that they are able to react to the most recent observation
before learning about the previous time step; we then discuss
convergence guarantees of these reordered approaches when
viewed in discrete time (following Singh et al., 2000). Then, we
examine a asynchronous continuous-time robot task where the
reaction times of agents affect the overall task performance—
in this case, breaking or not breaking an egg with a fast-
moving robotic arm. Finally, we present a discussion on the
implementation of reactive algorithms and their application in
related settings.

1.1. Related Background
The focus of most contemporary RL research is on action
selection, representation of state, and the learning update
itself; the performance impact of reaction time is considered
less frequently, but is no less important of a concern (Barto
et al., 1995). Several groups have discussed the importance of
minimizing reaction time (Degris and Modayil, 2012; Hester
et al., 2012; Caarls and Schuitema, 2016). Hester et al. noted
that existing model-based reinforcement learning methods may
take too much time between successive actions and presented
a parallel architecture that outperformed traditional methods.
Caarls and Schuitema extended this parallel architecture to the
online learning of a system’s dynamics (Caarls and Schuitema,
2016). Their learned model allowed for the generation of
simulated experience which could be combined with real
experience in batch updates. While parallelization methods may
improve performance, they are computationally demanding. We

1http://burlap.cs.brown.edu/
2https://gym.openai.com/

propose an alternative approach when system resources are
constrained.

2. TEMPORAL DELAYS IN
ASYNCHRONOUS ENVIRONMENTS

Temporal-difference (TD) control algorithms like SARSA and
Q-Learning (Watkins and Dayan, 1992; Rummery et al., 1994;
Sutton and Barto, 1998) were introduced with synchronous
discrete-time environments in mind; these environments are
characterized by remaining stationary during the planning and
learning of the agent. In synchronous environments, the time
to perform the individual components of the SARSA algorithm
protocol has no impact on task performance. Specifically, the
time it takes to react to a new game state in chess has no influence
over the end of the game. In asynchronous environments
however, the time it takes for the agent to react to new
observations can drastically influence its performance on the
task. Such as in the original formulation of a cart-pole, the agent
applied it’s actions left and right at discrete time intervals (Barto
et al., 1983). These time intervals were set small enough so that
the pole would not fall further than the agent would be able to
recover.

As a concrete example, imagine an asynchronous
environment we here call Hallway World with a left turn
leading to the terminal state, as shown in Figure 1. The agent
starts an episode near the bottom of a hallway and has two
actions: move left and move up which move the agent in a
direction and continue to move the agent in that direction

FIGURE 1 | The Hallway World task with the agent (the blue circle) starting

near the bottom of the hallway. The gray square denotes the terminal state.

The arrows pointing away from the circle denote the 2 actions which move the

agent leftwards or upwards and continue moving the agent in that direction

until interrupted.
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with constant velocity until interrupted with the other action,
hitting a wall, or arriving in the terminal state. If the agent hits
a wall it receives a reward of -1 and comes to a stop. When the
agent reaches the terminal state it will receive a negative reward
directly proportional to the duration of the episode. In this way,
the agent is motivated to get to the terminal state as quickly as
possible without touching the walls. The only observation that
the agent can make is to determine if there is a wall on its left.

The optimal policy in Hallway World is for the agent to
move upward and observe the wall continually until an opening
in the wall is observed then immediately move leftwards toward
the terminal state. SARSA (Algorithm 1) applied using on-line
learning is unable to learn this optimal policy because it is
restricted by the delay between observing the opening in the
wall and moving toward the terminal state. Specifically, when an
agent, that had previously learned to take the left action using
SARSA, observes the opening in the wall it would choose the left
action but it would not be able to take this action until it had
spent time learning about the previous action and observation
during the learning step (Figure 2, top row). Assuming that the
components of the algorithm (acting, observing, choosing an
action, and learning) each take some constant amount of time
tc, if a SARSA agent observes an opening in the wall, it must
choose to move left and learn about the previous state-actions
before taking the action, this would add 2tc onto episode time,
thereby affecting the total reward and task performance. Thus,
overall performance in Hallway World decreases with the time
the agent spends selecting an action and learning, irrespective of
how these components are performed.

3. REACTIVE SARSA

To minimize the time between observing a state and acting
upon it, we propose a modification to conventional TD-control
algorithms: take actions immediately after choosing them given
the most recent observation. We propose a straightforward new
algorithm, Reactive SARSA, as one example of this modification
(Algorithm 2); in each step of the learning loop, the agent
observes a reward and new state, chooses an action from a
policy based on the new state, immediately takes that action,
then performs the learning update based on the previous action.
Illustrating how Reactive SARSA responds in Hallway World,
when an agent that had previously learned to take the left action
using Reactive SARSA observes the opening in the wall, it would
choose the left action and immediately take this action. This
immediate response would reduce the time it takes for the agent
to reach the terminal state compared to an agent using the SARSA
algorithm (see Figure 2).

The trade-off induced by this re-ordering is in how quickly
an agent can see the results of its actions. In SARSA, where
observation follows taking an action, if the consequences of
an action can be readily observed, the agent can see these
consequences. An agent using Reactive SARSA would be unable
to see these consequences immediately as it must perform its
learning update.

Algorithm 1 |SARSA: An on-policy TD control algorithm

Initialize Q(s, a) arbitrarily, for all s ∈ S , a ∈ A(s)
Repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q (e.g., ǫ-
greedy)
Repeat (for each step of episode):
Take action A
Observe R, S′

Choose A′ from S′ using policy derived from Q (e.g.,
ǫ-greedy)
Q(S,A)← Q(S,A) + α[R + γQ(S′,A′) - Q(S,A)]
S← S′, A← A′

Algorithm 2 |Reactive SARSA: A reactionary on-policy TD
algorithm

Initialize Q(s, a) arbitrarily, for all s ∈ S , a ∈ A(s)
Repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q (e.g., ǫ-
greedy)
Take action A
Repeat (for each step of episode):
Observe R, S′

Choose A′ from S′ using policy derived from Q (e.g.,
ǫ-greedy)

Take action A′

Q(S,A)← Q(S,A) + α[R + γQ(S′,A′) - Q(S,A)]
S← S′, A← A′

The slight reordering of RL algorithm protocol components
does not effect convergence in discrete time. Here, we provide a
basic theoretical sketch that, in discrete-time synchronous tasks,
Reactive SARSA learns the same optimal policy as SARSA, in the
same manner. As is illustrated in Figure 3, this equivalence is
trivially evident by observing that in both algorithms the first 2
actions are selected using the initial policy. In each subsequent
step t, actions are chosen using the policy learned on the last
step, and the policy updates happen with identical experiences
(Figure 3).

If we redefine Hallway World as a synchronous environment
where the agent moves a constant distance for each action instead
of continually moving, the same policies and performance would
be expected between both algorithms and this is what we found
in practice. The difference between reactive and non-reactive
algorithms is the order of the RL components (acting, observing,
choosing an action, and learning).

4. EXPERIMENTS

To explore the differences between the SARSA and Reactive
SARSA learning algorithms in asynchronous environments, we
designed a reaction-time-dependent task with similar qualities to
the Hallway World described above and illustrated in Figure 1.
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FIGURE 2 | The behaviors of a SARSA agent (Top) and a Reactive SARSA agent (Bottom) on an Asynchronous Hallway World. Overlapping the trajectories of the

agents illustrates that the Reactive SARSA agent produces a shorter trajectory and gets to the terminal state before the SARSA agent.

FIGURE 3 | Time step comparison of (A) standard and (B) reactive reinforcement learning algorithms. The function L refers to a learning function which updates the

policy π . The learning function L is not limited to the SARSA learning update and encompasses any learning update such as Q-learning.

The task was performed using one joint of a robotic arm (an
open-source robotic arm, Dawson et al., 2014 shown in Figure 4).
We conducted two experiments with the same episodic stopping
task. The arm started at one extreme of the joint rotation
range and was then rotated quickly toward the other end of its
range. The agent needed to stop the rotation as soon as possible
following an indication to stop that was observed by a state
change from “Normal” to “Emergency.”

The agent had two actions: stop and move. If the agent chose
to stop while in the “Normal” state, the agent would receive a
constant reward of -1, remain in the “Normal” state, and the arm
would continue rotating. If the agent chose to move while in the
“Normal” state, the agent would receive a reward of 0, remain in
the “Normal” state, and continue rotating. Once the “Emergency”
state had been observed, the reward for either action would be
a negative reward proportional to the amount of time (in µs)
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FIGURE 4 | Experimental setup, showing the robot arm in motion for the first experiment (Left) and the robot arm poised to impact an egg during the second

experiment (Right).

spent in the “Emergency” state. When the agent chose to stop
in the “Emergency” state, it transitioned to the terminal state,
thereby ending the episode. This reward definition was chosen
as a convenient means of valuing reaction time; the distance
traveled during the reaction time would also have been a valid
alternative.

If complete information about the stopping task was
available, optimal performance could be obtained through direct
engineering of a control system designed to stop the arm as
soon as the state changes. However, the agent did not know
which state was the “Emergency” state and used its experience
to learn what to do in any given state. By excluding the
complex state information of many real-world robotic tasks and
using this simple stopping task, we were able to investigate
the effects of reaction time on overall performance and
the differences between conventional and reactive TD-control
algorithms.

4.1. Experiment 1
To explore the effect of the reactive algorithms on reaction
time and task performance, the robotic arm was programmed to
move at a constant velocity along a simple trajectory (Figure 4,
left). The experiment involved 30 trials, each of which was
comprised of 20 episodes with the agent starting in a “Normal”
state and switching to the “Emergency” state after some random
amount of time. The standard and Reactive SARSA agents
were compared with greedy policies, γ = 0.9, λ = 0.9, and
α = 0.1.

There aremany potential causes for time delays in the learning
step. One example maybe waiting for a path planning algorithm,
like Hybrid A∗, to complete (Wei et al., 2017). Another example
comes from the idea of predictive knowledge representations.
Here knowledge is represented and learned as a collection of
predictions about a robots observed experience. Such knowledge
may be updated and computed during each cycle. One approach
to building this knowledge is the Horde architecture. Horde
introduces the idea of demons which learn predictions about the
environment and can build on each other to achieve a scalable

method of knowledge learning (Sutton et al., 2011). A Horde
architecture with 2,576 demons (predicting the position, velocity,
temperature, load and other measures) was experimentally
validated on the robotic arm. On the experimental setting
testing this setup, average computation time of one demon’s
prediction took 3.33 µs. The more predictions one wants to
make, the longer the duration of learning, thus the reaction
time increases. Specifically, the time delays of 50, 100, 250,
and 500 ms on the experimental hardware are equivalent to a
horde architecture of approximately 15,000, 45,000, 75,000, and
150,000 demons, respectively. It is clear that more predictions
increase the reaction-time, and the addition of time delays in
the following experiments was used to appropriately simulate the
addition of more predictions. To simulate the performance of
these additional predictions andmodulate in a controlled fashion
the effect of longer learning steps, these time delays were added
to the learning update step.

Figure 5 shows how the the duration of learning influenced
the task performance. The figure shows the average cumulative
episodic return for the last 10 episodes, once both agents had
learned policies. As the delay increased, both algorithms suffered
performance decreases, but the standard SARSA algorithm
performed worse with larger variability. While Reactive SARSA
was affected by increasing time delays, the impact was less severe.
Specifically, median reaction time of the Reactive SARSA was
approximately half of the added learning delay. This effect is
most likely because the transition from “Normal” to “Emergency”
state occurred at a uniformly random selected time and since the
majority of the duration of a step consists in learning, the state
change occurred on average halfway through the learning step.
This also accounts for the increasing reaction time in standard
SARSA, as it must wait a full additional time step before reacting
to the “Emergency” state.

4.2. Experiment 2
The second experiment considered a human-robot interaction
task which demanded cooperation between a human and robotic
arm to not crush an egg (Figure 4, right). The robot arm was
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FIGURE 5 | Key result: a comparison of summed reward over the last 10

episodes of 30 trials across 5 different learning delay length lengths during

robot arm motion. Reactive SARSA had a significantly reduced reaction time

when compared to the standard SARSA algorithm for all delay lengths.

positioned above a target, in this task an egg, and would move
at a constant velocity toward the target. The human was told to
press a button to stop the arm before crushing the egg, and to try
to stop it as close to the egg as possible without touching it3. The
learning task for the RL agent was to learn to stop as soon as the
participant pressed a button. For the first 10 episodes of a trial, the
participant trained using a hard-wired stopping algorithm which
automatically stopped the arm when the participant pressed a
button. For the remaining 40 episodes of the trial, previously
learned SARSA and Reactive SARSA agents were used, each
algorithm was used for 20 episodes, and the algorithm used was
randomly alternated on each episode. The state changed from
“Normal” to “Emergency” when the participant pressed a button.
All three algorithmic conditions: (1) control, (2) SARSA, and (3)
Reactive SARSA, included a constant 50 ms delay to simulate a
longer learning step (e.g., the time it would take to update the
predictions for 15,000 demons). The algorithm used on a trial
was hidden from the participant. Four individuals participated
in the experiment, providing a total of 80 episodes of each
algorithm. All participants provided informed consent as per the
University’s Ethics Review Board and could voluntarily end the
experiment at any time if they wished.

Figure 6 shows the total of all failed stops (“broken eggs”)
for each algorithmic condition as summed across all four
participants. Reactive SARSA had approximately the same
number of failed stops as the optimal control strategy whereas the
standard SARSA performed significantly worse with more than
four times as many failed stops.

In addition to comparing the number of failed stops, and thus
crushed eggs, of each algorithmic condition, the time between the
state change from the button push of the participant reaction time
of the agent was recorded and is presented in Figure 7. The effects

3All damaged eggs were eaten.

FIGURE 6 | The total number of failed stops for each algorithm during the

robot’s acceleration toward a breakable object (Experiment 2), summed over

all four participants. For all subjects, Reactive SARSA had far fewer failed

stops than standard SARSA.

FIGURE 7 | Boxplot comparison of the distributions of events over all

episodes between Reactive SARSA and the standard SARSA algorithm. Zero

on the x-axis is the the moment the arm begins moving. The overlap of the

button press and reactive agent’s action indicates that the reactive agent has

negligible delay in its reaction to the participant’s input (seen in the overlap

between light red and dark red, top). The standard agent’s ability to act is

delayed by the length of learning (visible gap between light blue and dark blue,

bottom).

of longer learning on reaction time is evident in this figure as the
standard SARSA algorithm agent’s Stop action is trailing behind
the button press by approximately the length of the learning
update and delay; this is contrasted by the tight overlap of the
stimulus and action for the Reactive SARSA agent.

5. DISCUSSION

Our results indicate that rearranging the fundamental
components of existing TD-control algorithms (act, observe,
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choose action, learn) has a beneficial effect on performance in
asynchronous environments where task performance is reaction-
time dependent. A reactive agent can perform better in these
environments as it can act immediately following observations.
As would be expected, this effect becomes especially prominent
as the duration of learning operations increases. Although
the current experimental design added a simulated delay to
the learning update step, our results indicate that as the time
between observing and acting grows, performance in these
environments deteriorates, regardless of the source of these
delays. As standard RL algorithms perform learning and state
representation construction [e.g., tile-coding, (Sutton and Barto,
1998), deep neural networks, (Silver et al., 2016), etc.] between
observing and acting, additional computation time is necessary.
In asynchronous environments, as these steps become longer, the
order of algorithmic components [acting, observing, choosing
an action, and learning] becomes more critical. As we have
shown, performance in asynchronous environments is inversely
proportional to the total length of time between observations
and acting.

One alternate means of addressing delay-induced
performance concerns may be to create a dedicated thread
for each of the RL algorithm components (c.f., Caarls and
Schuitema, 2016). We believe this is a promising area for
continued research. As suggested, reactive algorithms in this
work may have great utility when applied to single-thread
computers as they do not require multiple threads so while the
order of algorithmic components might seem at first like a minor
implementation detail, it may prove critical when applied to
these systems.

Put more strongly, we believe that allowing an RL agent
to learn an optimal ordering of its learning protocol or to
interrupt learning components for more pressing computations
are interesting subjects of future work. As a thought experiment,
imagine an oracle-agent that has perfectly modeled its
environment, knowing the outcome of every possible action. If
this environment is asynchronous and provides more positive
rewards for completing a task as quickly as possible, then, in
order for this oracle-agent to maximize its reward, it should
eliminate all computations which are not necessary as they
delay the agent. Since it has perfectly modeled its environment,
learning does not and will not improve its model. Moreover,
if by predicting the state using its perfect model, the agent can
achieve a perfect state prediction without observing, observation
is also an unnecessary computation. Thus the oracle-agent can
eliminate learning and observing and can simply act.

Similar to the oracle-agent, some human experts, such
as video-game speed runners and musicians, are sometimes
able to perform their talents without actually observing the
consequences of their actions because they have memorized
a long sequence of optimal actions and can act out this
sequence without needing to observe its results (Mallow
et al., 2015; Talamini et al., 2017). By viewing the order of
algorithmic components of learning algorithms as modifiable,
an agent is freed to be able to find an optimal ordering of
its learning protocol which may allow it to interrupt long

lasting computations (e.g., analyzing an image) for more pressing
computations (e.g., avoiding a pedestrian).

The ability for an artificial agent to re-order its computational
components could prove to be better utilized in the case of multi-
threaded systems. Computationally limited systems that have
the capacity for operating systems that support multithreading,
such as TinyOS, have the ability to be more expressive in
the way they structure their computation (Levis et al., 2005).
Artificial agents taking advantage of the techniques found in
multithreaded systems could schedule their own learning update
via tasks, invoke hardware interrupts, and delay expensive
learning computations dynamically.

6. CONCLUSIONS

RL algorithms are built on four main components: acting,
observing, choosing an action, and learning. The execution
of any of these components takes time, and while this may
not affect synchronous discrete-time environments, it is a
critical consideration for asynchronous environments, especially
when task performance is proportional to the reaction time
of the agent. An agent should never have to wait to take an
action after receiving up-to-date observations. In this paper we
present a novel reordering of the conventional RL algorithm
which allows for faster reaction times. We present a simple
sketch for algorithmic equivalence in synchronous discrete-time
settings and show improved performance in an asynchronous
continuous-time stopping task which is directly linked to agent
reaction time. These results indicate that (1) reaction time is
an important consideration in asynchronous environments, (2)
the choice of when in a loop the RL agent should act affects
an agent’s reaction time, (3) reordering of the components
of the algorithm as suggested here will not affect an agent’s
performance in synchronous discrete-time environments, (4)
reactive algorithms reduce the reaction time, and thus improve
performance, potentially also decreasing the time it takes for
an agent to learn an optimal policy. This work, therefore, has
wide potential application in real-world settings where decision
making systems must swiftly respond to new stimuli.
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