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Multi-timescale nexting in a
reinforcement learning robot

Joseph Modayil, Adam White and Richard S Sutton

Abstract
The term ‘nexting’ has been used by psychologists to refer to the propensity of people and many other animals to conti-
nually predict what will happen next in an immediate, local, and personal sense. The ability to ‘next’ constitutes a basic
kind of awareness and knowledge of one’s environment. In this paper we present results with a robot that learns to next
in real time, making thousands of predictions about sensory input signals at timescales from 0.1 to 8 seconds. Our pre-
dictions are formulated as a generalization of the value functions commonly used in reinforcement learning, where now
an arbitrary function of the sensory input signals is used as a pseudo reward, and the discount rate determines the time-
scale. We show that six thousand predictions, each computed as a function of six thousand features of the state, can be
learned and updated online ten times per second on a laptop computer, using the standard temporal-difference(l) algo-
rithm with linear function approximation. This approach is sufficiently computationally efficient to be used for real-time
learning on the robot and sufficiently data efficient to achieve substantial accuracy within 30 minutes. Moreover, a single
tile-coded feature representation suffices to accurately predict many different signals over a significant range of time-
scales. We also extend nexting beyond simple timescales by letting the discount rate be a function of the state and show
that nexting predictions of this more general form can also be learned with substantial accuracy. General nexting pro-
vides a simple yet powerful mechanism for a robot to acquire predictive knowledge of the dynamics of its environment.
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1 Multi-timescale nexting

Psychologists have noted that people and other animals
seem to continually make large numbers of short-term
predictions about their sensory input (Brogden, 1939;
Carlsson, Petrovic, Skare, Petersson, & Ingvar 2000;
Gilbert, 2006; Pezzulo, 2008). When we hear a melody
we predict what the next note will be or when the next
downbeat will occur, and we are surprised and inter-
ested (or annoyed) when our predictions are discon-
firmed (Huron, 2006; Levitin, 2006). When we see a
bird in flight, hear our own footsteps, or handle an
object, we continually make and confirm multiple pre-
dictions about our sensory input. When we ride a bike,
ski, or rollerblade, we have finely tuned moment-by-
moment predictions of whether we will fall and of how
our trajectory will change in a turn. In all these exam-
ples, we continually predict what will happen to us next.
Making predictions of this simple, personal, short-term
kind has been called nexting (Gilbert, 2006).

Nexting predictions are specific to one individual
and to their personal, immediate sensory signals or state
variables. A special name for these predictions seems

appropriate because they are unlike predictions of the
stock market, of political events, or of fashion trends.
Predictions of such public events seem to involve more
cognition and deliberation, and are fewer in number. In
nexting, we envision that one individual may be conti-
nually making massive numbers of small predictions in
parallel. Moreover, nexting predictions seem to be
made simultaneously at multiple timescales. When we
read, for example, it seems likely that we next at the let-
ter, word, and sentence levels, each involving substan-
tially different timescales. In a similar fashion to these
regularities in a person’s experience, our robot has pre-
dictable regularities at timescales ranging from tenths
of seconds to tens of seconds (Figure 1).

The ability to predict and anticipate has often
been proposed as a key part of intelligence (e.g., Butz,
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Sigaud & Gérard, 2003; Clark 2013; Hawkins &
Blakeslee, 2004; Tolman, 1951; Wolpert, Ghahramani,
& Jordan, 1995). Nexting can be seen as the most basic
kind of prediction, preceding and possibly underlying
all the others. That people and a wide variety of ani-
mals learn and make simple predictions at a range of
short timescales is the standard modern interpretation
of the basic learning phenomenon known as classical
conditioning (Pavlov, 1927; Rescorla, 1980). In a stan-
dard classical conditioning experiment, an animal is
repeatedly given a sensory cue followed by a special sti-
mulus that elicits a reflex response. For example, the
sound of a bell might be followed by a shock to the
paw, which causes limb retraction. The phenomenon is
that after a while the limb starts to be retracted early,
in response to the bell. This is interpreted as the bell
causing a prediction of the shock, which then triggers
limb retraction. In other experiments, for example
those known as sensory preconditioning (Brogden, 1939;
Rescorla, 1980), it has been shown that animals learn
predictive relationships between stimuli even when
none of them are inherently good or bad (like food and
shock) or connected to an innate response. In this case
the predictions are made continually, but not expressed
in behaviour until some later experimental manipula-
tion connects them to a response. Animals seem to be
wired to learn the many predictive relationships in their
world.

To be able to next is to have a basic kind of knowl-
edge about how the world works in interaction with
one’s body. It is to have a limited form of forward

model of the world’s dynamics. To be able to learn to
next—to notice any disconfirmed predictions and con-
tinually adjust your nexting predictions—is to be aware
of one’s world in a significant way. Thus, to build a
robot that can do both of these things is a natural goal
for artificial intelligence. Prior attempts to achieve arti-
ficial nexting can be grouped in two approaches.

The first approach is to build a myopic forward
model of the world’s dynamics, either in terms of differ-
ential equations or state-transition probabilities (e.g.,
Grush, 2004; Sutton, 1990; Wolpert et al., 1995). In this
approach a small number of carefully chosen predic-
tions are made of selected state variables. The model is
myopic in that the predictions are only short term,
either infinitesimally short in the case of differential
equations, or maximally short in the case of the one-
step predictions of Markov models. In these ways, this
approach has ended up in practice being very different
from nexting.

The second approach, which we follow here, is to
use temporal-difference (TD) methods to learn long-
term predictions directly. The prior work pursuing this
approach has almost all been in simulation and has
used table-lookup representations and a small number
of predictions (e.g., Dayan & Hinton, 1993; Kaelbling,
1993; Singh, 1992; Sutton, 1995; Sutton, Precup, &
Singh, 1999). Sutton et al. (2011) showed real-time
learning of TD predictions on a robot, but did not
demonstrate the ability to learn many predictions in
real time or with a single feature representation.

The main contribution of this paper is a demonstra-
tion that many nexting predictions can be learned in
real time on a robot through the use of TD methods.
Our results show that learning thousands of predictions
in parallel is feasible using a single representation and a
single set of learning parameters. The results also
demonstrate that the predictions achieve substantial
accuracy within 30 minutes. Moreover, we show how
simple extensions to the standard algorithm can express
substantially more general forms of prediction, and
predictions of this more general form can also be
learned both accurately and quickly.

2 Nexting as multiple value functions

We take a reinforcement-learning approach to achiev-
ing nexting. In reinforcement learning it is common-
place to use TD methods such as the TD(l) algorithm
(Sutton, 1988) to learn long-term predictions of reward,
called value functions. The TD(l) algorithm has also
been used as a model of classical conditioning (Sutton
& Barto, 1990) within which various different stimuli
are viewed as playing the role of reward in the learning
algorithm. Our approach to nexting can be seen as tak-
ing this approach to the extreme, using TD(l) to predict
massive numbers of a great variety of reward-like

Figure 1. Examples of sensory signals varying over very
different timescales on the robot: (a) acceleration varying over
tenths of a second, (b) motor current varying over fractions of a
second, (c) infrared distance varying over seconds, and (d)
ambient light varying over tens of seconds. The ranges of the
sensor readings vary across the different sensor types.
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signals at many timescales (cf. Sutton, 1995; Sutton
et al., 2011; Sutton & Tanner, 2005).

We use a notation for our multiple predictions that
mirrors—or rather multiplies—that used for conven-
tional value functions. Time is taken to be discrete,
t = 1, 2, 3, . . ., with each time step corresponding to
0.1 seconds of real time. In conventional reinforcement
learning, a single prediction is learned about a special
signal called the ‘reward’ whose value at time t may be
denoted Rt 2 <. Here, we consider many predictions
about many different signals. These signals are not
goals in any sense, but they play the same role in the
prediction-learning algorithm as reward; we call them
pseudo rewards. The value at time t of the pseudo
reward pertaining to the ith prediction is denoted
Ri

t 2 <. The prediction itself, denoted V i
t 2 <, is meant

to approximate the discounted sum of the future values
of the corresponding pseudo reward:

V i
t ’
X‘

k=0

(gi)kRi
t+k+1=

def
G i

t , ð1Þ

where g i 2 ½0, 1) is the discount rate for the ith predic-
tion. The discount rate determines the timescale of the
prediction: to obtain a timescale of T time steps, the
discount rate is set to g i = 1� 1=T . Readers familiar
with reinforcement learning will recognize (1) as analo-
gous to the definition of a state-value function. The
prediction at time t is analogous to the approximated
value of the state at time t, and G i

t is analogous to the
‘return at time t’ in reinforcement-learning terminology.
In this paper, G i

t is the ideal value for the ith prediction
at time t, and we refer to it as the ideal prediction. In
our main experimental results, the pseudo reward was
either a raw sensory signal or else a component of a
state-feature vector (which we will introduce shortly),
and the discount rate was one of four fixed values,
gi = 0, 0.8, 0.95, or 0.9875, corresponding to time-
scales (T values) of 0.1, 0.5, 2, or 8 seconds.

We use linear function approximation to form each
prediction. That is, we assume that the state of the
world at time t is characterized by a feature vector
ft 2 <n and that all predictions V i

t are formed as inner
products of ft with a corresponding weight vector ui

t:

V i
t =f>t ui

t =
def Xn

j=1

ft( j)ui
t( j), ð2Þ

where f>t denotes the transpose of ft (all vectors are
column vectors unless transposed) and ft(j) denotes its
jth component. In our experiments the feature vectors
had n= 6065 components, but only a fraction of them
were nonzero, so the sums could be very cheaply
computed.

The predictions at each time are determined by the
weight vectors ui

t. One natural and computationally fru-
gal algorithm for learning the weight vectors is linear

TD(l), in which a small increment is made to each vec-
tor on each time step:

ui
t+1 = ui

t +a Ri
t+1 + g if>t+1ui

t � fT
t ui

t

� �
zi

t, ð3Þ

where a . 0 is a step-size parameter, and zi
t 2 <n,

known as the eligibility trace vector, is initially set to
zero and then updated on each step by

zi
t = gilzi

t�1 +ft ð4Þ

where l 2 ½0, 1� is a trace-decay parameter.
Under common assumptions and a decreasing step-

size parameter, TD(l) with l= 1 converges asymptoti-
cally to the weight vector that minimizes the mean
squared error between the prediction and the ideal pre-
diction (1). In practice, smaller values of l are almost
always used because they can result in significantly
faster learning (e.g., see Sutton & Barto, 1998, Figure
8.15), but the l= 1 case still provides an important
theoretical touchstone. In this case we can define the
best static weight vector u i

� as that which minimizes the
squared error over the first N predictions:

u i
�= arg min

u

XN

t=1

f>t u� G i
t

� �2
: ð5Þ

The best static weight vector can be computed offline
by standard algorithms for solving large least-squares
regression problems. The standard algorithm is O(n2) in
memory and either O(n3) or O(N n2) in computation,
per prediction, and is just barely tractable for offline
use at the scale we consider here (in which n= 6065).
Although this algorithm is not practical for online use,
its solution u i

� provides a useful performance standard.
Note that even the best static weight vector will incur
some error. It is even theoretically possible that an
online learning algorithm could perform better than u i

�,
by adapting to gradual changes in the world or robot.
But under normal circumstances an online learning
algorithm will only hope to approach the performance
of the best static weight vector in the limit of infinite
data.

Note that in presenting algorithms in this section we
have carefully avoided any mention of expectations or
states. We have written only of pseudo-reward signals
and feature vectors that can be directly computed from
sensor readings. The algorithms are all well defined
(and their performance can be assessed) even though
conventional expectations and probabilities are not.

3 Scaling experiment

We explored the practicality of applying computational
nexting as described above to make and learn thou-
sands of predictions, from thousands of features, in real
time. We used a small mobile robot platform custom
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designed in our laboratory (Figure 2, left). The robot’s
primary actuators were three wheels placed in a stan-
dard omni-drive configuration enabling it to rotate and
move in any direction. Sensors attached to the motors
reported the electrical current, voltage, motor tempera-
ture, wheel rotational velocity, and an overheating flag,
providing substantial observability of the internal phys-
ical state of the robot. Other sensors collected informa-
tion from the external environment. Passive sensors
detected ambient light in several directions in the visible
and infrared (IR) spectrum. Active sensors on the sides
of the robot emitted IR light and measured the amount
of reflected IR light, providing information about the
distance to nearby obstacles. Other sensors measured
acceleration, rotation, and the magnetic field. All
together, the state of the robot was characterized by 53
real or virtual sensors of 13 types, as summarized in the
first two columns of Table 1.

The robot’s interaction with its environment was
structured in a tight loop with a 100 millisecond (ms)
time step. At each step, the sensory information was
used to select one of seven actions corresponding to
basic movements of the robot (forward, backward, slide
right, slide left, turn right, turn left, and stop). Each
action caused a different set of voltage commands to be
sent to the three motors driving the wheels.

The experiment was conducted in a square wooden
pen, approximately two meters on a side, with a lamp
on one edge (Figure 2, right). The robot selected actions
according to a fixed stochastic policy that caused it to
generally follow a wall on its right side. The policy
selected the forward action by default, the slide-left or
slide-right action when the right-side-facing IR distance
sensor exceeded or fell below given thresholds, and
selected the backward action when the front IR dis-
tance sensor exceeded another threshold (indicating an
obstacle ahead). We chose the thresholds such that the

robot rarely collided with the wall and rarely strayed
more than half a meter from the wall. By design, the
backward action also caused the robot to turn slightly
to the left, facilitating the many left turns needed for
wall-following on the right. To inject some variability
into the behavior, on 5% of the time steps the policy
instead chose an action at random from the seven pos-
sibilities with equal probability. Following this policy,

Figure 2. The robot used in all experiments (left) and an illustration of its wall-following behavior (right) that generated the data.
The circuits around the pen involved substantial random variation, but almost always included passing the bright light on the lower-
left side.

Table 1. Summary of the tile-coding strategy used to produce
feature vectors from sensory signals. For each sensor of a given
type, its tilings were either one dimensional or two dimensional,
with the given number of intervals (see text and Figure 3). Only
the first four of the robot’s eight thermal sensors were included
in the tile coding due to a coding error.

Sensor type Number
of
sensors

Tiling
type

Number
of
intervals

Number
of tilings

IRdistance 10 1D 8 8
1D 2 4
2D 4 4
2D+1 4 4

Light 4 1D 4 8
2D 4 1

IRlight 8 1D 8 6
1D 4 1
2D 8 1
2D+1 8 1

Thermal 4(8) 1D 8 4
RotationalVelocity 1 1D 8 8
Magnetic 3 1D 8 8
Acceleration 3 1D 8 8
MotorSpeed 3 1D 8 4

2D 8 8
MotorVoltage 3 1D 8 2
MotorCurrent 3 1D 8 2
MotorTemperature 3 1D 4 4
LastMotorRequest 3 1D 6 4
OverheatingFlag 1 1D 2 4
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the robot usually completed a circuit of the pen in
about 40 seconds. A circuit took significantly longer if
the motors overheated and temporarily shut themselves
down. In this case the robot did not move, irrespective
of the action chosen by the policy. Shutdowns occurred
approximately every 8 minutes and lasted for about
7 minutes. This simple policy was sufficient for the
robot to reliably follow the wall for hours.

To produce the feature vectors needed for the TD(l)
algorithm, the sensor readings were coarsely coded as
6065 binary features according to a tile-coding strategy
as summarized in Table 1 and exemplified in Figure 3.
Tile coding is a standard technique for converting con-
tinuous variables into a sparse feature representation
that is well suited for online learning algorithms. The
sensor readings are taken in small groups and parti-
tioned, or tiled, into non-overlapping regions called
tiles. One such tiling over two sensor readings from our
robot is shown on the left side of Figure 3. In this case
the tiling is a simple regular grid of square tiles of equal
width (for some other possibilities see Sutton & Barto,
1998, pp. 206–207).

Tile coding becomes much more powerful than a
simple discretizing of the state space through the use of
multiple overlapping tilings that are offset from each
other as shown on the right side of Figure 3. For each
tiling, a given state (e.g. the state marked by a white dot
in the figure) is in exactly one tile. The set of tiles that
are activated by a state constitute a coarse coding of the
state’s location in sensor space. The resolution of this
coding is finer than that of the individual tilings, as sug-
gested by the greater density of lines in Figure 3 (right).
With four tilings, the effective resolution is roughly four

times that of the original tiling. The advantage of the
multiple tilings over a single tiling with four times the
resolution is that generalization will be broader with
multiple tilings, which typically leads to much faster
learning. With tile coding one can quickly learn a coarse
approximation of the desired mapping, and then refine
it with further data, simultaneously obtaining the bene-
fits of both coarse and fine discretizations.

Each tile in a tiling corresponds to a single binary
feature. If the current sensor readings fall in that tile,
then the feature is active and takes the value one, other-
wise it is inactive and takes the value zero. In our repre-
sentation, we had n= 6065 such features making up
our binary feature vectors, ft 2 f0, 1g6065. The specifics
of our tile-coding strategy are summarized in Table 1.
Most of our tilings were one dimensional (1D), that is,
over a single sensor reading, in which case a tile was
simply an interval of the sensor reading’s value. For
some sensors we formed two dimensional (2D) tilings
by taking neighbouring sensors in pairs. This enabled
the robot’s features to distinguish between, for exam-
ple, a wall and a corner. To provide further discrimina-
tory power, for some sensor types we also formed 2D
tilings from pairs consisting of a sensor and its second-
neighbouring sensor. These are indicated as 2D+1 til-
ings in Table 1 (and this is the specific case illustrated
in Figure 3). Finally, we added a tiling with a single tile
that covered the entire sensor space and thus whose
corresponding feature, called the bias feature, was
always active. Altogether, our tile-coding strategy used
457 tilings, producing feature vectors with n= 6065

components, most of which were zeros, but exactly 457
of which were ones.

IR distance sensor1
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0 255
0

255

Number of intervals = 4

Sensor
reading
input

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous 

2D sensor 
space

Four
active
tiles

output

Figure 3. An example of how tile coding was used to map continuous sensor input into many binary features. On the left we see a
single tiling of the continuous 2D space corresponding to the readings from two non-consecutive (2D+1) IR distance sensors. The
space was tiled into four intervals in each dimension, for 16 tiles overall. On the right we see all four tilings, each offset by a different
negative amount such that they were equally spaced, with the first tiling starting at the lower left of the sensor space (as shown on
the left) and the last tiling ending at the upper right of the space. A sensor reading input to the tile coder is a point in the space, like
that shown by the white dot. The output of tile coding is the indices of the four tiles that contain the point, as shown on the right.
These tiles are said to be active, and their corresponding features take on the value one, while all the non-active tiles correspond to
features with the value zero. Note how the four tilings provide a dense grid of lines, each a distinction that can be made between
input points, yet the four active tiles together span a substantial portion of the sensor space. In this way, multiple tilings provide a
feature representation that enables both fine resolution and broad generalization. This tile-coding example corresponds to the
fourth row of Table 1.

150 Adaptive Behavior 22(2)



We first applied TD(l) to make and learn 2160 pre-
dictions. The pseudo-reward signals Ri

t of the predic-
tions were the 53 sensor readings and a random
selection of 487 from the 6064 non-bias features. For
each of these signals, four predictions were learned with
the four values of the discount rate, g i = 0, 0:8, 0:95,
and 0:9875, corresponding to timescales of 0.1, 0.5, 2,
and 8 seconds respectively. Thus, we sought to learn a
total of (53+ 487)3 4= 2160 predictions. The learn-
ing parameters were l= 0:9 and a= 0:1=457 (as there
are 457 active features), and the initial weight vector
was zero. Data was logged to disk for later analysis.
The total run time for this experiment was approxi-
mately three hours and 20 minutes (120,000 time steps).

We can now address the main question: is real-time
nexting practical at this scale? In our setup, this comes
down to whether or not all the computations for mak-
ing and learning so many complex predictions can be
reliably completed within the robot’s 100 ms time step.
The wall-following policy, tile coding, and TD(l) were
all implemented in Java and run on a laptop computer
connected to the robot by a dedicated wireless link.
The laptop used an Intel Core 2 Duo processor with a
2.4 GHz clock cycle, 3 MB of shared L3 cache, and 4
GB DDR3 RAM. The system garbage collector was
called on every time step to reduce variability. Four
threads were used for the learning code. The total
memory consumption was 400 MB. With this setup,
the time required to make and update all 2160 predic-
tions was 55 ms, well within the 100 ms duty cycle of
the robot. This demonstrates that it is indeed practical
to do large-scale nexting on a robot with conventional
computational resources.

Later, on a newer laptop computer (Intel Core i7,
2.7 GHz quad core, 8 GB 1600 MHz DDR3 RAM,
eight threads), with the same style of predictions and
the same features, we found that we were able to make
6000 predictions in 85 ms. This shows that with more
computational resources, the number of predictions (or
the size of the feature vectors) can be increased propor-
tionally. This strategy for nexting easily scales to mil-
lions of predictions with foreseeable increases in
computing power over the next decade.

4 Accuracy of learned predictions

The predictions were learned with substantial accuracy.
For example, consider the eight-second prediction
whose pseudo reward is the third light-sensor reading
(Light3). Notice that there is a bright lamp in the lower-
left corner of the pen (Figure 2, right). On each trip
around the pen, the reading from this light sensor
increased to its maximal level and then fell back to a
low level, as shown in the upper portion of Figure 4. If
the state features are sufficiently informative, then the
robot should be able to anticipate the rising and falling

of this sensor reading. Also shown in the figure is the
ideal prediction for this time series, G i

t , computed retro-
spectively from the subsequent readings of the light sen-
sor. Of course no real predictor could achieve this; our
learning algorithms seek to approximate this ‘clairvoy-
ant’ prediction using only the sensory information
available in the current feature vector.

The prediction made by TD(l) is shown in the lower
portion of Figure 4, along with the prediction made by
the best static weight vector ui

� computed retrospec-
tively as described in Section 2. The key result is that
the TD(l) prediction anticipates both the rise and fall
of the light. Both the learned prediction and the best
static prediction track the ideal prediction, though with
visible fluctuations.

To remove these fluctuations and highlight the gen-
eral trends in the eight-second predictions of Light3, we
averaged the predictions over 100 circuits around the
pen, aligning each circuit’s data to the time of initial
saturation of the light sensor. The average of the ideal,
TD(l), and best-static-weight-vector predictions for
15 seconds near the time of saturation are shown in

0 20 40 60 80 100 120
0
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60,000
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20,000

40,000

60,000

 Prediction 
of best static TD( ) 

prediction

Light3
pseudo
reward
(right scale)

Ideal 8s
Light3

prediction
(left scale)

1024

512

0
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Ideal 8s
Light3 
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Figure 4. Predictions of the Light3 pseudo reward at the
eight-second timescale. The upper graph shows the Light3
sensor reading spiking and saturating on three circuits around
the pen and the corresponding ideal prediction (computed
afterwards from the future pseudo rewards). Note that the ideal
prediction shows the signature of nexting: a substantial increase
prior to the spikes in pseudo reward. The lower graph shows
the same ideal prediction compared to the prediction of the
TD(λ) algorithm and the prediction of the best static weight
vector. These feature-based predictions are more variable, but
substantially track the ideal.
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Figure 5. All three averages rise in anticipation of the
onset of Light3 saturation and fall rapidly afterwards.
The ideal prediction peaks before saturation, because
the Light3 reading regularly became elevated prior to
saturation. The two learned predictions are roughly sim-
ilar to the ideal, and to each other, but there are sub-
stantial differences. These differences do not necessarily
indicate error or essential characteristics of the algo-
rithms. For example, such differences can arise because
the average is over a biased sample of data—those time
steps that preceded a large rise in the pseudo reward.
We have established that some of the differences are due
to the motor shutdowns. Notably, if the data from the
shutdowns are excluded, then the prominent bump in
the best-static-u prediction (in Figure 5) at the time of
saturation onset disappears.

Figure 6 shows another example of the accuracy of
the near-final TD(l) predictions, in this case of one of
the magnetometer sensor readings at an eight-second
timescale.

We turn now to consider how the quality of the
eight-second Light3 prediction evolves over time and
data. As a measure of the quality of a prediction

sequence fV i
t g up through time T, we use the root mean

squared error, defined as

RMSE(i, T )=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t=1

(V i
t � G i

t )
2

vuut :

Figure 7 shows the RMSE of the eight-second
Light3 predictions for various algorithms. For TD(l),
the parameters were set as described above. For all the
other algorithms, their parameters were tuned manu-
ally to optimize the final RMSE. The other algorithms
included TD(l) for l= 0 and l= 1, both of which
performed slightly worse than l= 0:9. Also shown is
the RMSE of the prediction of the best static weight
vector and of the best constant prediction. In these
cases the prediction function does not actually change
over time, but the RMSE measure varies as harder or
easier states from which to make predictions are
encountered. Note that the RMSE of the TD(l) predic-
tion comes to closely approach that of the best static
weight vector after about 90 minutes. This demon-
strates that online learning on robots can be effective in
real time with a few hours of experience, even with a
large state representation.

The benefits of a large representation are shown in
Figure 7 by the substantially improved performance
over the ‘Bias’ algorithm, which was TD(0) with a tri-
vial representation consisting only of the bias feature
(the single feature that is always one). As an additional
performance standard, also shown is the RMSE of an

Figure 7. Learning curves for eight-second Light3 predictions
made by various algorithms over the full data set. Each point is
the root mean squared error of the prediction of the algorithm
up to that time. Most algorithms use only the data available up
to that time, but the best-static-y and best-constant algorithms
use knowledge of the whole data set. The errors of all
algorithms increased at about 130 and 150 minutes because the
motors overheated and shut down at those times while the
robot was passing near the light, causing an unusual pattern of
sensor readings. In spite of the unusual events, the root mean
squared error of TD(λ) still approached that of the best static
weight vector. See text for the other algorithms.

Figure 6. Predictions of the MagneticX sensor at the eight-
second timescale. The TD(λ) prediction was close to the ideal
prediction, explaining 90% of its variance.

Figure 5. Light3 predictions (like those in the lower portion of
Figure 4) averaged over 100 circuits around the pen and aligned
at the onset of Light3 saturation.
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autoregressive algorithm (e.g., see Box, Jenkins, &
Reinsel, 2011) that uses previous readings of the Light3
sensor as features of a linear predictor, with the weights
trained according to the least-mean-square rule. To
incrementally train the autoregressive model, the learn-
ing was delayed by 600 time steps to compute the ideal
prediction. The best performance of this algorithm was
obtained using a model of order 300, meaning the last
300 readings of the Light3 sensor were used. The auto-
regressive model performed much worse than all the
algorithms that used a rich feature representation.

Moving beyond the single prediction of one light
sensor at one timescale, we next evaluate the accuracy
of all 212 predictions about sensors at various time-
scales. To measure the accuracy of predictions with dif-
ferent magnitudes, we used a normalized mean squared
error

NMSE(i, t)=
RMSE2(i, t)

var(i)
;

in which the mean squared error is scaled by var(i), the
sample variance of the ideal predictions G i

t over all the
time steps. This error measure can be interpreted as the
percent of variance not explained by the prediction. It is
equal to one when the prediction is constant at the aver-
age ideal prediction.

Learning curves using the NMSE measure for the
212 predictions whose pseudo reward was a sensor
reading are shown in Figure 8. The left panel shows the
median learning curve and curves for a selection of indi-
vidual predictions. In most cases, the error decreased
rapidly over time, falling substantially below the unit
variance line. The median prediction explained 80% of
the variance at the end of training and 71% of the var-
iance after just 30 minutes. In many cases the decrease

in error was not monotonic, sometimes rising sharply
(presumably as a new part of the state space was
encountered) before falling further. In some cases, such
as the two-second Y-acceleration prediction shown, the
sensor was never effectively predicted, evidenced by its
NMSE never falling below one. We believe this signal
was simply unpredictable with the feature representa-
tion provided.

The mean learning curve, shown in the right panel
of Figure 8 on a log scale, fell rapidly but was always
substantially above one. This was due to a minority of
the sensors (mainly the thermal sensors) whose values
were far from zero but whose variance was small. The
learning curves for the corresponding predictions were
all very high (and do not appear in the left panel
because they were way off the scale). Why did this hap-
pen? Note that our prediction algorithm was biased in
that all the initial predictions were zero (because the
weight vector was initialized to zero). When the pseudo
rewards are large relative to their variance, this bias
can result in a very large NMSE that takes a long time
to subside. One way to eliminate the bias is to modify
the pseudo rewards by subtracting from each sensor
value the average of its values up to that time (e.g., the
first pseudo reward is always zero). This is easily com-
puted and uses only information readily available at
the time. Most importantly, choosing the initial predic-
tions to be zero is no longer a bias but simply the right
choice. When we modified our pseudo rewards in this
way, and reran TD(l) on the logged data, we obtained
the much lower mean learning curve shown in Figure 8
(right). In the mean, the prediction learned with the
average subtracted explained 78% of the variance of
the ideal prediction by the end of the data set.

Finally, consider the majority of the predictions
whose pseudo reward was one of the binary features

0 30 60 90 120 150 180
0.1

1.0

10

100

1000

0 30 60 90 120 150 180
0.0

0.5

1.0

1.5

2.0

MinutesMinutes

Normalized 
MSE of TD( ) 

predictions
(both graphs)

Mean w/ average subtracted 

Mean

8s Light3

2s AccelY

0.1s AccelX

Median

Figure 8. Learning curves for the 212 predictions whose pseudo reward is a sensor reading. The median and several
representative learning curves are shown on a linear scale on the left, and the mean learning curve is shown on a logarithmic scale
on the right. The mean curve is high because of a minority of the sensors whose absolute values are high and whose variance is low.
If the learning is rerun using pseudo rewards with their average value subtracted out, then the mean performance is greatly
improved, as shown on the right, explaining 78% of the variance in the ideal prediction by the end of the data set.
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making up the feature vector. There were 170 constant
features among the 487 binary features that were
selected to be pseudo rewards, and thus with the aver-
age subtracted, both the ideal predictions and the
learned predictions were constant at zero. For these
constant predictions, the RMSE was zero and the var-
iance was zero, and we excluded these predictions from
further analysis. For the remainder of the predictions,
both the median and mean explained 30% of the var-
iance of the ideal prediction by the end of the data set.

These results provide evidence that real-time parallel
learning of thousands of accurate nexting predictions
on a physical robot is possible and practical. Learning
to substantial accuracy was achieved within 30 minutes
of training, with no tuning of algorithm parameters,
and using a single feature representation for all predic-
tions. The parallel scalability of knowledge acquisition
in this approach is substantially novel when compared
with the predominately sequential existing approaches
common for robot learning. Our results also show that
online methods can be competitive in accuracy with an
offline optimization method.

5 Beyond simple timescales

In this section we present a small generalization of the
TD(l) algorithm that enables it to learn predictions of
a significantly more general and expressive form. Up to
now, the discount rate, g i, has been varied only from
prediction to prediction; for the ith prediction, g i was
constant and determined its timescale. Now we will
allow the discount rate for an individual prediction to
vary over time depending on the state the robot finds
itself in; we will denote its value at time t as g i

t 2 ½0, 1�.
With a constant discount rate, predictions are restricted
to simple timescales in which pseudo rewards are
weighted geometrically less the more they are delayed,
as was given by the earlier definition of the ideal
prediction:

V i
t ’

X‘

k = 0

(g i)kRi
t+k+1 =

def
G i

t : ð1Þ

With a variable discount rate, the weighting is not by
simple powers of g i, but by products of g i

t :

V i
t ’
X‘

k=0

Pk
j=1gi

t+j

� �
Ri

t+k+1 =
def

G i
t : ð6Þ

The learning algorithm remains unchanged in form and
computational complexity; it is exactly as given earlier,
except with g i replaced by g i

t or g i
t+1, as appropriate:

ui
t+1 = ui

t +a Ri
t+1 + g i

t+1f>t+1ui
t � f>t ui

t

� �
zi

t; ð7Þ

zi
t = g i

t lzi
t�1 +ft: ð8Þ

This small change results in a significant increase in the
kinds of ideal predictions that can be expressed (Maei
& Sutton, 2010; Sutton, 1995; Sutton et al., 2011). Our
contribution in this section is to apply and demonstrate
this generalization of TD(l) in three examples of next-
ing in robots.

For the first example, consider a discount rate that
is usually constant and near one, but falls to zero when
some designated event occurs. In particular, consider

gi
t =

0 if Light3 is saturated at time t;
0:9875 otherwise:

�

As long as Light3 is not saturated, this discount rate
works like an ordinary eight-second timescale—pseudo
rewards are weighted by 0.9875 carried to the power of
how many steps they are delayed. But if Light3 ever
becomes saturated, then all pseudo rewards after that
time are given zero weight. This kind of discount
enables us to predict how much of something will occur
prior to a designated event (in this case, prior to Light3
saturation).

The pseudo reward in this example is a measure of
the total power consumption of the three motors,

Ri
t =

X3

j= 1

jMotorVoltage jt 3MotorCurrent jtj:

As shown in Figure 9, power consumption tended to
vary between 1000 and 3000 depending on how many
motors were active. The ideal prediction, also shown in
Figure 9, was similar to that of an eight-second predic-
tion for much of the time, but notice how it falls all the
way to zero during Light3 saturation. Even though
there was substantial power consumption within the
subsequent eight-second, this has no effect on the ideal
prediction because of the saturation-triggered
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Figure 9. Predictions of total power consumption, over an
eight-second timescale, or up until the Light3 sensor reading is
saturated. To express this kind of prediction, the discount rate
must vary with time (in this case dropping to zero upon Light3
saturation).
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discounting. The figure shows that the modified TD(l)
algorithm performed well here (after training on the
previous 150 minutes of experience): over the entire
data set the predictions captured approximately 88%
of the variance in the ideal prediction.

The ideal prediction in the above example, like those
of simple timescales, always weights delayed pseudo
rewards less than immediate ones. It cannot put higher
weight on the pseudo rewards received later than those
received immediately. This limitation is inherent in the
definition of the ideal prediction (6) together with the
restriction of the discount rate to ½0, 1�. However, it is
only a limitation with respect to the pseudo reward; if
signals are mixed into the pseudo reward in the right
way, then predictions about the signals can be made
with general temporal profiles. In particular, it may be
useful to predict what value a signal will have at the
time some event occurs. For example, suppose we have
some signal Xt whose value we wish to predict not in
the short term, but rather at the time of some event. To
do this, we construct a discount rate gi

t that is one up
until the event has occurred, then is zero. The pseudo
reward is then constructed as follows:

Ri
t =(1� gi

t)Xt: ð9Þ

This pseudo reward is forced to be zero prior to the
event (because 1� gi

t is zero) and thus nothing that
happens during this time can affect the ideal prediction.
The ideal prediction will be exactly the value of Xt at
the time gi

t first becomes zero.
Constructing the pseudo reward by (9) has several

possible interpretations depending on the exact form of
Xt and gi

t. If Xt is the indicator function for an event
(equal to one during it, zero otherwise), and gi

t is a con-
stant less than one prior to the event (and zero during
the event), then the prediction will be of how imminent
the onset of the event is. Figure 10 shows results with
an example of this using the data from our robot: gi

t

prior to the event was 0.8 (corresponding to a half-
second timescale), and the event was a right-facing IR
sensor exceeding a threshold (corresponding to being
within 12cm of the wall).

Our final example, in Figure 11, illustrates the use of
signals Xt that are not binary and discount rates gi

t that
do not fall all the way to zero. The idea here is to pre-
dict what the four light-sensor readings will be as the
robot rounds the next corner of the pen. Four predic-
tions are created, one for each light sensor, with signals
X i

t =Lighti equal to the sensor reading. Rounding a
corner is an event indicated by a value from the side IR
distance sensor corresponding to a large distance
(.’25 cm). This typically occurs for several seconds
during the corner’s turn. We set the discount rate gi

t

equal to 0.9875 (an eight-second timescale) most of the
time, and equal to 0.3 when rounding a corner. Because
the discount rate is greater than zero during the event,

the light readings from several time steps contribute to
the ideal prediction as the corner is entered.

6 Discussion

We have successfully implemented a robot version of
the psychological phenomenon of nexting. The robot
learned to predict thousands of aspects of its near
future experience ten times each second. It predicted at
a range of timescales, from one-tenth of a second to
eight seconds, and also beyond simple timescales.
Perhaps our most important result was to show that
robot nexting is not only possible, but eminently

Figure 10. Predictions of the imminence of the onset of an
event regardless of its duration. The event here is being too
close (< ≈ 12cm) to a side wall of the pen, and imminence is
with respect to a half-second timescale. The learned predictions
rise before the event and follow the shape of the ideal
predictions. Overall, the residual unexplained variance for this
prediction was 23%.
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Figure 11. Predictions of what each of the four light-sensor
readings will be when the robot rounds its next corner. The
greyed time steps indicate those in which the robot was
considered to be rounding a corner. The residual unexplained
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over the course of the data set.

Modayil et al. 155



practical. Using computationally inexpensive methods
such as TD(l), linear function approximation, and tile
coding, we showed that the nexting computations easily
scale to thousands of predictions based on thousands
of features on a small computer. Although these algo-
rithms are computationally cheap, they worked well.
An extensive analysis of a subset of the learned predic-
tions found them to be substantially accurate within
30 minutes of real-time training—fast enough for fre-
quent retraining or adaptation to new sensors or envir-
onments. It is also notable that we used a single set of
parameters and a single set of features for all predic-
tions, despite variations in signal scales, signal variabil-
ity, and timescales. Being able to treat all predictions
uniformly in these ways facilitates the general applica-
tion of nexting.

6.1 Relationship to conventional robotics

From the perspective of conventional robotics research,
there are three aspects of our nexting robot that are
distinctive.

The first is that the robot updates a very large num-
ber of predictions, in real time, about diverse aspects of
its experience, giving it a distinctively rich awareness of
its surroundings. This contrasts with the conventional
approach to robot engineering, in which designers iden-
tify the minimal set of state variables needed to solve a
specific task, and the robot is oblivious to all others.
This approach is perhaps the source of the popular
notion that to perform some task ‘like a robot’ is to do
it with minimal awareness and understanding.

Nowadays, it is not unusual for advanced robots to
have a substantial awareness of their environment. The
premier example of this is probably self-driving cars
(e.g., Wang, Thorpe, & Thrun, 2003; see Markoff,
2010). These systems can simultaneously track many
objects including cars, people, bicycles, and traffic
signs. Another important example is given by simulta-
neous localization and mapping (SLAM) robots that
construct occupancy maps for the space around the
robot (Thrun, Montemerlo, et al., 2006). SLAM robots
have considerable scale but do not predict a diversity
of objects or sensor types. Both of these systems are
highly engineered and the things predicted by the
underlying algorithms are highly interrelated and cover
a few structured types. This contrasts with our
approach to nexting, in which no prior model is used
and each prediction is formed independently of the oth-
ers. Whatever the other merits or drawbacks of our
approach, it does enable easy scaling to large numbers
of sensors of arbitrary types. Even on our small
research robot, we demonstrated learning with a
greater variety of sensor types than in any SLAM
robot, and perhaps more even than in current self-
driving cars.

The second way in which our nexting robot is
unusual is that it learns to make its predictions online,
during its normal operation. Most learning robots
complete their learning before being put into use, in
special training sessions requiring information that will
not be available during use, such as human-provided
labels, demonstrations, or calibrations. Most of the
learning in self-driving cars and in SLAM robots is of
this sort, with important final tuning and local map-
ping done online. Classical state-estimation methods
such as Kalman filters adapt only low-dimensional gain
parameters online. Finally, there have been a handful
of works with reinforcement learning robots that learn
value functions or policies online (e.g., Peters & Schaal,
2008; Tedrake, Zhang, & Seung, 2005; see Degris,
Pilarski, & Sutton, 2012). In all cases, the online learn-
ing is limited in its scale and diversity; it never
approaches the adaptive awareness of our nexting
robot with its online, ten-times-per-second learning of
thousands of diverse predictions.

The third way in which our nexting robot is distinc-
tive is that its predictions are relatively long-term,
extending significantly beyond a single time step.
Although prediction is widely used in modern control
theory, it is almost always limited to one-step (or differ-
ential) predictions (e.g., conventional Kalman filtering
(Welch & Bishop, 1995) and system identification
(Ljung, 1998)). Often, one-step predictive models are
iterated to make multi-step predictions (e.g., model-
predictive control (Camacho & Bordons, 2004) and
motion planning (LaValle, 2006)). That can work well,
but it does not scale to long timescales or to large num-
bers of predictions such as we have used here. Another
way of making longer-term predictions with one-step
methods is to make the step larger, subsampling or
jumping through the data stream at multiple temporal
resolutions. A weakness of this approach is that the
longer-term predictions are also made less frequently
and are thus not available to affect a rapid response if
needed. In addition, it seems unlikely that this approach
could extend beyond simple timescales to the more gen-
eral predictions described in the previous section. Why
are all these techniques, and nexting itself, focused on
constructing longer-term predictions? The advantage of
predicting events substantially in advance of their occur-
rence is that it enables appropriate action to be taken to
head off or otherwise prepare for them. In brief, long-
term prediction is essential to anticipation, and thus to
the timely generation of appropriate responses.

6.2 The distinctiveness of predictions in AI

Predictions are a potentially powerful organizing prin-
ciple for artificial intelligence (AI) systems. Through
our focus on nexting in this paper, we have explored
one small way in which predictions can be important in
an AI system. Even so, our nexting robot constitutes
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one of the most well developed uses of predictions in
AI research to date, as we discuss in this subsection.

Of the previous AI systems that have learned from a
robot’s sensorimotor experience, most have not
expressed their knowledge in a predictive form and
validated it by comparison with subsequent experience.
Pierce and Kuipers (1997) gathered sensorimotor expe-
rience from random motion on a simulated robot, and
then constructed a low-dimensional embedding of the
sensors from observed correlations between sensor
readings. The validity of the embedding was assessed
by how well the constructed embedding matched the
spatial configuration of the robot’s sensors provided by
the experimenter. Oates, Schmill, & Cohen (2000)
described an algorithm that segments time-series data
from a robot’s sensors and forms clusters from tem-
poral segments with similar dynamics. The clustering
was validated by how well these clusters matched clus-
ters generated by people. Predictions were used by
Yamashita and Tani (2008), but the predictions were
constrained to only be learning from people during a
special supervisory training period. They taught a
humanoid robot to perform goal-directed reaching
motions in response to human-issued commands using
predictions about how a person would move the robot
within a supervisory training mode. Our work with
nexting shows how predictions can be learned from
normal robot operation without the need for external
validation. Predictions are a special form of sensorimo-
tor knowledge for which future experience is both nec-
essary and sufficient for validation.

Compared to previous AI research on predictive
knowledge validated from experience, our work is dis-
tinctive in showing practicality and scalability with a
physical robot. That knowledge might be expressed in
terms of predictions has been explored by Becker
(1973), Cunningham (1972), Drescher (1991), and
Sutton (2009, 2012), but only in small-scale simula-
tions, in most cases with substantial abstractions given
a priori. Our results show that a predictive approach is
practical on a physical robot from the level of sensors
and motors, using features that are constructed from
the same. The required computation for making and
updating thousands of predictions was provided by a
laptop that can be carried by a small robot. Moreover,
the predictions were learned with accuracy, with uni-
form parameter settings and within a few hours of
experience. Our results demonstrate that a single math-
ematical form of expectation suffices for expressing
these many different predictions, covering many sen-
sors, features, and timescales, and that this form gener-
alizes beyond timescales.

From the perspective of AI more generally, our
approach is distinctive in pursuing knowledge represen-
tation empirically through a diverse set of predictions.
In contrast to conventional approaches, we are

abandoning the need for the robot’s knowledge to be
consistent or complete with respect to some human-
constructed model of the world. Instead we formulate
precise empirical predictions and then learn them from
the robot’s experience. This is a piecewise approach to
knowledge that we see as part of respecting the com-
plexity of the world. We expect that many robots will
have neither the ability nor the need to model all
aspects of the world, and can do well by predicting
those aspects of the world that are manifest in their
sensorimotor experience.

6.3 Uses of predictions

This paper has extensively treated the learning of
nexting-style predictions without proposing specific
ways that the predictions should be used. On balance
we believe that this is appropriate; learning a large
number of predictions in real time is itself very challen-
ging, and the potential uses of predictions are too many
and too varied to treat properly in the same paper.
Nevertheless, it is appropriate to at least briefly men-
tion some of the possible uses of nexting-style
predictions.

Suppose a self-driving car is using visual input to
predict subsequent laser readings corresponding to
obstacles or rough terrain. These predictions might be
used to slow the vehicle in advance to avoid abrupt
braking, a rough ride, or collisions. Such predictions
could also be used to choose between alternate routes.
As another example, a vacuuming robot could predict
its remaining battery life and its time to return to its
docking station to determine when to head back to
recharge. Or, taking a cue from psychology and the
biological examples of nexting, predictions could be
used for anticipatory reflexes for self-preservation. Just
as a rabbit closes its eye in anticipation of an oncoming
irritant, a robot could cover its sensory surfaces, or spin
down its hard disk, if it predicted that it might topple.
Predictions would also be useful as part of anomaly
detection, for example, in detecting unusual patterns of
computer use that indicate an intruder.

In addition to these fairly obvious ways to use pre-
dictions, there are others that are more nuanced, with a
less direct connection to behavior. One sophisticated
use of predictions is to package them into option mod-
els, a special form of temporally abstract prediction spe-
cially suited to planning (Sutton et al., 1999). Another
nuanced use of predictions is as components of state
representations, as in predictive state representations
(Boots, Siddiqi, & Gordon, 2011; Littman, Sutton, &
Singh 2002; Singh, James, & Rudary, 2004; Sutton &
Tanner 2005. The scale at which we have demonstrated
nexting-style predictions suggests that practical benefits
might be achieved from using predictions in such ways.
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7 Limitations and conclusion

The most important limitation of this work is that all
of the predictions learned were conditional on the one
way in which the robot behaved. In other words, they
were all on-policy predictions rather than off-policy pre-
dictions. Off-policy learning adds substantial expressive
power and is significantly more challenging
(e.g., Sutton, Szepesvári, & Maei, 2009). Gradient-TD
methods (Maei, 2011, Sutton et al., 2009) have been
developed to deal with the most serious challenges of
off-policy learning, and Sutton et al. (2011) have
already used them to demonstrate off-policy TD learn-
ing in robots on a small scale. These methods could
probably be extended to real-time parallel learning of
many predictions with modest increases in the compu-
tational resources (see White, Modayil, & Sutton,
2012). Perhaps the most important advantage of mov-
ing to off-policy prediction is that it frees us to choose
the robot’s behaviour for other purposes. In particular,
we may desire the robot’s behavior to change over
time, say to maximize either some extrinsic reward or
the total amount of learning, as in work on computa-
tional curiosity (e.g., see Oudeyer, Kaplan, & Hafner,
2007).

We have demonstrated that the psychological phe-
nomenon of nexting—learning and making thousands
of local, short-term, personal predictions—can be pro-
duced in a robot in a practical, scalable way using mod-
ern conventional computers. Our approach was to
formulate the predictions in the form of value func-
tions, like those conventionally used in reinforcement
learning, but on a much larger scale. Our robot pre-
dicted 6000 aspects of 53 sensory signals at four time-
scales, with the predictions made and learned every
tenth of a second. We used a large feature representa-
tion and the TD(l) online learning algorithm. We
showed that a single feature representation and a single
set of learning parameters was sufficient for learning
many diverse predictions in 30 minutes. Finally, we
showed that a natural extension of our approach—
allowing the discount rate of a prediction to vary with
the current state instead of being constant—provides
substantial additional flexibility and expressive power.
Overall, our results suggest that nexting might form a
competent starting place for developing a sensorimotor
approach to artificial intelligence.
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