
ar
X

iv
:1

81
2.

11
57

1v
2 

 [
cs

.G
T

] 
 1

3 
Fe

b 
20

19

A Formal Separation Between Strategic and Nonstrategic Behavior

James R. Wrighta,∗, Kevin Leyton-Brownb

aUniversity of Alberta, Canada
bUniversity of British Columbia, Canada

Abstract

It is common to make a distinction between “strategic” behavior and other forms of intentional but “non-

strategic” behavior: typically, that strategic agents model other agents while nonstrategic agents do not.

However, a crisp boundary between these concepts has proven elusive. This problem is pervasive throughout

the game theoretic literature on bounded rationality. It is particularly critical in parts of the behavioral game

theory literature that make an explicit distinction between the behavior of “nonstrategic” level-0 agents and

“strategic” higher-level agents (e.g., the level-k and cognitive hierarchy models). The literature gives no

clear guidance on how the rationality of nonstrategic agents must be bounded, instead typically just singling

out specific decision rules and informally asserting them to be nonstrategic (e.g., truthfully revealing private

information; randomizing uniformly). In this work, we propose a new, formal characterization of nonstrate-

gic behavior. Our main contribution is to show that it satisfies two properties: (1) it is general enough to

capture all purportedly “nonstrategic” decision rules of which we are aware; (2) behavior that obeys our

characterization is distinct from strategic behavior in a precise sense.

1. Introduction

Our focus in this paper is on game-theoretic environments, characterized by multiple independent agents

with independent goals, each of whose payoffs depend upon more than just their own actions. How should

agents be assumed to behave in such environments? The classical answer is that agents should be modeled

as fully rational. This is an extremely demanding standard. For example, when a fully rational agent i’s

payoffs depend upon the actions of some other self-interested agent j, i must form probabilistic beliefs about

j’s actions. If i believes j to be fully rational as well, j’s actions are thus responses to beliefs about i, and

so i must also hold beliefs about j’s beliefs about i, and about j’s beliefs about i’s beliefs about j, and so

on. Although such assumptions may seem baroque, they in fact undergird the predictions of classical game

theory, which assumes all agents to be fully rational; e.g., one way of defining the Nash equilibrium is as such

a set of beliefs in which every agent is correct in its beliefs about the others. The behavior of fully rational

agents is commonly said to be strategic. Indeed, in the early days of game theory, the term “strategic” was

used as a synonym for full rationality [e.g., 5, 23].
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At the other extreme, we might assume that agents are entirely irrational and do not model other agents

at all, following some fixed rule like truthfully revealing all private information or uniformly randomizing

across all available actions. The behavior of such agents is commonly said to be nonstrategic.

Things get muddier in between these extremes. Human players are clearly not fully rational; e.g., nobody

knows the Nash equilibrium strategy for chess. However, at least some of us surely do reason about the

behavior and beliefs of other agents with whom we interact. The literature generally also calls such “bound-

edly rational” behavior strategic, even when the behavior is inconsistent with full rationality; intuitively, the

dividing line is generally taken to be the question of whether agents model other agents and their incentives

when deciding how to act. More formally, the term “strategic” is generally used1 to describe agents who

act to maximize their own utilities based on explicit probabilistic beliefs about the actions of other agents

[24, 18, 3, 17, 12, 13, 15], and the term “nonstrategic” is generally used to describe agents who follow some

fixed, known decision rule, often truth-telling [26, 2, 18, 17, 12, 15]. The key theme of this paper is that the

task of making this idea precise is both underexplored in the literature and tricky in practice.

The literature has taken two main approaches to conceptualizing bounded rationality. The first views

boundedness as error. For example, quantal response notions, especially quantal response equilibrium,

assume that agents make an error by choosing a less-than-optimal action with increasing probability as the

payoffs from taking the suboptimal action approach the payoffs from taking the optimal action [19, 30]. An

ǫ-equilibrium is an equilibrium in which every agent comes within ǫ of best responding to the others [28].

More generally, a common approach to modeling less than fully rational agents is to mix in uniform noise

representing the probability of making an error [e.g., 9].

The other main approach to conceptualizing bounded rationality views boundedness as a structural

property of an agent’s reasoning process. Some work distinguishes between distinct forms of reasoning. For

example, Sandholm and Lesser [26] distinguish between strategic threshold strategies and Nash threshold

strategies; work on the mean field equilibrium solution concept distinguishes between “cognizant” strategies,

which track the current state of other agents, and “oblivious” strategies, which do not [1]. Other work

considers finer gradations between the levels of reasoning that different agents are able to perform, as in

bounded rationalizability [5, 23] and work in program equilibrium, which often models boundedness by a

bounded number of states in a finite state automaton [14, 25].

Another example in this latter vein serves as the most concrete application of both strategic and non-

strategic descriptions of behavior within a single model of which we are aware: the iterative models of

behavioral game theory. These models thus serve as a running example throughout the paper and as one

application area in which our work has immediate implications. Overall, the field of behavioral game theory

aims to develop models that more accurately describe human behavior in game-theoretic environments, based

1Of course, the term “strategic” is not used entirely consistently in the literature. For example, some work refers to strategic
agents as those that pay any attention to the effects of their own actions when reasoning about how to maximize their own
utility [31, 2, 4]. Under this meaning for the term, there exists a meaningful distinction between nonstrategic and strategic
agents even in single-agent environments: the former are myopic about the effects of their own actions.
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on both field data and experimental data [e.g., 7]. Iterative models are one prominent class of models from

this literature; they include the level-k [21, 9, 10], cognitive hierarchy [6], and quantal cognitive hierarchy

models [33]. In all of these models, each agent has a non-negative integer level representing the degree of

strategic reasoning (i.e., modeling of recursive beliefs) of which the agent is capable. Level-0 agents are

nonstrategic—they do not model other agents’ beliefs or actions at all; level-1 agents model level-0 agents’

actions; level-2 agents model the beliefs and actions of level-1 agents; and so forth.

So far so good; the catch comes when we start getting fancy with the definition of level-0 agents. In

most work in the literature, the issue does not come up; level-0 behavior is defined simply as uniform

randomization. However, we showed in recent work that model performance can be substantially improved

by allowing for richer level-0 specifications [32, 16, 34]. This raises the question of how rich these specifications

should be allowed to become, before level-0 stops being plausible as a description of nonstrategic behavior.

In our past work we followed the AI tradition described earlier, saying that a strategic agent’s behavior

can depend on an explicit, probabilistic belief about the other agents’ actions while a non-strategic agent’s

behavior must not. But this argument has a crucial weakness: just because a proposed level-0 behavior can

be written without reference to beliefs about other agents’ strategies, we cannot conclude that there does

not exist another, equivalent way of writing it that does depend on such beliefs. Things get even worse if we

aspire to learn the level-0 specification directly from data, effectively optimizing over a space of specifications,

as we do in our most recent work [16]: the task now becomes reassuring a skeptic that no point in this space

corresponds to behavior that could somehow be rewritten in strategic terms.

This paper establishes a firm and constructive dividing line between nonstrategic and strategic behaviors.

Specifically, it characterizes a broad family of “nonstrategic” decision rules and shows that they deserve the

name: i.e., that no rule in this class can represent strategic reasoning. In the sense of the literature on

bounded rationality just described, our proposed characterization is a structural notion: it restricts the

information that agents are permitted to use by restricting them to summarize all outcomes into a single

number before performing their reasoning. In what follows, we introduce notation and important background

in Section 2. In particular, we introduce the concept of behavioral models in Section 2.3: functions that map

from an arbitrary game to a probability distribution over a single agent’s actions in that game. We define

strategic behavioral models in Section 3; these are behavioral models that require agents to take account of

the incentives of the other agents and to be self interested, both in a precise sense. In Section 4, we prove that

all of the existing solution concepts described in Section 2 are strategic. Section 5 then defines elementary

behavioral models—agent behaviors that can be computed in terms of a matrix of real-valued potentials

that score each outcome in the game independently—and shows how a wide range of “level-0” behaviors

from the literature can be encoded as elementary models. In Section 6, we prove our main result: that

minimally self-interested behavioral models are partitioned into nonstrategic behavioral models, all of which

are elementary, and strategic behavioral models, none of which are elementary. Finally, in Section 7, we

show that aggregating a finite number of elementary behavioral models results in a strictly more expressive
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set of (not necessarily even minimally self-interested) models that still contains only nonstrategic behavioral

models. We conclude in Section 8 with discussion and some future directions.

2. Background

We begin by briefly defining our formal framework and notation, discussing normal-form games, solution

concepts, and behavioral models.

2.1. Normal-Form Games

In this work, we focus on unrepeated, simultaneous-move normal-form games. These games turn out

to be perfectly general, in a mathematical sense: any game, including repeated games or dynamic “game

trees”, can be represented as a normal-form game.

A normal-form game G is defined by a tuple (N,A, u), where N = {1, . . . , n} is a finite set of agents ;

A = A1 × . . . × An is the set of possible action profiles ; Ai is the finite set of actions available to agent i;

and u = {ui}i∈N is a set of utility functions ui : A → R, each of which maps from an action profile to a

utility for agent i. Agents may also randomize over their actions. It is standard in the literature to call such

randomization a mixed strategy; however, for our purposes this terminology will be confusing, since it would

lead us to discuss the strategies of nonstrategic agents. We thus instead adopt the somewhat nonstandard

terminology behavior for this concept. We denote the set of agent i’s possible behaviors by Si = ∆|Ai|,

and the set of possible behavior profiles by S = S1 × . . . × Sn, where ∆k denotes the standard k-simplex

(the set

{

θ0u0 + · · ·+ θkuk

∣

∣

∣

∣

∑k

i=0 θi = 1 and θi ≥ 0 for all i

}

), and hence ∆|X| is the set of probability

distributions over a discrete set X . Overloading notation, we represent the expected utility to agent i of a

behavior profile s ∈ S by ui(s). We use the notation s−i to refer to the behavior profile of all agents except

i, and (si, s−i) to represent a full behavior profile.

2.2. Solution Concepts

A solution concept is a mapping from a game G to a behavior profile (or set of behavior profiles) that

satisfies some criteria. Solution concepts can be interpreted descriptively, as a prediction of how agents will

actually play a game. They can also be interpreted normatively, as a claim about how rational agents ought

to play a game. (These two senses frequently overlap, as it is common to assume that agents will play a

game rationally.) We will primarily be concerned with these solution concepts as formalizations of strategic

behavior in games.

The foundational solution concept in game theory, and the most commonly used, is the Nash equilibrium.

Definition 1 (Nash equilibrium). Let BRi(s−i) = argmaxai∈Ai
ui(ai, s−i) denote the set of agent i’s best

responses to a behavior profile s−i ∈ S−i. A Nash equilibrium is a behavior profile in which every agent
simultaneously best responds to all the other agents. Formally, s∗ ∈ S is a Nash equilibrium if

∀i ∈ N, ai ∈ Ai : s
∗
i (ai) > 0 =⇒ ai ∈ BRi(s

∗
−i).

When agents play a Nash equilibrium, they must randomize independently. A correlated equilibrium

relaxes this requirement, and allows for joint distributions of actions that are correlated.
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Definition 2 (Correlated equilibrium). A correlated equilibrium is a distribution σ ∈ ∆|A| over action
profiles which satisfies the following for every agent i ∈ N and every mapping ξi : Ai → Ai:

∑

a∈A

σ(a)ui(ai, a−i) ≥
∑

a∈A

σ(a)ui(ξi(ai), a−i).

Note that every Nash equilibrium s∗ corresponds to a correlated equilibrium σ∗(a) = Πi∈Ns
∗
i (ai).

One important idea from behavioral economics is that people become more likely to make errors as the

cost of making those errors decreases. This can be modeled by assuming that agents best respond quantally,

rather than via strict maximization.

Definition 3 (Quantal best response). A (logit) quantal best response QBRi(s−i;λ,G) by agent i to s−i in
game G is a behavior si such that

si(ai) =
exp[λ · ui(ai, s−i)]

∑

a′

i
exp[λ · ui(a′i, s−i)]

, (1)

where λ (the precision parameter) indicates how sensitive agents are to utility differences. When λ = 0,
quantal best response is equivalent to uniform randomization; as λ→ ∞, quantal best response corresponds
to best response in the sense that actions are played with positive probability only if they are best responses,
i.e. QBRi(s−i;λ)(ai) > 0 ⇐⇒ ai ∈ BRi(s−i).

The generalization from best response to quantal best response gives rise to a generalization of Nash

equilibrium known as the quantal response equilibrium (“QRE”) [19].

Definition 4 (QRE). A quantal response equilibrium with precision λ is a behavior profile s∗ in which every
agent’s behavior is a quantal best response to the behaviors of the other agents; i.e., for all agents i,

s∗i = QBRG
i (s

∗
−i;λ).

2.3. Models of Agent Behavior

We now turn to what we term behavioral models, functions that return a behavior (a probability distri-

bution over a single agent’s action space) for every given game. They differ from solution concepts because

they represent a prediction of a single agent’s behavior, rather than a prediction about all agents’ joint

behavior. Profiles of behavioral models can thus be seen as solution concepts that always encode a single

product distribution over a given set of individual behaviors. We consider what can be said about the profiles

of behavioral models induced by existing solution concepts in Section 4.

Before we can define behavioral models, we must introduce some basic notation. Let:

• G denote the space of all normal-form games;

• R
∗ =

⋃∞
k=1 R

k denote the space of all finite vectors;

• (R∗)∗ =
⋃∞

k=1(R
∗)k denote the space of all finite-sized, finite-dimensional tensors;

• ∆∗ =
⋃∞

k=1 ∆
k denote the space of all finite standard simplices; and

• AG,i denote player i’s action space in game G.
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Definition 5 (Behavioral models). A behavioral model is a function fi : G → ∆∗; fi(G) ∈ ∆|AG,i| for all
games G. We use a function name with no agent subscript, such as f , to denote a profile of behavioral models
with one function fi for each agent. We write f(G) to denote the behavior profile that results from applying
each fi to G.

Much work in behavioral game theory proposes behavioral models rather than solution concepts (though

the formal definition of a behavioral model is our own). One key idea from that literature is that humans can

only perform a limited number of steps of strategic reasoning, or equivalently that they only reason about

higher-order beliefs up to some fixed, maximum order.

We begin with the so-called level-k model [21, 9]. Unlike Nash equilibrium, correlated equilibrium, and

quantal response equilibrium, all of which describe fixed points, the level-k model is computed via a finite

number of best response calculations. Each agent i is associated with a level ki ∈ N, corresponding to the

number of steps of reasoning the agent is able to perform. A level-0 agent plays nonstrategically (i.e., without

reasoning about its opponent); a level-k agent (for k ≥ 1) best responds to the belief that all other agents

are level-(k − 1). The level-k model implies a distribution over play for all agents when combined with a

distribution D ∈ ∆∗ over levels.

Definition 6 (Level-k prediction). Fix a distribution D ∈ ∆∗ over levels and a level-0 behavior s0 ∈ S.
Then the level-k behavior for an agent i is defined as

ski (ai) =

{

1/|BRi(s
k−1
−i )| if ai ∈ BRi(s

k−1
−i ),

0 otherwise.

The level-k prediction πLk ∈ S for a game G is the average of the behavior of the level-k strategies weighted
by the frequency of the levels,

πLk
i (ai) =

∞
∑

k=0

D(k)ski (ai).

Cognitive hierarchy [6] is a very similar model in which agents respond to the distribution of lower-level

agents, rather than believing that every agent performs exactly one step less of reasoning.

Definition 7 (Cognitive hierarchy prediction). Fix a distribution D ∈ ∆∗ over levels and a level-0 behavior
s0 ∈ S. Then the level-k hierarchical behavior for an agent i is

πk
i (ai) =

{

1/|BRi(π
0:k−1
−i )| if ai ∈ BRi(π

0:k−1
−i ),

0 otherwise,

where π0 = s0 and π0:k−1
i (ai) =

∑k−1

m=0D(m)πm
i (ai). The cognitive hierarchy prediction is again the average

of the level-k hierarchical strategies weighted by the frequencies of the levels,

πCH
i (ai) =

∞
∑

k=0

D(k)πk
i (ai).

As we did with quantal response equilibrium, it is possible to generalize these iterative solution concepts

by basing agents’ behavior on quantal best responses rather than best responses. The resulting models are

called quantal level-k and quantal cognitive hierarchy [e.g., 29, 33].
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3. Strategic Behavioral Models

As discussed in the introduction, there is general qualitative agreement in the literature that strategic

agents act to maximize their own utilities based on explicit probabilistic beliefs about the actions of other

agents. Our ultimate goal is to characterize behavioral models that are unambiguously nonstrategic; thus,

to strengthen our results, we adopt a somewhat more expansive notion of strategic behavior. Specifically,

we define an agent as strategic if it satisfies two conditions, which we call (1) other responsiveness and

(2) dominance responsiveness. These conditions require that the agent chooses actions both (1) with at least

some dependence on others’ payoffs; and (2) with at least some concern for its own payoffs.

Definition 8 (Strategic behavioral model). A behavioral model fi is strategic if it is both other responsive
and dominance responsive.

The key feature of strategic agents is that they take account of the incentives of other agents when

choosing their own actions. To capture this intuition via the weakest possible necessary condition, we say

that an agent is other responsive if its behavior is ever influenced by changes (only) to the utilities of other

agents.

Definition 9 (Other responsiveness). A behavioral model fi is other responsive if there exists any pair of
games G = (N,A, u) and G′ = (N,A, u′) such that ui(a) = u′i(a) for all a ∈ A, but fi(G) 6= fi(G

′).

It is also traditional to assume that agents always act to maximize their expected utilities. This as-

sumption is too strong for our purposes; for example, we want to allow for deviations from perfect utility

maximization such as quantal best response. However, it does not seem reasonable to call an agent strategic

if it pays no attention whatsoever to its own payoffs. We thus introduce a concept that we call dominance

responsiveness, which is a considerably weaker sense in which an agent might show concern for its own

payoffs. The condition requires only that gross changes in agents’ own incentives will cause them to change

their behavior. More formally, we say that a behavioral model is dominance responsive if for every pair of

games G,G′ ∈ G such that an action is strictly dominant in one game and strictly dominated in another,

then the behavioral model does not behave identically in both games.

Definition 10 (Strict dominance). In a game G = (N,A, u), an action ai ∈ Ai strictly dominates an action
a′i ∈ Ai if and only if ui(ai, a−i) > ui(a

′
i, a−i) ∀a−i ∈ A−i. If an action a∗i strictly dominates every other

action in game G, then it is strictly dominant in game G.

Definition 11 (Dominance responsiveness). A pair of games G = (N,A, u) and G′ = (N,A, u′) are domi-
nance reversed for agent i ∈ N if there exist ai, a

′
i ∈ Ai such that ai is strictly dominant in G, but a′i strictly

dominates ai in G′. A behavioral model fi : G → ∆∗ is dominance responsive if for every pair of games
G = (N,A, u) and G′ = (N,A, u′) that are dominance reversed for i, fi(G) 6= fi(G

′).

Observe that the two games G and G′ are required to have nothing in common beyond their sizes and

their use of the same names for the actions; the latter is to enable the statement fi(G) 6= fi(G
′) to make

sense. (Each evaluation of fi is a vector; the inequality compares them element-wise, pairing up actions with

the same names.) Also observe that we do not require i to play the dominant action in G or to do anything

in particular in G′; i is simply required to change behavior in some way when a strictly dominated action
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changes to become dominated (and the rest of the game changes in an arbitrary way). Again, this is meant

to be an extremely weak condition capturing the notion that an agent responds to its own payoffs.

4. Existing Solution Concepts are Strategic

We now demonstrate that our definition of strategic behavioral models does more than describe qual-

itative patterns of behavior that have been called “strategic” in the past: it also formally captures the

predictions of various solution concepts both from classical game theory and from behavioral game theory

(Nash equilibrium, correlated equilibrium, quantal response equilibrium, level-k, cognitive hierarchy, and

quantal cognitive hierarchy).

We begin with a technical definition that is used in the proofs in this section: another notion of self-

interest that we call self responsiveness.

Definition 12 (Self responsiveness). A behavioral model fi : G → ∆∗ is self responsive if for any game
G = (N,A, u), there exists a game G′ = (N,A, u′) such that

1. fi(G
′) 6= fi(G), and

2. u′j(a) = uj(a) for all a ∈ A and j 6= i.

We now show that quantal best response to a self responsive behavioral model is strategic.

Theorem 13. Fix a set {λi > 0}i∈N and a profile of behavioral models f that satisfies

fi(G) = QBRi(f−i(G);λi, G)

for all games G and players i. Then every behavioral model fi is strategic.

Proof. Suppose that f satisfies the above for some {λi > 0}i∈N . We then prove the claim in two parts. In
Part 1 we show that every behavioral model in f must be self responsive. In Part 2, we show that every
behavioral model in f is strategic.

Part 1: For any profile of behavioral models f and λ > 0, the behavioral model qi(G) = QBRi(f−i(G);λ,G)
is self responsive.

We prove this by showing how to construct a game G′ satisfying Definition 12 from any game G. Fix an
arbitrary G = (N,A, u) and i ∈ N . One of agent i’s actions must be assigned weakly less probability by qi
than all others. Call this action a−i ∈ argminai∈Ai

fi(G)(ai). Now construct u′ as follows:

u′j(a) =











1 if j = i and ai = a−i ,

0 if j = i and ai 6= a−i ,

uj(a) otherwise.

Clearly G′ differs from G only in i’s payoffs. Action a−i was assigned weakly less probability by qi(G)
than any other action. However, a−i is strictly dominant in G′, and hence must be assigned strictly greater
probability than any other action by qi(G

′). Therefore, qi(G) 6= qi(G
′), and qi is self responsive.

Part 2: For any λ > 0 and profile f of self responsive behavioral models, the behavioral model qi(G) =
QBRi(f−i(G);λ,G) is strategic.

First, observe that strictly dominant actions always have higher expected utility than the actions that
they dominate, and hence quantal best response to any behavioral model is dominance responsive, since
higher expected utility actions are always played with higher probability.

It remains only to show that quantal response is other responsive. Consider the following game G.

8



L R
U 1, 1 0, 2
D 0, 2 1, 1

G

Let i be the row player and j be the column player. Choose a game G′ with fj(G) 6= fj(G
′) that

differs only in j’s payoffs; such a game is guaranteed to exist because fj is self responsive. Notice that
ui(U, fj(G)) = fj(G)(L). Since fj(G) 6= fj(G

′), ui(U, fj(G)) 6= u′i(U, fj(G
′)), and therefore qi(fj(G))(U) 6=

qi(fj(G
′))(U).

Corollary 14. All of QRE, Nash equilibrium, and correlated equilibrium are (profiles of) strategic behavioral
models.

Proof. Immediate from Theorem 13 and the observation that best response is a special case of quantal best
response.

Theorem 15. All of level-k, cognitive hierarchy, and quantal cognitive hierarchy are strategic behavioral
models for agents of level 1 or level 2 (and higher).

Proof. Let f0 be a profile of behavioral models and λ1i , λ
2
i > 0 for all i ∈ N . Choose behavioral model

profiles f1, f2 satisfying f1
i (G) = QBRi(f

0
−i(G);λ

1
i , G) and f2

i (G) = QBRi(f
1
−i(G);λ

2
i , G) for all games G

and players i.
If all of the behavioral models in f0 are self responsive, then by the argument in Part 2 of the proof of

Theorem 13, all of the behavioral models in f1 are strategic. Thus, noting that best response is a special
case of quantal best response, all of the listed iterative models are strategic for level 1.

Otherwise, all of the behavioral models in f1 are self responsive by the argument in Part 1 of the proof of
Theorem 13, and thus by the argument in Part 2 of the proof of Theorem 13, all of the behavioral models in
f2 are strategic. Thus, noting that best response is a special case of quantal best response, all of the listed
iterative models are strategic for level 2.

5. Elementary Behavioral Models

Our main task in this paper is to separate nonstrategic behavior from strategic behavior. Now that we

have formally defined the latter, we can introduce a class of behavioral models, called elementary models,

that we will ultimately show are always nonstrategic. Observe that an agent reasoning strategically needs to

account both for its own payoffs (in order to be dominance responsive) and for others’ payoffs (in order to

be other responsive); thus, it must evaluate each outcome in multiple terms. Our key idea is thus to require

that nonstrategic behavior independently “scores” each outcome using a single number. In this section, we

formalize such a notion and illustrate its generality via examples of how it can be used to encode previously

proposed “nonstrategic” behaviors.

5.1. Defining Elementary Behavioral Models

The formal definition of elementary behavioral models is unfortunately more complex than the intuition

we just gave. The reason is that any tuple of k real values can be encoded into a single real number; in

information economics this is referred to as dimension smuggling [e.g., 22]. Without ruling out dimension

smuggling, therefore, a restriction that nonstrategic agents rely on only a single number would lack any force.

We thus define a no smuggling criterion; it depends in turn on the concept of a dictatorial function.
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Definition 16 (Dictatorial function). A function ϕ : Rm → R
n is dictatorial if its value is completely deter-

mined by a single input: ∃i ∈ {1, . . . ,m} such that ∀x, x′ ∈ R
n−1, ∀a ∈ R, ϕ(x1, . . . , xi−1, a, xi, . . . , xn−1) =

ϕ(x′1, . . . , x
′
i−1, a, x

′
i, . . . , x

′
n−1).

This class of functions takes its name from the social choice condition from which it is inspired; one input

to the function ϕ acts as a dictator over ϕ’s output.

Our no smuggling condition says that either a function is dictatorial or that for every input dimension

(i.e., action chosen by each player), there exist inputs for the function differing in that dimension that

produce the same output.

Definition 17 (No smuggling). A function ϕ : R∗ → R
n satisfies no smuggling iff either ϕ is dictatorial or

for every m > n and for every i ∈ {1, . . . ,m}, there exist x, x′ ∈ R
m such that xi 6= x′i and ϕ(x) = ϕ(x′).

The no smuggling condition considers functions that reduce a vector of numbers to a smaller number

of dimensions. For our purposes at the moment, it is helpful to imagine n = 1 (the vector is reduced to a

single real number), though we will appeal to the general case in Section 7. The condition requires that ϕ

summarizes its input in a meaningful sense, rather than simply encoding all of the original numbers into the

infinite number of digits of a single real number. Observe that if ϕ is one to one (i.e., if every value in ϕ’s

domain maps to a different value in its range) then it can be inverted, meaning that it performs dimension

smuggling. The alternative is that there be at least one pair of inputs that produce the same output. For the

sake of convenience, we impose a slightly stronger condition, that either there exists at least one such pair

of vectors differing in each input dimension or the function is dictatorial. (That is, for the input dimension

that completely determines a dictatorial function, we do not require the existence of a pair of inputs that

produce the same output.)

Definition 18 (Elementary behavioral model). A behavioral model fi : G → ∆∗ is elementary if it can be
represented as h(Φ(G)), where

1. ∀G = (N,A, u) ∈ G, ∀a ∈ A, Φ(G)a = ϕ(u(a)) for every action profile a,

2. ϕ : R∗ → R satisfies no smuggling, and

3. h : (R∗)∗ → ∆∗ is an arbitrary function; we use it to map from R
A to ∆|Ai|.

For convenience, when condition 1 holds we refer to Φ as the potential map for ϕ.

That is, an elementary behavioral model works as follows. First, given an arbitrary game G = (N,A, u),

and for each action profile a ∈ A, we apply the same no-smuggling function ϕ to the |N |-tuple of real values

〈u1(a), . . . , u|N |(a)〉, producing in each case a single real value. We represent all of these real values in a

mapping we call Φ; this potential map is a function of the same size as each of the utility functions. We then

apply an arbitrary function h to Φ(G), producing a probability distribution over Ai.

5.2. Examples of Elementary Behavioral Models

To demonstrate the generality of elementary behavioral models, we show how to encode each of the

candidate level-0 behavioral models that we proposed in our past work [32, 34]. (Thus, although that work

only appealed to intuition, we can now conclude that these behavioral models are all nonstrategic.)

We begin with the simplest behavioral models: those that depend only on a given agent i’s utilities ui.

10



Example 19 (Maxmax behavioral model). A maxmax action for agent i is an action giving rise to the best
best case. An agent that wishes to maximize its possible payoff will play a maxmax action. The maxmax
behavioral model fmaxmax

i (G) uniformly randomizes over all of i’s maxmax actions in G.

fmaxmax
i (G)(ai) ∝

{

1 if ai ∈ argmaxa′

i
∈Ai

maxa−i∈A−i
ui(a

′
i, a−i),

0 otherwise.

Example 20 (Maxmin behavioral model). A maxmin action for agent i is the action with the best worst-case
guarantee. This is the safest action to play against hostile agents. The maxmin behavioral model fmaxmin

i (G)
uniformly randomizes over all of i’s maxmin actions in G:

fmaxmin
i (G)(ai) ∝

{

1 if ai ∈ argmaxa′

i
∈Ai

mina−i∈A−i
ui(a

′
i, a−i),

0 otherwise.

Example 21 (Minimax regret behavioral model). Following Savage [27], for each action profile, an agent
has a possible regret : how much more utility could the agent have gained by playing the best response to the
other agents’ actions? Each of the agent’s actions is therefore associated with a vector of possible regrets, one
for each possible profile of the other agents’ actions. A minimax regret action is an action whose maximum
regret (in the vector of possible regrets) is minimal. The minimax regret behavioral model fmmr

i (G) uniformly
randomizes over all of i’s minimax regret actions in G. That is, if

r(ai, a−i) = ui(ai, a−i)− max
a∗

i
∈Ai

ui(a
∗
i , a−i)

is the regret of agent i in action profile (ai, a−i), then

fmmr
i (G)(ai) ∝

{

1 if ai ∈ argmina′

i
∈Ai

maxa−i∈A−i
r(ai, a−i),

0 otherwise.

Because each of the maxmax, maxmin, and minimax regret behavioral models depends only on agent i’s

payoffs, we can set ϕ(u) = ui in each case; ϕ satisfies no smuggling because it is dictatorial. The encodings

differ only in their choice of h. These vary in their complexity (e.g., maxmax: simply uniformly randomize

over all actions that tie for corresponding to the largest potential value; for minimax regret it is necessary

to compute a best response for each action profile). However, recall that h is an arbitrary function; thus,

this is not a problem for our encoding.

Other behavioral models depend on both agents’ utilities, and so require different ϕ functions.

Example 22 (Max welfare behavioral model). An max welfare action is part of some action profile that max-
imizes the sum of agents’ utilities. The max welfare behavioral model fmaxwelfare

i (G) uniformly randomizes
over max welfare actions in G:

fmaxwelfare
i (G)(ai) ∝

{

1 if ai ∈ argmaxa′

i
∈Ai

maxa−i∈A−i

∑

j∈N uj(a
′
i, a−i),

0 otherwise.

We can encode the efficent behavioral model as elementary by setting ϕ(u) =
∑

j uj; ϕ satisfies no

smuggling because it is continuous. We then define h to uniformly randomize over all actions that tie for

corresponding to the largest potential value.

Example 23 (Fair behavioral model). Let the unfairness of an action profile be the difference between the
maximum and minimum payoffs among the agents under that action profile:

d(a) = max
i,j∈N

ui(a)− uj(a).

11



Then a “fair” outcome minimizes this difference in utilities. A fair action is part of a minimally unfair action
profile. The fair behavioral model f fair

i (G) uniformly randomizes over fair actions:

f fair
i (G)(ai) ∝

{

1 if ai ∈ argmina′

i
∈Ai

mina−i∈A−i
d(a′i, a−i),

0 otherwise.

We can encode the fair behavioral model as elementary by setting ϕ(u) = maxj,k(uj − uk); again, ϕ

satisfies no smuggling because it is continuous. We then define h to uniformly randomize over all actions

that tie for corresponding to the smallest potential value.

Finally, we note that all of the examples just given are binary: actions are either fair/maxmin/etc or

they are not. By changing only h, we could similarly construct continuous variants of each concept in which

actions that achieve nearly maximal potentials are played nearly as often by the behavioral model, etc.

6. Elementary Behavorial Models are Nonstrategic

We are now ready to show that elementary behavioral models are never strategic. This result is important

because it achieves our key goal of distinguishing strategic from nonstrategic behavioral models via a formal

mathematical criterion, rather than relying on the intuitive sense that a model “depends on” an explicit

model of an opponent’s behavior. In fact, we do a bit better than simply showing that elementary models

are nonstrategic: we show that the space of dominance responsive behavioral models is exactly partitioned

into elementary models and strategic models.

Theorem 24. A dominance responsive behavioral model is strategic if and only if it is not elementary.

Proof. If direction: no elementary behavioral model is strategic. Suppose for contradiction that elementary
behavioral model fi(G) = hi(Φ(G)) is strategic, where Φ is the potential map for ϕ. There are two ways in
which ϕ can satisfy the no-smuggling condition:

1. i is a dictator for ϕ. Because fi is other responsive, there exist G = (N,A, u) and G′ = (N,A, u′) with
ui(a) = u′i(a) for all a ∈ A, such that fi(G) 6= fi(G

′). But since i is a dictator for ϕ, Φ(G) = Φ(G′),
and hence fi(G) = fi(G

′), a contradiction.
2. For all m > 1, there exist x, x′ ∈ R

m such that xi 6= x′i and ϕ(x) = ϕ(x′). Let x, x′ ∈ R2 be two such
values; we use them to construct 2-player games G1 and G2 in which i has two actions {U,D} and the
other agent has actions {L,R}.

L R
U x′ x′

D x x

G1

L R
U x x
D x′ x′

G2

Note that U is a strictly dominant action for i in G1 and a strictly dominated action for i in G2. By
dominance responsiveness, fi(G1) 6= fi(G2). But ϕ(x) = ϕ(x′), and since x and x′ are the only payoff
tuples that occur in either G1 or G2, Φ(G1) = Φ(G2) and hence fi(G1) = fi(G2), a contradiction.

Only-if direction: if a dominance responsive behavioral model fi is not strategic, then it is elementary. We
show how to represent fi by constructing appropriate ϕ and Φ functions. Since fi is dominance responsive but
not strategic, it is not other responsive. Therefore, for every pair of games G = (N,A, u) and G′ = (N,A, u′)
with ui(a) = u′i(a) for all a ∈ A, fi(G) = fi(G

′). Define ϕ(x) = xi, which clearly satisfies no smuggling. Let
hi(Φ(G)) = fi(z(Φ(G))), where z : R

A → G is a function that returns a game with the utilities of i set to its
argument and the utilities of the other players set to 0. Since differences in the other agents’ utilities never
change the output of fi, hi(Φ(G)) = fi(z(Φ(G))) = fi(G) for all G.
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7. Finite Aggregations of Elementary Models

We now consider behavioral models that are constructed by drawing together the predictions of multiple

elementary models. For example, we might build a behavioral model from some convex combination of the

predictions of the elementary behavioral models defined in Section 5.2 (as, indeed, we did in our past work

[32, 34]). Our key result in this section is that the class of such models is strictly larger than the class of

elementary behavioral models. However, this larger class still consists entirely of nonstrategic models, under

an appropriate strengthening of our no smuggling condition.

How can this be—didn’t we already characterize all nonstrategic behavioral models? Not quite: recall

that Theorem 24 partitioned the set of dominance responsive behavioral models into strategic and elemen-

tary behavioral models. In addition, some elementary models are non-dominance-responsive. The set of

non-dominance-responsive behavioral models also includes the extra models made possible by taking finite

aggregations. This section thus introduces a natural class of nonstrategic behavior that sometimes violates

our minimal notion of self interest without allowing completely arbitrary behavior.

Definition 25 (Finite aggregations of elementary behavioral models). A behavioral model gi is a finite
aggregation of elementary behavioral models if it can be represented as

gi(G) = h(f1
i (G), . . . , f

K
i (G)),

where h is an arbitrary function, K ∈ N, and for all 1 ≤ kK, fk
i is an elementary behavioral model.

The class of finite aggregations of elementary behavioral models is strictly larger than the class of ele-

mentary behavioral models.

Theorem 26. Finite aggregations of elementary behavioral models are not necessarily elementary themselves.

Proof. It suffices to exhibit two elementary behavioral models whose linear combination is not elementary.
Let fmaxmax

i be the maxmax behavioral model defined in Example 19; let fmaxwelfare
i be the max welfare

behavioral model defined in Example 22. Let α ∈ (0, 1) and let gi(G) = h(fmaxmax
i (G), fmaxwelfare

i (G)) =
αfmaxmax

i (G) + (1− α)fmaxwelfare
i (G).

Suppose for contradiction that gi is elementary. Since gi is a function of all agents’ utilities, its potential
ϕ is not dictatorial for any agent. Therefore, from no smuggling, there must exist two utility vectors x, x′

satisfying x′i > xi and ϕ(x
′) = ϕ(x). Let δ = (x′i − xi)/2, y = 〈xi + δ/2,max{xj , x

′
j} + 2δ〉, and z be any

utility tuple satisfying zi < xi and zj < min{xj , x
′
j}. Now consider the following two-player games G3 and

G4, in which i is the row player.

L R
U x z
D z y

G3

L R
U x′ z
D z y

G4

Since the two games differ only in outcome 〈U,L〉, and ϕ(u(U,L)) = ϕ(u′(U,L)), it must be that gi(G3) =
gi(G4). But gi(G3)(U) = 0 6= α = gi(G4)(U), yielding our contradiction.

We need to strengthen our no-smuggling condition for behavioral models based on finite aggregations of

elementary models, because the existence of multiple potential functions and the fact that we allow arbitrary

aggregation functions makes our previous definition too weak to prevent dimension smuggling.
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Definition 27 (Joint no smuggling). A set of functions ϕ1, . . . , ϕK : Rm → R
n for m > Kn is jointly

no-smuggling if the function ψ(x) = [ϕ1(x), . . . , ϕK(x)] satisfies the no-smuggling condition.

The joint no-smuggling condition is a benign assumption. In particular, it is satisfied by every set of

continuous potentials, including all linear combinations of utilities (note that a behavioral model with a

continuous potential need not be continuous itself).

This new definition suffices to give us our final result: that finite aggregations of elementary behavioral

models are always nonstrategic.

Theorem 28. Let F be a set of elementary behavioral models. If the potentials ϕ1, . . . , ϕ|F | associated with
the models in F are jointly no-smuggling, then no finite aggregation of F is strategic.

Proof. The argument in the proof of the if direction of Theorem 24 can be applied to finite aggregations of
elementary behavioral models in exactly the same way, since the joint no-smuggling condition guarantees the
existence of utility vectors x, x′ that are indistinguishable by the joint potential ψ but that have x′i > xi.

8. Discussion and Future Work

In this work, we proposed elementary behavioral models and their finite aggregations as mathematical

characterizations of classes of nonstrategic decision rules. These classes are constructively defined, in the

sense that membership of a rule is verified by demonstrating how to represent the rule in a specific form—

as a function of the output of a non-smuggling potential map—rather than by proving that it cannot be

represented as a response to probabilistic beliefs.

It is interesting to note that various special cases of strategic solution concepts are nonstrategic under

our definition. For example, the equilibrium of a two-player zero-sum game can be computed by considering

only the utility of a single agent, and hence the behavior for an equilibrium-playing player in such a game

can be computed by an elementary behavioral model. Similarly, an equilibrium for a potential game can of

course be computed in terms of outcome values computed by a potential function [20]. In repeated settings,

many no-regret learning rules (which are guaranteed to converge to a coarse correlated equilibrium) can be

executed by agents that only take account of their own utilities. One thing that these exceptions all have in

common is that they are also computationally easy, unlike general ǫ-equilibrium, which is known to be hard

in a precise computational sense [11, 8]. The equilibrium of a zero-sum game can be solved in polynomial

time by a linear program; the equilibrium of a potential game can be found simply by finding the maximum

of the potential function over all the outcomes. No-regret algorithms are cheap to run, requiring in each time

period work that is linear in the number of actions, and converge rapidly to coarse correlated equilibrium.

However, the connection between ease of computation and strategic simplicity is not an equivalence. For

example, correlated equilibrium in general games can be computed in polynomial time by a linear program,

but cannot in general be computed by an elementary behavioral model (see Corollary 14). An attractive

future direction is to shed further light on the connection between computational and strategic simplicity.

We also observe that our characterization of nonstrategic behavior in this paper is a binary distinction:

in the view we have advanced, a behavioral model is either nonstrategic or it is not. An intriguing question
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for future work is whether such a distinction can be made more quantitative: i.e., is there a sense in which

agents are nonstrategic to a greater or lesser degree that is distinct from the number of steps of strategic

reasoning that they perform?
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