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Abstract

It is common to assume that agents will adopt Nash equilibrium
strategies; however, experimental studies have demonstrated that Nash
equilibrium is often a poor description of human players’ behavior in
unrepeated normal-form games. In this paper, we analyze four widely
studied models (QRE, Lk, Cognitive Hierarchy, QLk) that aim to describe
actual, rather than idealized, human behavior in such games. We performed
a meta-analysis of these models, leveraging nine different data sets from
the literature recording human play of two-player games. We began by
evaluating the models’ generalization or predictive performance, asking
how well a model fits unseen “test data” after having had its parameters
calibrated based on separate “training data”. Surprisingly, we found that
(what we dub) the QLk model of Stahl and Wilson (1994) consistently
achieved the best performance. Motivated by this finding, we describe
methods for analyzing the posterior distributions over a model’s parameters.
We found that QLk’s parameters were being set to values that were not
consistent with their intended economic interpretation. We thus explored
variations of QLk, ultimately identifying a new model family that has
fewer parameters, gives rise to more parsimonious parameter values, and
achieves better predictive performance.

1 Introduction

In strategic settings, it is frequently assumed that agents will adopt Nash equilib-
rium strategies, jointly behaving so that each optimally responds to the others.
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This solution concept has many appealing properties; e.g., under any other
strategy profile, one or more agents will regret their strategy choices. However,
experimental evidence shows that Nash equilibrium often fails to describe human
strategic behavior (e.g., Goeree and Holt, 2001)—even among professional game
theorists (Becker et al., 2005). The relatively new field of behavioral game theory
extends game-theoretic models to account for human behavior by taking account
of human cognitive biases and limitations (Camerer, 2003). Experimental evi-
dence is a cornerstone of behavioral game theory, and researchers have developed
many models of how humans behave in strategic situations based on experi-
mental data. This multitude of models presents a practical problem, however:
which model should be used for prediction? Existing work in behavioral game
theory does not directly answer this question, for two reasons. First, it has
tended to focus on explaining (fitting) in-sample behavior rather than predicting
out-of-sample behavior. This means that models are vulnerable to “overfitting”
the data: the most flexible model can be chosen instead of the most accurate
model. Second, behavioral game theory has tended not to compare multiple
behavioral models, instead either exploring the implications of a single model
or comparing only to a single other model (typically Nash equilibrium). In this
work we perform rigorous—albeit computationally intensive—comparisons of
many different models and model variations.

Our focus is on the most basic model of strategic interaction: initial play
in simultaneous move games. In the behavioral game theory literature, four
key paradigms have emerged for modeling human play in this setting: quantal
response equilibrium (QRE; McKelvey and Palfrey, 1995); cognitive hierarchy
model (CH; Camerer et al., 2004) models; the closely related level-k (Lk; Costa-
Gomes et al., 2001; Nagel, 1995) models; and what we dub quantal level-k (QLk;
Stahl and Wilson, 1994) models. Although different studies may explore different
specific variations (e.g., Stahl and Wilson, 1995; Ho et al., 1998; Rogers et al.,
2009), the overwhelming majority of behavioral models of initial play of normal-
form games fall broadly into this categorization. The first main contribution
of our work is to conduct an exhaustive meta-analysis based on data published
in nine different studies, rigorously comparing Lk, QLk, CH and QRE to each
other and to a model based on Nash equilibrium.

All of these models depend upon exogenous parameters. Most previous
work has focused on models’ ability to describe human behavior, and hence
has sought parameter values that best explain observed experimental data, or
more formally that maximize a dataset’s probability. (Observe that our models
make probabilistic predictions; thus, we must score models according to how
much probability mass they assign to observed events, rather than assessing
“accuracy.”) We depart from this descriptive focus, seeking to find models, and
hence parameter values, that are effective for predicting previously unseen human
behavior. Thus, we follow a different approach taken from machine learning
and statistics. We begin by randomly dividing the experimental data into a
training set and a test set. We then set each model’s parameters to values that
maximize the likelihood of the training dataset, and finally score the each model
according to the (disjoint) test dataset’s likelihood. To reduce the variance of
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this estimate without biasing its expected value, we systematically repeat the
procedure with different test and training sets, a process called cross-validation
(see, e.g., Bishop, 2006).

Our meta-analysis leads us to draw three qualitative conclusions. First,
and least surprisingly, Nash equilibrium is less able to explain human play
than behavioral models. Second, two high-level themes that underly the four
behavioral models (which we dub “cost-proportional errors” and “limited iterative
strategic thinking”) appear to model independent phenomena. Thus, third, the
quantal level-k model of Stahl and Wilson (1994) (QLk)—which is the only
one to combine both of these themes—made the most accurate predictions.
Specifically, QLk substantially outperformed all other models on a new dataset
spanning all data in our possession, and also had the best or nearly the best
performance on each individual dataset. Our findings appear to be quite robust
across variation in the actual games played by human subjects. We compared
model performance on subsets of the data broken down by game features such
as dominance structure and number/types of equilibria, and obtained essentially
the same results as in the combined dataset. We do caution the reader that
our datasets consist entirely of two-player games, and so we have not evaluated
whether our findings generalize to larger number of players. That said, previous
work suggests that human subjects reason about n-player games as if they were
two-player games by failing to fully account for the independence of the other
players’ actions (Ho et al., 1998; Costa-Gomes et al., 2009); we might thus expect
to observe qualitatively similar results in the n-player case.

The approach we have described so far is good for comparing model perfor-
mance, but yields little insight into how or why a model works. For example,
maximum likelihood estimates provide no information about the extent to which
parameter values can be changed without a large drop in predictive accuracy, or
even about the extent to which individual parameters influence a model’s per-
formance at all. We thus describe an alternate (Bayesian) approach for gaining
understanding about a behavioral model’s entire parameter space. We combine
experimental data with explicitly quantified prior beliefs to derive a posterior
distribution that assigns probability to parameter settings in proportion to their
consistency with the data and the prior (Gill, 2002). Applying our approach, we
analyze the posterior distributions for two models: QLk and Poisson–Cognitive
Hierarchy (Poisson-CH). Although Poisson-CH did not demonstrate competitive
performance in our initial model comparisons, we analyze it because it is very
low-dimensional, and because of a very concrete and influential recommendation
in the literature: Camerer et al. (2004) recommended setting the model’s single
parameter, which represents agents’ mean number of steps of strategic reasoning,
to 1.5. Our own analysis sharply contradicts this recommendation, placing the
99% confidence interval almost a factor of three lower, on the range [0.51, 0.59].
We devote most of our attention to QLk, however, due to its strong performance.
Our new analysis points out a range of anomalies in the parameter distributions
for QLk, suggesting that a simpler model could be preferable. By exhaustively
evaluating a family of variations on QLk, we identify a simpler, more predictive
family of models based in part on the cognitive hierarchy concept. In particular,
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we introduce a new three-parameter model that gives rise to a more plausible pos-
terior distribution over parameter values, while also achieving better predictive
performance than five-parameter QLk.

In the next section, we define the models that we study. Section 3 defines
the formal framework within which we work, and Section 4 describes our data,
methods, and the Nash-equilibrium-based model to which we compare the
behavioral models. Section 5 presents the results of our comparisons. Section 6
describes our methods for Bayesian parameter analysis, and Section 7 describes
results from applying this analysis to our datasets. Section 8 explains the space of
models that we search, and introduces our new, high-performing three-parameter
model. In Section 9 we survey related work in the literature and explain how
our own work contributes to it. We conclude in Section 10.

2 Models for Predicting Human Play of Simultaneous-
Move Games

Formally, a behavioral model is a mapping from a game description G and a
vector of parameters θ to a predicted distribution over each action profile a
in G, which we denote Pr(a |G, θ). In what follows, we define four prominent
behavioral models.

2.1 Quantal Response Equilibrium

One prominent idea from behavioral economics is that people become more
likely to make errors as those errors become less costly, which we call making
cost-proportional errors. This can be modeled by assuming that agents best
respond quantally, rather than via strict maximization.

Definition 1 (Quantal best response). Let ui(ai, s−i) be agent i’s expected
utility in game G when playing action ai against strategy profile s−i. Then a
(logit) quantal best response QBRGi (s−i;λ) by agent i to s−i is a mixed strategy
si such that

si(ai) =
exp[λ·ui(ai, s−i)]∑
a′i

exp[λ·ui(a′i, s−i)]
, (1)

where λ (the precision parameter) indicates how sensitive agents are to utility
differences, with λ = 0 corresponding to uniform randomization, and λ → ∞
corresponding to best response. Note that unlike best response, which is a
set-valued function, quantal best response always returns a single mixed strategy.

This gives rise to a generalization of Nash equilibrium known as the quantal
response equilibrium (“QRE”) (McKelvey and Palfrey, 1995).

Definition 2 (QRE). A quantal response equilibrium with precision λ is a mixed
strategy profile s∗ in which every agent’s strategy is a quantal best response to
the strategies of the other agents. That is, s∗i = QBRGi (s∗−i;λ) for all agents i.
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A QRE is guaranteed to exist for any normal-form game and non-negative
precision (McKelvey and Palfrey, 1995). However, it is not guaranteed to be
unique. For the purposes of prediction, we select the (unique) QRE that lies
on the principal branch of the QRE homotopy at the specified precision. The
principal branch has the attractive feature of approaching the risk-dominant
equilibrium (as λ→∞) in 2× 2 games with two strict equilibria (Turocy, 2005).

Although Equation (1) is translation-invariant, it is not scale invariant. That
is, while adding some constant value to the payoffs of a game will not change
its QRE, multiplying payoffs by a positive constant will. This is problematic
because utility functions do not themselves have unique scales (Von Neumann
and Morgenstern, 1944). The QRE concept nevertheless makes sense if human
players are believed to play games differently depending on the magnitudes of
the payoffs involved.

2.2 Level-k

Another key idea from behavioral economics is that humans can perform only a
limited number of iterations of strategic reasoning.1 The level-k model (Costa-
Gomes et al., 2001) captures this idea by associating each agent i with a level
ki ∈ {0, 1, 2, . . .}, corresponding to the number of iterations of reasoning the
agent is able to perform. A level-0 agent plays randomly, choosing uniformly at
random from his possible actions. A level-k agent, for k ≥ 1, best responds to
the strategy played by level-(k − 1) agents. If a level-k agent has more than one
best response, he mixes uniformly over them.

Here we consider a particular level-k model, dubbed Lk, which assumes that
all agents belong to levels 0,1, and 2.2 Each agent with level k > 0 has an
associated probability εk of making an “error”, i.e., of playing an action that
is not a best response to the level-(k − 1) strategy. Agents are assumed not to
account for these errors when forming their beliefs about how lower-level agents
will act.

Definition 3 (Lk model). Let Ai denote player i’s action set, and BRGi (s−i)
denote the set of i’s best responses in game G to the strategy profile s−i. Let
IBRGi,k denote the iterative best response set for a level-k agent i, with IBRGi,0 =

Ai and IBRGi,k = BRGi (IBRG−i,k−1). Then the distribution πLki,k ∈ Π(Ai) that
the Lk model predicts for a level-k agent i is defined as

πLki,0 (ai) = |Ai|−1,

πLki,k (ai) =

{
(1− εk)/|IBRGi,k| if ai ∈ IBRGi,k,
εk/(|Ai| − |IBRGi,k|) otherwise.

1This limit is generally believed to be quite low. For example, Arad and Rubinstein (2012)
found no evidence for beliefs of fourth order or higher.

2We here model only level-k agents, unlike Costa-Gomes et al. (2001) who also modeled
other decision rules.
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The overall predicted distribution of actions is a weighted sum of the distributions
for each level:

Pr(ai |G,α1, α2, ε1, ε2) =

2∑
`=0

α`π
Lk
i,` (ai),

where α0 = 1 − α1 − α2. This model thus has 4 parameters: {α1, α2}, the
proportions of level-1 and level-2 agents, and {ε1, ε2}, the error probabilities for
level-1 and level-2 agents.

2.3 Cognitive Hierarchy

The cognitive hierarchy model (Camerer et al., 2004), like level-k, models agents
with heterogeneous bounds on iterated reasoning. It differs from the level-k model
in two ways. First, according to this model agents do not make errors; each agent
always best responds to its beliefs. Second, agents of level-m best respond to the
full distribution of agents at levels 0–(m− 1), rather than only to level-(m− 1)
agents. More formally, every agent has an associated level m ∈ {0, 1, 2, . . .}. Let
f be a probability mass function describing the distribution of the levels in the
population. Level-0 agents play uniformly at random. Level-m agents (m ≥ 1)
best respond to the strategies that would be played in a population described by
the truncated probability mass function f(j | j < m).

Camerer et al. (2004) advocate a single-parameter restriction of the cognitive
hierarchy model called Poisson-CH, in which f is a Poisson distribution.

Definition 4 (Poisson-CH model). Let πPCHi,m ∈ Π(Ai) be the distribution over
actions predicted for an agent i with level m by the Poisson-CH model. Let
f(m) = Poisson(m; τ). Let BRGi (s−i) denote the set of i’s best responses in
game G to the strategy profile s−i. Let

πPCHi,0:m =

m∑
`=0

f(`)
πPCHi,`∑m
`′=0 f(`′)

be the “truncated” distribution over actions predicted for an agent conditional
on that agent’s having level 0 ≤ ` ≤ m. Then πPCH is defined as

πPCHi,0 (ai) = |Ai|−1,

πPCHi,m (ai) =

{
|BRGi (πPCHi,0:m−1)|−1 if ai ∈ BRGi (πPCHi,0:m−1),

0 otherwise.

The overall predicted distribution of actions is a weighted sum of the distributions
for each level,

Pr(ai |G, τ) =

∞∑
`=0

f(`)πPCHi,` (ai).

The mean of the Poisson distribution, τ , is thus this model’s single parameter.
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Rogers et al. (2009) note that cognitive hierarchy predictions often exhibit
cost-proportional errors (which they call the “negative frequency-payoff deviation
relationship”), even though the cognitive hierarchy model does not explicitly
model this effect. This leaves open the question whether cognitive hierarchy (and
other iterative models) adequately capture cost-proportional errors, or whether
it is beneficial to model cost-proportional errors explicitly.

2.4 Quantal Level-k

Stahl and Wilson (1994) propose a rich model of strategic reasoning that combines
elements of the QRE and level-k models; we refer to it as the quantal level-k
model (QLk). In QLk, agents have one of three levels, as in Lk. Each agent
responds to its beliefs quantally, as in QRE. Like Lk, each agent believes that
the rest of the population has the next-lower type.

A key difference between QLk and Lk is in the error structure. In Lk, higher-
level agents believe that all lower-level agents best respond perfectly, although
in fact every agent has some probability of making an error. In contrast, in
QLk, agents are aware of the quantal nature of the lower-level agents’ responses,
and have a (possibly incorrect) belief about the lower-level agents’ precision.
That is, level-1 and level-2 agents use potentially different precisions (λ’s), and
furthermore level-2 agents’ beliefs about level-1 agents’ precision can be wrong.

Definition 5 (QLk model). The probability distribution πQLki,k ∈ Π(Ai) over
actions that QLk predicts for a level-k agent i is

πQLki,0 (ai) = |Ai|−1,

πQLki,1 = QBRGi (πQLk−i,0 ;λ1),

πQLki,1(2) = QBRGi (πQLk−i,0 ;λ1(2)),

πQLki,2 = QBRGi (πQLki,1(2);λ2),

where πQLki,1(2) is a mixed-strategy profile representing level-2 agents’ (possibly

incorrect) beliefs about how level-1 agents play. The overall predicted distribution
of actions is the weighted sum of the distributions for each level:

Pr(ai |α1, α2, λ1, λ2, λ1(2)) =

2∑
k=0

αkπ
QLk
i,k (ai),

where α0 = 1−α1−α2. The QLk model thus has five parameters: {α1, α2, λ1, λ2, λ1(2)}.

3 Methods I: Comparing Models

3.1 Prediction Framework

How do we determine whether a behavioral model is well supported by experi-
mental data? An experimental dataset D is a set of elements (Gi, ai), where Gi is
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a game and ai is a (pure) action played by a human player in Gi. (Observe that
there is no reason to pair the play of a human player with that of his opponent,
as games are unrepeated.) Recall that a behavioral model is a mapping from a
game description G and a vector of parameters θ to a predicted distribution over
each action profile a in G, which we denote Pr(a |G, θ). Our model can only be
used to make predictions when its parameters are instantiated. Assume that
there is some “true” set of parameter values, θ∗, under which the model outputs
the true distribution Pr(a |G) over action profiles, and that θ is independent of
G.

We use the maximum likelihood estimate of the parameters based on D,

θ̂ = arg max
θ

Pr(D | θ),

as a point estimate of the true set of parameters θ∗. We then use θ̂ to evaluate
the model:

Pr(a |G,D) = Pr(a |G, θ̂). (2)

The likelihood of a single datapoint di = (Gi, ai) ∈ D is

Pr(di | θ) = Pr(Gi, ai | θ).

By the chain rule of probabilities, this is equivalent to

Pr(di | θ) = Pr(ai |Gi, θ) Pr(Gi | θ),

and by independence of G and θ we have

Pr(di | θ) = Pr(ai |Gi, θ) Pr(Gi). (3)

The datapoints are independent, so the likelihood of the dataset is just the
product of the likelihoods of the datapoints,

Pr(D | θ) =
∏
di∈D

Pr(ai |Gi, θ) Pr(Gi). (4)

The probabilities Pr(Gi) are constant with respect to θ, and can therefore be
disregarded when maximizing the likelihood:

arg max
θ

Pr(D | θ) = arg max
θ

∏
di∈D

Pr(ai |Gi, θ).

3.2 Assessing Generalization Performance

Our goal is a model that produces accurate probability distributions over the
actions of human agents, rather than simply determining the most likely single
action. This means that we cannot use a criterion such as a 0-1 loss function
(“accuracy”), which scores models by how many actions were accurately “pre-
dicted”. The 0-1 loss function evaluates models based purely upon which action
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is assigned the highest probability, and does not take account of the probabilities
assigned to the other actions.

Instead, we evaluate a given model on a given dataset by likelihood. That is,
we compute the probability of the observed actions according to the distribution
over actions predicted by the model. The higher the probability of the actual
observations according to the prediction output by a model, the better we say
that the model predicted the data. This takes account of the full predicted
distribution; in particular, given a particular observed distribution, the prediction
that maximizes the likelihood score is the observed distribution itself.3

Each of the models that we consider depends on parameters that are estimated
from the data. We estimate parameters on a subset of our dataset (the “training
data”), and then compute likelihood scores on the remaining, disjoint “test data”.
This avoids the problem of “overfitting” the data, where the most flexible model
can be preferred to the most accurate model.

Randomly dividing our experimental data into training and test sets in-
troduces variance into the prediction score, since the exact value of the score
depends partly upon the random division. To reduce this variance, we perform
10 rounds of 10-fold cross-validation. Specifically, for each round, we randomly
divide the dataset into 10 equal-sized parts. For each of the 10 ways of selecting
9 parts from the 10, we compute the maximum likelihood estimate of the model’s
parameters based on those 9 parts. We then determine the likelihood of the
remaining part given the prediction. We call the average of this quantity across
all 10 parts the cross-validated likelihood. The average (across rounds) of the
cross-validated likelihoods is distributed according to a Student’s-t distribution
(see, e.g., Witten and Frank, 2000). We compare the predictive power of different
behavioral models on a given dataset by comparing the average cross-validated
likelihood of the dataset under each model. We say that one model predicts
significantly better than another when the 95% confidence intervals for the
average cross-validated likelihoods do not overlap.

4 Experimental Setup

In this section we describe the data and methods that we used in our model
evaluations. We also describe two models based on Nash equilibrium.

4.1 Data

As described in detail in Section 9, we conducted an exhaustive survey of papers
that make use of our four behavioral models. As a result, we identified nine
large-scale, publicly available sets of human-subject experimental data (Stahl
and Wilson, 1994, 1995; Costa-Gomes et al., 1998; Goeree and Holt, 2001; Cooper

3Although the likelihood is what we are interested in conceptually, in practice we operate
on the log of the likelihood to avoid precision problems. Since log likelihood is a monotonic
function of likelihood, a model that has higher likelihood than another model will always also
have higher log likelihood, and vice versa.
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and Van Huyck, 2003; Rogers et al., 2009; Haruvy et al., 2001; Haruvy and Stahl,
2007; Stahl and Haruvy, 2008). We study all nine of these datasets in this paper,
and describe each briefly in what follows.

In Stahl and Wilson (1994) experimental subjects played 10 normal-form
games, with payoffs denominated in units worth 2.5 cents. In Stahl and Wilson
(1995), subjects played 12 normal-form games, where each point of payoff gave a
1% chance (per game) of winning $2.00. In Costa-Gomes et al. (1998) subjects
played 18 normal-form games, with each point of payoff worth 40 cents. However,
subjects were paid based on the outcome of only one randomly-selected game.
Goeree and Holt (2001) presented 10 games in which subjects’ behavior was close
to that predicted by Nash equilibrium, and 10 other small variations on the same
games in which subjects’ behavior was not well-predicted by Nash equilibrium.
The payoffs for each game were denominated in pennies. We included the 10
games that were in normal form. In Cooper and Van Huyck (2003), agents
played the normal forms of 8 games, followed by extensive form games with the
same induced normal forms; we include only the data from the normal-form
games. Payoffs were denominated in 10 cent units. In Haruvy et al. (2001),
subjects played 15 symmetric 3×3 normal form games. The payoffs were “points”
representing a percentage chance of winning $2.00 for each game. In Haruvy and
Stahl (2007), subjects played 20 games, again for payoff points representing a
percentage chance of winning $2.00 per game. Stahl and Haruvy (2008) present
new data on 15 games that contain strategies that are dominated in ways that
are “obvious” to varying degrees, again for percentage chances of winning $2.00
per game. Finally, in Rogers et al. (2009), subjects played 17 normal-form games,
with payoffs denominated in pennies.

We represent each observation of an action by an experimental subject as
a pair (G, ai), where ai is the action that the subject took when playing as
player i in game G. All games had two players, so each single play of a game
generated two observations. We built one such dataset for each study, as listed in
Table 1. We also constructed a combined dataset, COMBO9, containing data from
all the datasets. The datasets contain very different numbers of observations,
ranging from 400 (Stahl and Wilson, 1994) to 2992 (Cooper and Van Huyck,
2003). To prevent COMBO9 from being dominated by the larger datasets, we drew
400 observations uniformly without replacement from each dataset, rather than
taking the union of all the observations of the datasets. COMBO9 thus contains
3600 observations.

The QRE and QLk models depend on a precision parameter that is not
scale-invariant. That is, if λ is the correct precision for a game whose payoffs
are denominated in cents, then λ/100 would be the correct precision for a game
whose payoffs are denominated in dollars. To ensure consistent estimation of
precision parameters, especially in the COMBO9 dataset where observations from
multiple studies are combined, we normalized the payoff values for each game
to be in expected cents. As described earlier, in some datasets, payoff points
were worth a certain number of cents; in others, points represented percentage
chances of winning a certain sum, or were otherwise in “expected” units. Table 1
lists the number of expected cents that we deemed each payoff point to be worth
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Table 1: Names and contents of each dataset. Units are in expected value.

Source Games Observations Units

Stahl and Wilson (1994) 10 400 $0.025
Stahl and Wilson (1995) 12 576 $0.02
Costa-Gomes et al. (1998) 18 1566 $0.022
Goeree and Holt (2001) 10 500 $0.01
Cooper and Van Huyck (2003) 8 2992 $0.10
Rogers et al. (2009) 17 1210 $0.01
Haruvy et al. (2001) 15 869 $0.02
Haruvy and Stahl (2007) 20 2940 $0.02
Stahl and Haruvy (2008) 18 1288 $0.02

COMBO9 128 3600 $0.01

for the purposes of normalization.

4.2 Comparing to Nash Equilibrium

It is desirable to compare the predictive performance of our behavioral models
to that of Nash equilibrium. However, such a comparison is not as simple as one
might hope, because any attempt to use Nash equilibrium for prediction must
extend the solution concept to solve two problems. The first problem is that
many games have multiple Nash equilibria; in these cases, the Nash “prediction”
is not well defined. The second problem is that Nash equilibrium frequently
assigns probability zero to some actions. Indeed, in 72% of the games in our
COMBO9 dataset every Nash equilibrium assigned probability 0 to actions that
were actually taken by one or more experimental subjects. This is a problem
because we assess the quality of a model by how well it explains the data;
unmodified, Nash equilibrium model considers our experimental data to be
impossible, and hence receives a likelihood of zero.4

We addressed the second problem by augmenting the Nash equilibrium
solution concept to say that with some probability, each player chooses an action
uniformly at random. This probability is thus a free parameter of the model; as
we did with behavioral models, we fit this parameter using maximum likelihood
estimation on a training set. (We thus call the model Nash Equilibrium with
Error, or NEE.) We sidestepped the first problem, assuming that agents always
coordinate to some equilibrium, and reporting statistics across different equilibria.
Specifically, we report the performance achieved by choosing the equilibria that
respectively best and worst fit the test data, thereby giving upper and lower

4One might wonder whether the ε-equilibrium solution concept solves either of these
problems. It does not: ε-equilibrium can still assign probability 0 to some actions, and relaxing
the equilibrium concept only increases the number of equilibria. Indeed, every game has
infinitely many ε-equilibria for any ε > 0. Furthermore, to our knowledge, no algorithm for
characterizing this set exists, making equilibrium selection impractical.
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bounds on the practical performance that could be achieved by any Nash-based
prediction. (Note however that because we “cheat” by choosing the equilibrium
that performs best or worst on the test set, this does not give us a model that
could actually be used in practice.) We also report the expected prediction
performance achieved by sampling a Nash equilibrium uniformly at random and
assuming that agents play this equilibrium; this model can be evaluated without
looking at the test set, and hence can be used in practice.

4.3 Computational Environment

We performed computation on the glacier, hermes, and orcinus clusters of
WestGrid (www.westgrid.ca), which have 1680 32-bit Intel Xeon CPU cores, 672
64-bit Intel Xeon CPU cores, and 9600 64-bit Intel Xeon CPU cores, respectively.
In total, computing the results reported in this paper required over 400 CPU-days
of machine time, primarily for model fitting and posterior estimation (which is
described in Section 6). Specifically, we used Gambit (McKelvey et al., 2007) to
compute QRE and to enumerate the Nash equilibria of games, and computed
maximum likelihood estimates using the Nelder–Mead simplex algorithm (Nelder
and Mead, 1965).

5 Model Comparisons

In this section we describe the results of our experiments comparing the predictive
performance of the four behavioral models from Section 2 and of the Nash-based
models of Section 4.2. Figure 1 compares our behavioral and Nash-based models.
For each model and each dataset, we give the factor by which the dataset is judged
more likely according to the model’s prediction than it is according to a uniform
random prediction. Thus, for example, the COMBO9 dataset is approximately 1018

times more likely according to Poisson-CH’s prediction than it is according to a
uniform random prediction. For the Nash Equilibrium with Error model, the
error bars show the upper and lower bounds on predictive performance obtained
by selecting an equilibrium so as to maximize or minimize test-set performance,
and the main bar shows the expected predictive performance of selecting an
equilibrium uniformly at random. For other models, the error bars indicate 95%
confidence intervals; in most cases, these intervals are imperceptibly narrow.

5.1 Comparing Behavioral Models

Poisson-CH and Lk had very similar performance in most datasets; this is
unsurprising, as the models are very similar to each other. In six datasets,
including COMBO9, the model based on cost-proportional errors (QRE) predicted
human play significantly better than the two models based on bounded iterated
reasoning (Lk and Poisson-CH). However, in four datasets, the situation was
reversed, with Lk and Poisson-CH outperforming QRE. This mixed result is
consistent with earlier comparisons of QRE with these two models (Chong et al.,
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Figure 1: Average likelihood ratios of model predictions to random predictions,
with 95% confidence intervals. Error bars for NEE show upper and lower bounds
on performance depending upon equilibrium selection; the main bar for NEE
shows the average performance over all equilibria.

2005; Crawford and Iriberri, 2007; Rogers et al., 2009), and suggests to us that,
in answer to the question posed in Section 2.3, there may be value to modeling
both bounded iterated reasoning and cost-proportional errors explicitly. If this
hypothesis is true, we might expect that our remaining model, which incorporates
both components, would predict better than models that incorporate only one
component. This was indeed the case: QLk generally outperformed the single-
component models. Overall, QLk was the strongest behavioral model, predicting
significantly best in all datasets except CVH03 and SW95 (and GH01, which we
discuss in detail below).

Earlier studies found support for quite variable proportions of level-0 agents.
Stahl and Wilson (1994) estimated 0% of the population was level-0;5 Stahl and
Wilson (1995) estimated 17%, with a confidence interval of [6%, 30%]; Haruvy
et al. (2001) estimated rates between 6–16% for various model specifications;
and Burchardi and Penczynski (2011) estimated 37% by fitting a level-k model,
and between 20–42% by eliciting subject strategies. Our fitted parameters for
the Lk and QLk models estimate proportions of level-0 agents that are at the
high end of this range (56% and 38% respectively on the COMBO9 dataset). One
possible explanation is our use of mixed data from multiple datasets; this may
yield higher estimates of level-0 agents as a way of adding noise to the estimates.
However, note that our estimate for QLk is nearly in the center of the range
that Burchardi and Penczynski (2011) estimated by directly evaluating subjects’
elicited strategies in a single game. We analyze the full distributions of parameter

5Their dataset is an outlier in our own per-dataset parameter fits; see Section 7.1.
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Figure 2: Average likelihood ratios of model predictions to random predictions,
with 95% confidence intervals, on GH01 data separated into “treasure” and
“contradiction” treatments. Error bars for NEE show upper and lower bounds
on performance depending upon equilibrium selection; the main bar for NEE
shows the average performance over all equilibria. Note that relative differences
in likelihood are not meaningful across datasets (likelihood drops with growth
in the dataset’s number of samples and underlying games’ numbers of actions).
Relative differences in likelihood are meaningful within datasets.

values in Section 7.

5.2 Comparing to Nash Equilibrium

It is already widely believed that Nash equilibrium is a poor description of
humans’ initial play in normal-form games (e.g., see Goeree and Holt, 2001).
Nevertheless, for the sake of completeness, we also evaluated the predictive power
of Nash equilibrium with error on our datasets. Referring again to Figure 1,
we see that NEE’s predictions were worse than those of every behavioral model
on every dataset except SW95. NEE’s predictions were significantly worse than
those of QLk on every dataset except SW95 and GH01.

We found NEE’s strong performance on SW95 to be surprising; we believe that
this finding may warrant additional study. In contrast, it is unsurprising that
NEE performed well on GH01, since this distribution was deliberately constructed
so that human play on half of its games (the “treasure” conditions) would be
relatively well described by Nash equilibrium. Figure 2 separates GH01 into
its “treasure” and “contradiction” treatments and compares the performance of
the behavioral and Nash-based models on these separated datasets. Note that
although NEE had a higher upper bound than QLk on the “treasure” treatment,
its expected performance was still quite poor.

In addition to the deliberate selection of “treasures”, many of GH01’s games
have multiple equilibria, which offers an advantage to our NEE model’s upper
bound (because it gets to pick the equilibrium with best test-set performance on
a per-instance basis); see Section 5.3 below.

NEE has a free parameter, ε, that indicates the probability of an agent’s
choosing an action uniformly at random. The values of ε that maximize NEE’s
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performance are extremely high. On the COMBO9 dataset, a value of ε = 0.82
maximized NEE’s average-case performance. Even best-case performance, which
is computed by choosing the post-hoc performance-maximizing equilibrium for
each game, was optimized by ε = 0.61. This does not correspond to our intuition
about why playing (part of) a Nash equilibrium would be justified. Thus, the
fact that well over half of NEE’s prediction consists of the uniform noise term
provides a strong argument against using Nash equilibrium to predict initial
play.

5.3 Dataset Composition

As we have already seen in the case of GH01, model performance is sensitive
to choices made by the authors of our various datasets about which games to
study. In this section we describe how features of these games influenced model
performance. In particular, we divided the combined dataset based on features
of the games it includes and evaluated models fit on each subset.

Overall, our datasets spanned 128 games. The vast majority of these games
are matrix games, deliberately lacking inherent meaning in order to avoid framing
effects. (Indeed, some studies (e.g., Rogers et al., 2009) even avoid “focal” payoffs
like 0 and 100.) For the most part, these games were chosen to vary according
to dominance solvability and equilibrium structure. In particular, authors were
concerned with (1) whether a game could be solved by iterated removal of
dominated strategies (either strict or weak) and with how many steps of iteration
were required; and (2) the number and type of Nash equilibria that each game
possesses. There were two exceptions. The first was the dataset of Goeree and
Holt (2001), who chose games that had both equilibria that human subjects
find intuitive and strategically equivalent variations on these games that have
equilibria that human subjects find counterintuitive. The second exception was
the dataset of Cooper and Van Huyck (2003), whose normal form games were
based on an exhaustive enumeration of the payoff orderings possible in generic
2-player, 2-action extensive-form games.

We constructed subsets of the full dataset based on their dominance solvability
and the nature of their Nash equilibria, as described in Table 2. We used the
full dataset with no subsampling rather than Combo9, as there is less concern
about one study dominating a dataset that has been filtered to contain games
of a specific type. We computed cross-validated MLE fits for each model on
each of the feature-based datasets of Table 2. The results are summarized in
Figure 3. In two respects, the results across the feature-based datasets mirror
the results of Section 5.1 and Section 5.2. First, QLk significantly outperformed
the other behavioral models on almost every dataset; the sole exception is D1,
where QLk performed insignificantly better than Lk. Second, every behavioral
model significantly outperformed NEE in all but three datasets: D1, ND and
Multi-eqm. In these three datasets, the upper and lower bounds on NEE’s
performance contain the performance of either two or all three of the single-
factor behavioral models (but not QLk). The performance of all models on the
D1 dataset is roughly similar, likely due to the ease with which various different
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Table 2: Datasets conditioned on various game features. The column headed
“games” indicates how many games of the full dataset meet the criterion, and the
column headed “n” indicates how many observations each feature-based dataset
contains. Observe that the game features are not all mutually exclusive, and so
the “games” column does not sum to 128.

Name Description Games n

D1 Weak dominance solvable in one round 2 748
D2 Weak dominance solvable in two rounds 38 5058
D2s Strict dominance solvable in two rounds 23 2000
DS Weak dominance solvable 44 5446
DSs Strict dominance solvable 28 2338
ND Not weak dominance solvable 84 6625

PSNE1 Single Nash equilibrium, which is pure 42 4431
MSNE1 Single Nash equilibrium, which is mixed 24 2509
Multi-Eqm Multiple Nash equilibria 62 5131

forms of reasoning can uncover a dominant strategy. It is unsurprising that
NEE’s upper and lower bounds would be widely separated on the Multi-eqm

dataset, since the more equilibria a game has, the more variation there can be
in these equilibria’s post-hoc performance; NEE’s strong best-case performance
on this dataset should similarly reflects this variation. It turns out that 55 of
the 84 games (and 4731 of the 6625 observations) in the ND dataset are from
the Multi-eqm dataset, which likely explains NEE’s high upper bound in that
dataset as well. Indeed, this analysis helps to explain some of our previous
observations about the GH01 dataset. NEE contains all other models in its
performance bounds in this dataset, and in addition to the fact that half the
dataset’s games (the “treasure” treatments) that were chosen for consistency
with Nash equilibrium, some of the other games (the “contradiction” treatments)
turn out to have multiple equilibria. Overall, the overlap between GH01 and
Multi-eqm is 5 games out of 10, and 250 observations out of 500.

Unlike in the per-dataset comparisons of Section 5.1, both of our iterative
single-factor models (Poisson-CH and Lk) significantly outperformed QRE in
every feature-based dataset. One possible explanation is that the filtering
features are all biased toward iterative models. However, it seems unlikely that,
e.g., both dominance-solvability and dominance-nonsolvability are biased toward
iterative models. Another possibility is that iterative models are a better model
of human behavior, but the cost-proportional error model of QRE is sufficiently
superior to the respectively simple and non-existent error models of Poisson-
CH and Lk that it outperforms on many datasets that mix game types. Or,
similarly, iterative models may fit very differently on dominance solvable and
non-dominance solvable games; in this case, they would perform very poorly on
mixed data. We explore this last possibility in more detail in Section 7.1.
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Figure 3: Average likelihood ratios of model predictions to random predictions,
with 95% confidence intervals, on feature-based datasets. For NEE the main bar
shows performance averaged over all equilibria, and error bars show post-hoc
upper and lower bounds on equilibrium performance.

6 Methods II: Analyzing Model Parameters

Making good predictions from behavioral models depends upon obtaining good
estimates of model parameters. However, these estimates can also be useful
in themselves, helping researchers to understand both how people behave in
strategic situations and whether a model’s behavior aligns or clashes with its
intended economic interpretation. Unfortunately, the method we have used so
far—finding a single set of parameters that best explains the training set, or
“maximum likelihood estimation”—is not a good way of gaining this kind of
understanding. The problem is that we have no way of knowing how much
of a difference it would have made to have set the parameters differently, and
hence how important each parameter setting is to the model’s performance. For
example, if some parameter is completely uncorrelated with predictive accuracy,
the maximum likelihood estimate will set it to an arbitrary value, from which we
would be wrong to draw economic conclusions. Similarly, if there are multiple,
very different ways of configuring the model to make good predictions, we would
not want to draw firm conclusions about how people reason based on a single
configuration.

An alternative is to use Bayesian analysis to estimate the entire posterior
distribution over parameter values, rather than estimating only a mode of this
distribution. This allows us to identify the most likely parameter values; how
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wide a range of values are argued for by the data (equivalently, how strongly the
data argues for the most likely values); and whether the values that the data
argues for are plausible in terms of our intuitions about parameters’ meanings.
In this section we derive an expression for the posterior distribution, and describe
methods for constructing posterior estimates and using them to assess parameter
importance. In Section 7 we will apply these methods to study QLk and
Poisson-CH: the former because it achieved such reliably strong performance,
and the latter because it is the model about which the most explicit parameter
recommendation was made in the literature.

6.1 Posterior Distribution Derivation

We derive an expression for the posterior distribution Pr(θ | D) by applying
Bayes’ rule, where p0(θ) is the prior distribution:

Pr(θ | D) =
p0(θ) Pr(D | θ)

Pr(D)
. (5)

Substituting in Equation (4), which gave an expression for the likelihood of the
dataset Pr(D | θ), we obtain

Pr(θ | D) =
p0(θ)

∏
di∈D Pr(ai |Gi, θ) Pr(Gi)

Pr(D)
. (6)

In practice Pr(Gi) and Pr(D) are constants, and so can be ignored:

Pr(θ | D) ∝ p0(θ)
∏
di∈D

Pr(ai |Gi, θ). (7)

Note that by commutativity of multiplication, this is equivalent to performing
iterative Bayesian updates one datapoint at a time. Therefore, iteratively
updating this posterior neither over- nor underprivileges later datapoints.

6.2 Posterior Distribution Estimation

We estimate the posterior distribution as a set of samples. When a model
has a low-dimensional parameter space, like Poisson-CH, we generate a large
number of evenly-spaced, discrete points (so-called grid sampling). This has
the advantage that we are guaranteed to cover the whole space, and hence
will not miss large, important regions. However, this approach does not work
when a model’s parameter space is large, because evenly-spaced grids require an
unreasonable number of samples. Luckily, we do not care about having good
estimates of the whole posterior distribution—what matters is getting good
estimates of regions of high probability mass. This can be achieved by sampling
parameter settings in proportion to their likelihood, rather than uniformly.
A wide variety of techniques exist for performing this sort of sampling; we
investigated extensively, and achieved the most success with a sequential Monte
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Carlo technique called annealed importance sampling, or AIS (Neal, 2001). AIS
allows for efficient sampling from high dimensional distributions, like Markov
Chain Monte Carlo (MCMC) techniques. However, each sample point generated
using AIS is independent, meaning that AIS does not exhibit the random-walk
behavior that can plague MCMC samplers.

Briefly, the annealed importance sampling procedure is as follows. A sample
#»

θ 0 is drawn from an easy-to-sample-from distribution P0. For each Pj in a
sequence of intermediate distributions P1, . . . , Pr−1 that become progressively
closer to the posterior distribution, a sample

#»

θ j is generated by drawing a sample
#»

θ ′ from a proposal distribution Q(· | #»

θ j−1), and accepted with probability

Pj(
#»

θ ′)Q(
#»

θ j−1 |
#»

θ ′)

Pj(
#»

θ j−1)Q(
#»

θ ′ | #»

θ j−1)
. (8)

If the proposal is accepted,
#»

θ j =
#»

θ ′; otherwise,
#»

θ j =
#»

θ j−1. We repeat this
procedure multiple times, obtaining one sample each time. In the end, our
estimate of the posterior is the set of

#»

θ r values, each weighted according to

P1(
#»

θ 0)P2(
#»

θ 1)

P0(
#»

θ 0)P1(
#»

θ 1)
· · · Pr−1(

#»

θ r−2)Pr(
#»

θ r−1)

Pr−2(
#»

θ r−2)Pr−1(
#»

θ r−1)
. (9)

We use a flat prior for the parameters. Although this prior is improper on
unbounded parameters such as precision, it results in a correctly normalized
posterior distribution; the posterior distribution in this case reduces to the
likelihood (Gill, 2002). For Poisson-CH, where we grid sample an unbounded
parameter, we grid sampled within a bounded range ([0, 10]), which is equivalent
to assigning probability 0 to points outside the bounds. In practice, this turns
out not to matter, as the vast majority of probability mass is concentrated near
0.

6.3 Visualizing Multi-dimensional Distributions

In the sections that follow, we present posterior distributions as cumulative
marginal distributions. That is, for every parameter, we plot the cumulative
density function (CDF)—the probability that the parameter should be set less
than or equal to a given value—averaging over values of all other parameters.
Plotting marginal distributions allows us to examine intuitive two-dimensional
plots about multi-dimensional distributions. Interaction effects between parame-
ters are thus obscured; luckily, in separate tests we have found that for our data
these are not a major factor. Plotting cumulative density functions allows us to
visualize an entire continuous distribution without having to estimate density
from discrete samples, thus sparing us manual decisions such as the width of
bins for a histogram.
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Figure 4: Cumulative posterior distributions for Poisson-CH’s τ parameter. Bold
trace is the combined dataset; solid trace is the outlier Stahl and Wilson (1994)
source dataset; dotted traces are all other source datasets.

7 Bayesian Analysis of Model Parameters

In this section we analyze the posterior distributions of the parameters for two
of the models compared in Section 5: Poisson-CH and QLk. For Poisson-CH, we
computed the likelihood for each value of τ ∈ {0.01k | k ∈ N, 0 ≤ 0.01k ≤ 10},
and then normalized by the sum of the likelihoods. For QLk, we used annealed
importance sampling. For the initial sampling distribution P0, we used a
product distribution over the population proportion parameters and the precision
parameters. For the population proportion parameter components we used a
Dirichlet distribution Dir(1, 1, 1); this is equivalent to uniformly sampling over
the simplex of all possible combinations of population proportions. For the
precision parameter components we used the renormalized non-negative half
of a univariate Gaussian distribution N (0, 22) for each precision parameter;
this gives a distribution that is decreasing in precision (on the assumption
that higher precisions are less likely than lower ones), and with a standard
deviation of 2, which was large enough to give a non-negligible probability to
most precision estimates from the literature. For the proposal distribution, we
chose a product distribution “centered” at the current value, with proportion
parameters #»α ′ sampled from Dir(20 #»αj−1), and each precision parameter λ′

sampled from N (λj−1, 0.2
2) (truncated at 0 and renormalized). We chose

the “hyperparameters” for the Dirichlet distribution (20) and the precision
distributions (0.22) by trial and error on a small subset of the data to bring the
acceptance rate close to the standard heuristic value of 0.5 (Robert and Casella,

2004). We used 200 intermediate distributions of the form Pj(
#»

θ ) = Pr(
#»

θ | D)γj ,
with the first 40 γj ’s spaced uniformly from 0 to 0.01, and the remaining 160
γj ’s spaced geometrically from 0.01 to 1, as in the original AIS description (Neal,
2001). We performed 5 Metropolis updates in each distribution before moving
to the next distribution in the chain.
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Figure 5: Distributions for the Poisson-CH and QRE models on the combined
dataset (COMBO9), non-dominance-solvable games only (ND), and dominance-
solvable games only (DS). Left: cumulative distribution of τ parameter of
Poisson-CH; Right: cumulative distribution of λ parameter of QRE.

7.1 Poisson-CH

In an influential recommendation from the literature, Camerer et al. (2004)
suggest6 setting the τ parameter of the Poisson-CH model to 1.5. Our Bayesian
analysis techniques allow us to estimate CDFs for this parameter on each of our
datasets (see Figure 4). Overall, our analysis strongly contradicts Camerer et al.’s
recommendation. On COMBO9, the posterior probability of 0.51 ≤ τ ≤ 0.59 is
more than 99%. Every other source dataset had a wider 99% credible interval (the
Bayesian counterpart to confidence intervals) for τ than COMBO9, as indicated by
the higher slope of COMBO9’s cumulative density function (since smaller datasets
lead to less confident predictions). Nevertheless, all but two of the source datasets
had median values less than 1.0. Only the Stahl and Wilson (1994) dataset
(SW94) supports Camerer et al.’s recommendation (median 1.43). However, SW94
appears to be an outlier; its credible interval is wider than that of the other
distributions, and the distribution is very multimodal, likely due to the dataset’s
small size.

As we speculated in Section 5.3, Poisson-CH does indeed appear to treat
dominance-solvable games differently from non-dominance-solvable games. The
left panel of Figure 5 compares the cumulative distribution for τ on the combined
dataset to CDFs for non-dominance-solvable games only and for dominance-
solvable games only. The τ parameter has a nearly identical credible interval for
non-dominance-solvable games as for the full combined dataset. In contrast, for
dominance-solvable games the τ parameter’s 99% credible interval is [0.91, 1.01].
In contrast, the fits for QRE’s precision (λ) parameter are nearly identical for
the three game types. In fact, the best-fitting precision for dominance-solvable
games is actually slightly smaller, leading to a higher-entropy prediction. This
explains how iterative models could outperform QRE on every feature-based
dataset in Section 5.3, in spite of being frequently outperformed by QRE in

6 Although Camerer et al. phrase their recommendation as a reasonable “omnibus guess,”
it is often cited as an authoritative finding (e.g., see Carvalho and Santos-Pinto, 2010; Frey
and Goldstone, 2011; Choi, 2012; Goodie et al., 2012).
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Figure 6: Marginal cumulative posterior distribution functions for the level
proportion parameters (α1, α2; top panel) and precision parameters (λ1, λ2, λ1(2);
bottom panel) of the QLk model on the combined dataset.

Section 5.1: the features used to separate games in Section 5.3 tend to cluster
dominance-solvable and non-dominance-solvable games, and the iterative models
can adapt their predictions accordingly, whereas QRE’s predictions are not
influenced by a game’s dominance solvability or lack thereof.

7.2 QLk

Figure 6 gives the marginal cumulative posterior distributions for each of the
parameters of the QLk model. (That is, we computed the five-dimensional
posterior distribution, and then extracted from it the five marginal distributions
shown here.) We found these distributions surprising for several reasons. First,
the models predict many more level-2 agents than level-1 agents. In contrast, it
is typically assumed that higher level agents are scarcer, as they perform more
complex strategic reasoning. Even more surprisingly, the model predicts that
level-1 agents should have much higher precisions than level-2 agents. This is odd
if the level-2 agents are to be understood as “more rational”; indeed, precision is
sometimes interpreted as a measure of rationality (e.g., see Weizsäcker, 2003;
Gao and Pfeffer, 2010). Third, the distribution of λ1(2), the precision that
level-2 agents ascribe to level-1 agents, is very concentrated around very small
values ([0.023, 0.034]). This differs by two orders of magnitude from the “true”
value of λ1, which is quite concentrated around its median value of 3.1. Finally,
disregarding the ordering of λ1 and λ2, the median value of λ1 (3.1) is nearly 20
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times larger than that of λ2 (0.18). It seems unlikely that level-1 agents would
be an order of magnitude more sensitive to utility differences than level-2 agents.

One interpretation is that the QLk model is essentially accurate, and these
parameter values simply reflect a surprising reality. For example, the low precision
of level-2 agents and the even lower precision that they (incorrectly) ascribe to
the level-1 agents may indicate that two-level strategic reasoning causes a high
cognitive load, which makes agents more likely to make mistakes, both in their
own actions and in their predictions. The main appeal of this explanation is
that it allows us to accept the QLk model’s strong performance at face value.
Alternately, we might worry that QLk fails to capture some crucial aspect of
experimental subjects’ strategic reasoning. For example, if the higher-level agents
reasoned about all lower levels rather than only one level below themselves, then
the low value of λ1(2) could predict well because it “simulates” a model where
level-2 agents respond to a mixture of level-0 and level-1 agents. We investigate
this second possibility in the next section.

8 Model Variations

In this section, we investigate the properties of the QLk model by evaluating
the predictive power of a family of systematic variations of the model. In the
end, we identify a simpler model that dominates QLk on our data, and which
also yields much more reasonable marginal distributions over parameter values.

Specifically, we constructed a family of models by modifying the QLk model
along four different axes. First, QLk assumes a maximum level of 2; we considered
maximum levels of 1 and 3 as well. Second, QLk assumes inhomogeneous
precisions in that it allows each level to have a different precision; we varied this
by also considering homogeneous precision models. Third, QLk allows general
precision beliefs that can differ from lower-level agents’ true precisions; we also
constructed models that make the simplifying assumption that all agents have
accurate precision beliefs about lower-level agents. Finally, in addition to Lk
beliefs (where all other agents are assumed by a level-k agent to be level-(k− 1)),
we also constructed models with CH beliefs (where agents believe that the
population consists of the true, truncated distribution over the lower levels). We
evaluated each combination of axis values; the 17 resulting models7 are listed
in the top part of Table 3. In addition to the 17 exhaustive axis combinations
for models with maximum levels in {1, 2, 3}, we also evaluated (1) 12 additional
axis combinations that have higher maximum levels and 8 parameters or fewer:
ai-QCH4 and ai-QLk4; ah-QCH and ah-QLk variations with maximum levels
in {4, 5, 6, 7}; and (2) ah-QCH and ah-QLk variations that assume a Poisson
distribution over the levels rather than using an explicit tabular distribution.8

These additional models are listed in the bottom part of Table 3.

7When the maximum level is 1, all combinations of the other axes yield identical predictions.
Therefore there are only 17 models instead of 3 · 23 = 24.

8The ah-QCHp model is equivalent to the CH-QRE model of Camerer et al. (2011).
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Figure 7: Model simplicity vs. prediction performance. QLk1 is omitted because
its far worse performance (∼ 1018) distorts the figure’s scale.

8.1 Simplicity Versus Predictive Performance

We evaluated the predictive performance of each model on the COMBO9 dataset
using 10-fold cross-validation repeated 10 times, as in Section 5. The results are
given in the last column of Table 3 and plotted in Figure 7.

All else being equal, a model with higher performance is more desirable, as
is a model with fewer parameters. We can plot an “efficient frontier” of those
models that achieved the (statistically significantly) best performance for a given
number of parameters or fewer; see Figure 7. The original QLk model (gi-QLk2)
is not efficient in this sense; it is dominated by ah-QCH3, which has significantly
better predictive performance and fewer parameters (due to restricting agents
to homogeneous precisions and accurate beliefs). Our analysis thus argues that
the flexibility added by inhomogeneous precisions and general precision beliefs
is less important than the number of levels and the choice of population belief.
Conversely, the poor performance of the Poisson variants relative to ah-QCH3

indicates that flexibility in describing the level distribution is more important
than the total number of levels modeled.

There is a striking pattern in the models along the efficient frontier: this
set consists exclusively of models with accurate precision beliefs, homogeneous
precisions, and cognitive hierarchy beliefs.9 This suggests that the most parsi-

9One might be interested in a weaker definition of the efficient frontier, saying that a model
is efficient if it achieves significantly better performance than all efficient models with fewer
parameters, rather than all models with fewer parameters. In this case the efficient frontier
consists of all models previously identified as efficient plus ah-QCH7 and gi-QLk3. Our original
definition rejects gi-QLk3 because it did not predict significantly better than gh-QLk3, which
in turn did not predict significantly better than ah-QCH5.
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Table 3: Model variations with prediction performance on the COMBO9 dataset;
the models with max level of ∗ used a Poisson distribution.

Name
Max
Level

Population
Beliefs Precisions

Precision
Beliefs Parameters

Log likelihood
vs. u.a.r.

QLk1 1 n/a n/a n/a 2 18.37± 0.12
gi-QLk2 2 Lk inhomo. general 5 29.18± 0.03
ai-QLk2 2 Lk inhomo. accurate 4 26.75± 0.19
gh-QLk2 2 Lk homo. general 4 28.64± 0.04
ah-QLk2 2 Lk homo. accurate 3 26.18± 0.03
gi-QCH2 2 CH inhomo. general 5 28.17± 0.16
ai-QCH2 2 CH inhomo. accurate 4 27.39± 0.18
gh-QCH2 2 CH homo. general 4 27.90± 0.03
ah-QCH2 2 CH homo. accurate 3 27.44± 0.02
gi-QLk3 3 Lk inhomo. general 9 30.57± 0.17
ai-QLk3 3 Lk inhomo. accurate 6 29.54± 0.27
gh-QLk3 3 Lk homo. general 7 30.35± 0.20
ah-QLk3 3 Lk homo. accurate 4 27.27± 0.03
gi-QCH3 3 CH inhomo. general 10 30.35± 0.24
ai-QCH3 3 CH inhomo. accurate 6 29.96± 0.11
gh-QCH3 3 CH homo. general 8 30.29± 0.12
ah-QCH3 3 CH homo. accurate 4 29.47± 0.02

ai-QLk4 4 Lk inhomo. accurate 8 30.05± 0.26
ah-QLk4 4 Lk homo. accurate 5 27.30± 0.03
ah-QLk5 5 Lk homo. accurate 6 27.11± 0.11
ah-QLk6 6 Lk homo. accurate 7 27.02± 0.10
ah-QLk7 7 Lk homo. accurate 8 26.99± 0.12
ah-QLkp * Lk homo. accurate 2 27.34± 0.02
ai-QCH4 4 CH inhomo. accurate 8 29.86± 0.20
ah-QCH4 4 CH homo. accurate 5 29.82± 0.05
ah-QCH5 5 CH homo. accurate 6 30.20± 0.04
ah-QCH6 6 CH homo. accurate 7 30.25± 0.03
ah-QCH7 7 CH homo. accurate 8 30.33± 0.02
ah-QCHp * CH homo. accurate 2 27.70± 0.02

monious way to model human behavior in normal-form games is to use a model
of this form, with the tradeoff between simplicity (i.e., number of parameters)
and predictive power determined solely by the number of levels modeled. For
the COMBO9 dataset, adding additional levels yielded small increases in predictive
power until level 5, after which it yielded no further, statistically significant
improvements. Thus, Figure 7 includes ah-QCH4 and ah-QCH5 as part of the
efficient frontier.

8.2 Parameter Analysis for ah-QCH3

We are now in a position to answer some of the questions from Section 7.2 by
examining marginal posterior distributions from a member of our new family
of “efficient” models (see Figure 8). We first note that, in contrast to QLk’s
multimodal, jagged parameter CDFs, the parameter CDFs for ah-QCH3 are
smooth and (nearly) unimodal. This suggests that ah-QCH3 is a much more
robust model; its prediction quality is less likely to change drastically as a result
of small changes in parameter values.

Second, the posterior distribution for the precision parameter λ is concen-
trated around 0.20, which is very close to the QLk model’s estimate for λ2. This
suggests that QLk’s much lower estimate for λ1(2) may have been the closest

25



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

Level proportions

α1
α2
α3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

Precisions

λ

Figure 8: Marginal cumulative posterior distributions for the level proportion
parameters (α1, α2, α3; top panel) and precision parameter (λ; bottom panel) of
the ah-QCH3 model on the combined dataset.

that the model could get to having the level-2 agents best respond to a mixture
of level-0 and level-1 agents (as in cognitive hierarchy). It is unclear whether
the order-of-magnitude differences and counterintuitive ordering of λ1 and λ2
are similar effects where QLk’s parameters are set in a way that “simulates” the
assumptions of a more accurate model. However, one of our counter-intuitive
findings is confirmed: as with QLk, for the ah-QCH3 model we predict more
level-2 agents than level-1. In fact, the ah-QCH3 model predicts even fewer level-1
agents than QLk. Furthermore, this prediction appears to be robust across mod-
els on our efficient frontier, as illustrated in Figure 9. There is broad agreement
among all models on the proportion of level-0 agents, and the tabular-distribution
models all select bimodal distributions that assign relatively little weight to
level-1 agents, and more to higher-level agents (level-2 and higher). This gives
us an intuitive explanation for ah-QCHp’s poor performance: it models the level
distribution as a (unimodal) Poisson. In order to get the “right” number of
level-0 agents, ah-QCHp must place a great deal of weight on level-1 agents as
well.

8.3 Spike-Poisson

We reasoned that a Poisson distribution might be better able to fit our data
if the proportion of level-0 agents were specified separately. This would offer
the advantage of representing higher-level agents without needing a separate
parameter for each level. In this section, we evaluate an ah-QCH model that uses
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Figure 9: Marginal cumulative posterior distributions of levels of reasoning for
efficient frontier models.
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just such a distribution: a mixture of a deterministic distribution of level-0 agents
and a standard Poisson distribution. We refer to this mixture as a “spike-Poisson”
distribution. Because we will end up recommending its use, we define the full
Spike-Poisson QCH model here.

Definition 6 (Spike-Poisson Quantal Cognitive Hierarchy (QCH) model). Let
πSPi,m ∈ Π(Ai) be the distribution over actions predicted for an agent i with level
m by the Spike-Poisson QCH model. Let

f(m) =

{
ε+ (1− ε)Poisson(m; τ) if m = 0,

(1− ε)Poisson(m; τ) otherwise.

Let QBRGi (s−i;λ) denote i’s quantal best response in game G to the strategy
profile s−i, given precision parameter λ. Let

πSPi,0:m =

m∑
`=0

f(`)
πSPi,`∑m
`′=0 f(`′)

be the “truncated” distribution over actions predicted for an agent conditional
on that agent’s having level 0 ≤ ` ≤ m. Then πSP is defined as

πSPi,0 (ai) = |Ai|−1,
πSPi,m(ai) = QBRGi (πSPi,0:m−1).

The overall predicted distribution of actions is a weighted sum of the distributions
for each level:

Pr(ai | τ, ε, λ) =

∞∑
`=0

f(`)πSPi,` (ai).

The model thus has three parameters: the mean of the Poisson distribution τ ,
the spike probability ε, and the precision λ.

Figure 10 compares the performance of ah-QCH-sp to the ah-QCH models of
Section 8.1; for reference, QLk is also included. The three-parameter ah-QCH-sp
model outperforms every model except for ah-QCH5. In particular, it outper-
forms ah-QCH3 and ah-QCH4, despite having fewer parameters than either. A
likely explanation is that accurately modeling high-level agents (e.g., level 5) is
sufficiently important that ah-QCH-sp, which includes these agents, outperforms
the models that do not; but accurately modeling the shape of the distribution
of level-4 and level-5 agents is more important than including levels 6 and up,
hence ah-QCH5 outperforms ah-QCH-sp. Overall, given the small improvement
in performance between ah-QCH-sp and ah-QCH5 compared to the doubling in
the number of parameters required, we recommend the use of Spike-Poisson
QCH for predicting human play in unrepeated normal-form games.
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Figure 10: Model simplicity (number of parameters) versus prediction perfor-
mance on the COMBO9 dataset, comparing the ah-QCH models of Section 8.1, QLk,
and ah-QCH-sp.

8.4 Generalization Performance on Unseen Games

In our performance comparisons thus far, we have used cross-validation at the
level of individual datapoints (Gi, ai). This means that with very high probability,
every game in every testing fold also appeared in the corresponding training set.
That is, we never evaluate a model’s predictions on an entirely unseen game. The
reader might worry that this undermines our claim that we can use a model fit
on one set of games to predict behavior in other, unseen games. We checked this
claim by comparing the performance of the models of Section 5.1, plus the three
“efficient” models from Figure 10, using a modified cross-validation procedure. In
the modified procedure, we divided our combined dataset into folds containing
equal numbers of games, with all of the datapoints for a given game belonging
to a single fold. Hence, we evaluated each model entirely using games that were
absent from the training set. As before, we report the average of 10 splits into
folds to reduce variance in our estimates.

Figure 11 shows the generalization performance of the QRE, Poisson-CH, Lk,
QLk, ah-QCHp, ah-QCH-sp, and ah-QCH5 models on the COMBO9 dataset under
both cross-validation procedures. Overall, performance was virtually identical
under the two procedures, suggesting that the models generalize well to unseen
games. For the efficient-frontier games we observed small but significant degra-
dations in performance on unseen games; the other models had indistinguishable
performance.
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Figure 11: Generalization performance of the QRE, Poisson-CH, Lk, QLk,
ah-QCHp, ah-QCH-sp, and ah-QCH5 models on the COMBO9 dataset, under two
different cross-validation regimes: one in which data are divided at the level of
observations, and one in which the data are divided at the level of games. In the
latter condition, models are evaluated entirely on games that are absent from
the training data.

9 Related Work

Our work has been motivated by the question, “What model is best for predicting
human behavior in general, simultaneous-move games?” Before beginning our
study, we conducted an exhaustive literature survey to determine the extent to
which this question had already been answered. Specifically, we used Google
Scholar to identify all (1698) citations to the papers introducing the QRE,
CH, Lk and QLk models (McKelvey and Palfrey, 1995; Camerer et al., 2004;
Costa-Gomes et al., 2001; Nagel, 1995; Stahl and Wilson, 1994), and manually
checked every reference. We discarded superficial references, papers that simply
applied one of the models to an application domain, and papers that studied
repeated games. This left us with a total of 21 papers (including the four with
which we began), which we summarize in Table 4. Overall, we found no paper
that compared the predictive performance of all four models. Indeed, there
were two senses in which the literature focused on different issues. First, it
appears to be concerned more with explaining behavior than with predicting
it. Thus, comparisons of out-of-sample prediction performance were rare. Here
we describe the only exceptions that we found: Morgan and Sefton (2002) and
Hahn et al. (2010) evaluated prediction performance using held-out test data;
Camerer et al. (2004) and Chong et al. (2005) computed likelihoods on each
individual game in their datasets after using models fit to the n− 1 remaining
games; Crawford and Iriberri (2007) compared the performance of two models
by training each model on each game in their dataset individually, and then
evaluating the performance of each of these n trained models on each of the n−1
other individual games; and Camerer et al. (2011) evaluated the performance
of QRE and cognitive hierarchy variants on one experimental treatment using
parameters estimated on two separate experimental treatments. Second, most
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of the papers compared a single one of the four models (often with variations)
to Nash equilibrium. Indeed, only six of the 21 studies (listed in the bottom
portion of Table 4) compared more than one of the four key models. Only three
of these studies explicitly compared the prediction performance of more than
one of the four models (Chong et al., 2005; Crawford and Iriberri, 2007; Camerer
et al., 2011); the remaining three performed comparisons in terms of training set
fit (Camerer et al., 2001; Costa-Gomes et al., 2009; Rogers et al., 2009).

Rogers et al. (2009) proposed a unifying framework that generalizes both
Poisson-CH and QRE, and compared the fit of several variations within this
framework. Notably, their framework allows for quantal response within a cog-
nitive hierarchy model. Their work is thus similar to our own search over a
system of QLk variants, but there are several differences. First, we compared
out-of-sample prediction performance, not in-sample fit. Second, Rogers et al.
restricted the distributions of types to be grid, uniform, or Poisson distributions,
whereas we considered unconstrained discrete distributions. Third, they required
different types to have different precisions, while we did not. Finally, we consid-
ered level-k beliefs as well as cognitive hierarchy beliefs, whereas they compared
only cognitive hierarchy belief models (although their framework in principle
allows for both).

One line of work from the computer science literature also meets our criteria
of predicting action choices and modeling human behavior (Altman et al., 2006).
This approach learns association rules between agents’ actions in different games
to predict how an agent will play based on its actions in earlier games. We did
not consider this approach in our study, as it requires data that identifies agents
across games, and cannot make predictions for games that are not in the training
dataset. Nevertheless, such machine-learning-based methods could clearly be
extended to apply to our setting; investigating their performance would be a
worthwhile direction for future work.

10 Conclusions

To our knowledge, ours is the first study to address the question of which of the
QRE, level-k, cognitive hierarchy, and quantal level-k behavioral models is best
suited to predicting unseen human play of normal-form games. We explored the
prediction performance of these models, along with several modifications. We
found that bounded iterated reasoning and cost-proportional errors are both
critical ingredients in a predictive model of human game theoretic behavior. The
best-performing models we studied (QLk and the QCH family) combine both of
these elements.

Bayesian parameter analysis is a valuable technique for investigating the
behavior and properties of models, particularly because it is able to make
quantitative recommendations for parameter values. We showed how Bayesian
parameter analysis can be applied to derive concrete recommendations for the
use of an existing model, Poisson-CH, differing substantially from advice in the
literature. We also uncovered anomalies in the parameter settings of the best-
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Table 4: Existing work. ‘f’ indicates comparison of training sample fit only; ‘t’
indicates statistical tests of training sample performance; ‘p’ indicates evaluation
of out-of-sample prediction performance.

Paper Nash QLk Lk CH QRE

Stahl and Wilson (1994) t t
McKelvey and Palfrey (1995) f f
Stahl and Wilson (1995) f t
Costa-Gomes et al. (1998) f f
Haruvy et al. (1999) t
Costa-Gomes et al. (2001) f f
Haruvy et al. (2001) t
Morgan and Sefton (2002) f p
Weizsäcker (2003) t t
Camerer et al. (2004) f p
Costa-Gomes and Crawford (2006) f f
Stahl and Haruvy (2008) t
Rey-Biel (2009) t t
Georganas et al. (2010) f f
Hahn et al. (2010) p

Camerer et al. (2001) f f
Chong et al. (2005) f p p
Crawford and Iriberri (2007) p p p
Costa-Gomes et al. (2009) f f f f
Rogers et al. (2009) f f f
Camerer et al. (2011) p p

performing existing model (QLk), which led us to evaluate systematic variations
of its modeling assumptions. In the end, we identified a new model family (the
accurate precision belief, homogeneous-precision QCH models) that allows the
modeler to trade off complexity against performance along an efficient frontier of
models simply by adjusting a single dimension (the number of levels). Further
analysis of this family allowed us to construct a particular three-parameter
specification (“Spike-Poisson QCH”, or ah-QCH-sp) that has outperformed ev-
ery other model we considered that had fewer than six parameters. We thus
recommend the use of this model by researchers wanting to predict human play
in (unrepeated) normal-form games.

One direction for future work is to explore applications of ah-QCH models for
modeling behavior in practical settings such as markets or bargaining. Another
is to apply the techniques presented to evaluate models in different settings, for
example models that have been extended to account for learning and non-initial
play, including repeated-game and extensive-form game settings.
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