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ABSTRACT
We tackle the complex problem of determining entailment relation-
ships between case law documents, one of the tasks in the Compe-
tition on Legal Information Extraction and Entailment (COLIEE).
With input of an entailed fragment from a case coupled with a can-
didate entailing paragraph from a noticed case, our approach relies
on four main components: (1) extraction of similarity measures be-
tween the two pieces of text; (2) application of a transformer-based
technique on the input text; (3) applying a threshold-based classi�er;
and (4) post-processing the results considering the a priori proba-
bility determined by the data distribution on the training samples
and combining the results of (1) and (2). Our experiments achieved
an F-score of 0.70 on the o�cial COLIEE test dataset, ranking �rst
among all competitors for that task in the 2019 competition.

CCS CONCEPTS
• Information systems → Content analysis and feature se-
lection; Similarity measures; Clustering and classi�cation;
Document topic models; Information extraction; Specialized informa-
tion retrieval.
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imbalanced datasets
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1 INTRODUCTION
Every day, large volumes of legal data are produced by law �rms,
law courts, independent attorneys, legislators, and many other
sources. In that scenario, management of legal information be-
comes manually intractable, and requires the development of tools
which automatically or semi-automatically aid legal professionals
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in handling the information overload. In the COLIEE competition,
four facets of that challenge are presented: case law retrieval, case
law entailment, statute law retrieval and statute law entailment.
Here we provide the details of our approach to the task of case law
entailment, evaluate the results achieved and comment on future
work to further improve our model.

The initial approaches for open-domain textual entailment fo-
cused on shallow text features, evolved to the use of word embed-
dings, logical models and machine learning in general, and more
recently the literature shows that deep learning based approaches
have shown impressive results in a wide range of textual entailment
benchmarks.

Past approaches for legal text entailment have relied on machine
learning techniques with speci�c feature extraction, or on the use
of some distributed vector representation of the text pieces, associ-
ation rules and semantic knowledge representation. Re-sampling
techniques have also been used to overcome the data imbalance
problem. A similar problem to the case law entailment, also cov-
ered in COLIEE, is statute law entailment. For that task, the con-
sistently best performance accross all past COLIEE editions has
been achieved by a combination of condition/conclusion/exception
detection rules and negation handling.

The method for case law entailment presented in this paper
combines similarity based features which rely on multi-word to-
kens instead of single words, in an attempt to capture deeper se-
mantics from the text, and further exploits the BERT framework
[13], �ne-tuned to the task of case law entailment on the provided
training dataset. Similar to our approach to COLIEE 2018 [27], a
post-processing step is used and considers a priori probabilities,
being applied at the end of the pipeline (see section 3 for details).
This method achieved the best F-score among all competing teams
on the COLIEE 2019 edition, as shown in section 4. As future work,
we plan on investigating more structure-aware techniques (such as
dependency trees comparison), perform training of BERT and other
transformer-based tools with case law speci�c data, and deepen our
analysis of the application of “embeddings-like” representations for
this problem.

The rest of this paper is organized as follows: in Section 2 we
brie�y review open domain textual entailment and the special case
of case law entailment. Section 3 describes our approach. Section 4
describes our experiments with an analysis of the results. In Section
5 we conclude the paper and comment on future work.
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2 RELATEDWORK
Textual entailment is a logic task in which the goal is to determine
whether one sentence can be inferred from another. In the more
general case, the task consists of categorizing an ordered pair of
sentences into one of three categories: “positive entailment” occurs
when one can use the �rst sentence to prove that a second sentence
is true. Conversely, “negative entailment” occurs when the �rst
sentence can be used to disprove the second sentence. Finally, if
the two sentences have no correlation, they are considered to have
a “neutral entailment”. In COLIEE, teams are challenged with the
task of classifying two case law textual fragments possessing a
“positive entailment” relationship or not (i.e., they have “neutral
entailment”).

In the following subsections, we will discuss related research on
textual entailment in general and techniques developed speci�cally
for case law entailment.

2.1 Open-domain Textual Entailment
Textual entailment is useful as a task per se or as a component in
larger applications. For example, question-answering systems may
apply textual entailment techniques to identify an answer from
previously stored databases [3], [24]. Textual entailment may also
be used to enhance document summarization (e.g., being used to
measure sentence connectivity [14], or as additional features to the
summary generation [22]). Due to the recent increased interest on
textual entailment research, publicly available benchmarks exist to
evaluate such systems (e.g., [5], [30]).

Early approaches for open-domain textual entailment relied
heavily on exploiting surface syntax or lexical relationships [10],
and then a wide range of tools, such as word embeddings, logical
models, graphical models, rule systems and machine learning were
applied [1]. A modern research trend for open-domain textual en-
tailment is an application of general deep learning models, such as
ELMo [26], BERT [13] and ULMFit [17].

These methods build on the approach introduced in [12], which
showed how to improve document classi�cation performance by
using unsupervised pre-training of an LSTM [15] followed by super-
vised �ne-tuning for speci�c downstream tasks. The pre-training is
done on very large datasets, which do not need to be labeled and are
intended to capture general language knowledge (usually, the pre-
training is modelled as a language modeling task). Then, supervised
learning is used as a �ne-tuning step, thus requiring a signi�cantly
smaller labeled dataset, aiming at adjusting the weights of the �nal
layers of the model and making it suitable for the speci�c task.
These models have achieved impressive results in a wide range of
publicly available benchmarks of di�erent common natural lan-
guage tasks, such as RACE (reading comprehension) [20] , COPA
(common sense reasoning) [29], CoLA (linguistic acceptability) [31]
and RTE (textual entailment) [11] to name a few.

2.2 Case Law Textual Entailment
The speci�c task of assessing textual entailment for case law docu-
ments is quite new. The �rst COLIEE edition which included this
task was in 2018 [18], and the two best performing approaches are
described below.

Chen et al. [9] proposed the application of association rules for
the problem. They applied a machine learning-based model using
Word2Vec embeddings [23] and Doc2Vec [21] as features. This ap-
proach faces two main problems: the lack of su�cient training data
to make the models converge and generalize, and the computa-
tional cost of training which increases exponentially on the size of
the dataset. To overcome this scalability issue, they proposed two
association rule models: (1) the basic association rule model, which
considers only the similarity between the source document and the
target document, and (2) the co-occurrence association rule model,
which uses a relevance dictionary in addition to the basic model.

Another approach [27] worth mentioning approached the task as
a binary classi�cation problem, and built feature vectors comprised
of the measures of similarity between the candidate paragraph and
(1) the entailed fragment of the base case, (2) the base case sum-
mary and (3) the base case paragraphs (actually a histogram of the
similarities between each candidate paragraph and all paragraphs
from the base case). Those feature vectors are used as input to a
Random Forest [6] classi�er and the results are post-processed to
consider a priori knowledge (similarly to what we have done for
this COLIEE edition - see Section 3). To overcome the problem of
severe data imbalance in the dataset (with less than 3% of the exam-
ples being true entailment relationships), the dominant class was
under-sampled and the rarer class was over-sampled by SMOTE
sample synthesis [8]. This approach ranked �rst place in the case
law entailment task of COLIEE 2018.

In addition to that speci�c task on case law entailment, past edi-
tions of COLIEE included a task on statute law entailment, whose
goal is to identify entailment relationships between Japanese bar
exam questions and relevant legal articles. The best performance
on that task for all past COLIEE editions has been achieved by a
combination of legal information retrieval and textual entailment
approach, which exploits semantic information using a logic-based
representation [19]. A meaning extraction process uses a selection
of features based on a kind of paraphrase, coupled with a condi-
tion/conclusion/exception analysis of articles and queries, and also
exploiting negation patterns extracted from the articles. The logic-
based representation is then constructed as a semantic analysis,
which is used to classify questions according to their di�culty level
by analyzing the logic representation. If a question is in the “easy”
category, the entailment answer is obtained in a straightforward
manner from the logic representation; otherwise, an unsupervised
learning method is applied.

3 OUR APPROACH
The task of case law entailment in COLIEE may be de�ned as
follows: given a base case b and one fragment of text f contained
within b, and a second case r which is relevant in respect to b, the
task consists in determining which paragraph(s) of r entail f . More
formally, given b, f and r as above (r represented by its paragraphs
P = {p1,p2, ...,pn }), we need to �nd the set E = {p1,p2, ...,pm |
pi 2 P} where entails(pi , f ) denotes a relationship which is true
when pi 2 P entails the fragment f .

We treat that problem as a binary classi�cation problem, by
considering each paragraph pi in r as a candidate, which must then
be classi�ed as entailing f or not. To do so, we created a classi�er
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which processes each pair (pi , f ) and uses as features two measures
of similarity and the output of BERT for a text entailment task: (1)
a cosine measure [2] which uses multiple word tokens to represent
the text fragments; (2) a cosine measure which considers only the
noun-phrases of the text; and (3) the con�dence level of the BERT
framework for the text fragments. A score combining those values
is computed and thresholds are empirically determined to generate
the (partial) output, which is post-processed considering the a priori
probability of the training dataset. More details on each of these
components is given in the next subsections.

3.1 Multi-word Token Similarity
An immediate classic technique for measuring similarity between
documents is the representation of the text as a bag of words, and
then calculating the cosine distance between those document rep-
resentations in the vector space. Usually, some auxiliary methods
such as stop words removal, stemming and fuzzy string match-
ing can be applied in support of that process. However, often the
text tokenization considers each word as a token (i.e., punctuation
marks and spaces are seen as token delimiters), thus completely
neglecting the possibility that sentences formed by the same words
in di�erent order may have di�erent meanings. For example, this
method would consider as indentical the sentences (a) “the big dog
jumped over the lazy cat” and (b) “the big cat jumped over the lazy
dog.”

In order to capture deeper semantics, we replaced the usual tok-
enization as follows: instead of considering each word as a token,
our method actually tokenizes the input text considering punctu-
ation marks and stop words as delimiters. We are thus able to (1)
retain the words which carry semantics and (2) consider the appro-
priate modi�ers. In the example above, our method would output
the tokens “big dog jumped over”, “lazy cat” and “big cat jumped
over”, “lazy dog” as tokens for sentences (a) and (b) respectively.

Once we identify the multi-word tokens, we applied stemming
to the individual words just to avoid missing valid matches due to
plurals or in�ected verb forms, and then calculated the distance
between the text fragments using the regular cosine distance. Sim-
ilarly, we also extracted the noun-phrases of the text fragments
using spaCy [16]. The �nal model uses a combination of all simi-
larity metrics whose individual performance is shown in Section 3.
See the details on how the metrics are combined on subsection 3.2.

3.2 Final Similarity Score Calculation
After running the components described above, we end up with
two similarity scores associated with each (f ,pi ) pair. We gener-
ate the �nal compound score for each pair by applying a simple
weighted average of the two similarity scores, weighing the multi
word-token similarity score as twice the weight of the noun-phrase
similarity score (weights de�ned empirically after the analysis of
each component individual result on this task - see Section 4). Our
�nal score is given by the equation below:

score(f ,pi ) =
2 ⇤MWT (f ,pi ) + NP(f ,pi )

3

where MWT represents the calculated multi word-token similarity
and NP represent the calculated noun-phrase similarity.

We then de�ne a minimum similarity threshold. All candidates
whose score is greater or equal to that threshold make to the partial
results, which will be post-processed. The BERT contribution to
the �nal model comes during the post-processing, described in
Subsection 3.4.

3.3 BERT Con�dence Score
Another component of our method used BERT [13], a framework
designed to pre-train deep bidirectional representations by jointly
conditioning on both left and right context in all layers. This leads
to pre-trained representations which can be �ne-tuned with only
one additional output layer on downstream tasks, such as question
answering, language inference and textual entailment, but without
requiring task-speci�c modi�cations.

BERT is pre-trained on a large dataset (the goal being make it
acquire general language “knowledge”) and can be �ne-tuned on
relatively small, speci�c datasets (the goal being to make it learn
how to combine the previously acquired knowledge in a speci�c
scenario). This makes BERT a good �t for this task, since we do not
have a large dataset available for training the model. To make use
of BERT in our experiments, we �ne tuned it using our training
dataset (except for the validation dataset, which was used as the test
set for the generated model, and a development dataset, required
by the BERT �ne tuning process, which was about the size of our
validation dataset). To process the o�cial COLIEE test dataset, we
used the full training dataset to �ne-tune the model.

BERT has achieved impressive results on well-known bench-
marks such as GLUE [30], MultiNLI [32] and SQuAD [28], and
could potentially be used by itself in this textual entailment task.
While it produced good results in our experiments, it was clear that
a combined approach would be more bene�cial (see Section 4).

The manner in which we combined the above components in
our �nal system is described below.

3.4 Post-Processing
By analyzing the a priori probabilities of the dataset, we see that
the majority of the cases have exactly one entailing paragraph
among all candidates. So we establish that, for each case, we will
return at least one candidate, even if its score is lower than the
threshold. Moreover, we also establish that at most 2 answers should
be returned for each case, no matter how many candidates scored
higher than the threshold. One of those entries in the �nal result
will be necessarily the best BERT entry among the candidates for
that case, provided it has a con�dence level of at leastminber t . The
pseudo-code below shows the details of our combined heuristics:

Notice that, if len(R) ==maxper_case , “include()” will remove
the candidate whose score is lowest to make sure the following
condition holds: len(R) <=maxper_case .

3.5 Other Frameworks for Language Processing
We performed experiments with two other natural language pro-
cessing frameworks: the Universal Sentence Encoder [7] and ULM-
Fit [17]. The Universal Sentence Encoder is a model designed for
encoding sentences into embeddings intended to be applied in
downstream tasks via transfer learning, and it has been shown to
surpass the performance of word-level embeddings (e.g., Word2vec
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Algorithm 1 Post-processing
0: function ������������(T ,minsim_score ,minber t ,maxper_case )
0: for each case 2 T do
0: C  дet_candidates(case,minsim_score )
0: true_count  min(maxper_case , len(C))
0: if true_count > 0 then
0: R  дet_n_best(C, true_count)
0: end if
0: b  дet_best_bert_entry(C,minber t )
0: if b < R ^ b .conf idence >=minber t then
0: R.include(b,maxper_case )
0: end if
0: end for

return R

Table 1: Summary for the Case Law Entailment TaskDataset

Property Value

Number of base cases 181
Total paragraphs in the related cases 5,814
Total true entailing paragraphs 202 (3.47%)
Avg. entailing paragraphs per base case 1.11
Stddev of entailment paragraphs counts 0.38

[23], Glove [25], Fasttext [4]). We generated embeddings for each
entailed fragment f and each respective candidate paragraph pi ,
and then calculated the cosine of the angle formed by the vectors
of f and pi .

ULMFit is somewhat similar to BERT in that it relies on training a
general model in a large dataset, and then relies on transfer learning
and �ne tuning to speci�c downstream tasks by training on smaller
datasets. In our experiments, neither of those tools provide good
results. Like BERT, ULMFit reported great results in many natural
language related tasks. In our available timeframe, We could not
investigate if those tools would be e�ective, but we plan to perform
a deeper analysis in subsequent work (see Section 5).

4 EXPERIMENTAL RESULTS
Here we summarize the results achieved with our experiments, but,
prior to that, we present an overview of the COLIEE dataset and
analyze the results achieved.

4.1 Dataset Analysis
The training dataset has 181 base cases, each with its respective
entailed fragment in a separate �le. For each base case, a related
case represented by a list of paragraphs is given, from which the
paragraph(s) that entail the base-case-entailed fragment must be
identi�ed. Table 1 summarizes the dataset properties. The golden
labels for this dataset were disclosed upfront.

To run our experiments, we created a validation dataset by sepa-
rating a portion of the original training dataset. We needed to keep
the training dataset as big as possible so we could train the BERT
model. To do so, we randomly selected 164 cases for training and 17

Table 2: Summary for the Case Law Entailment Task Valida-
tion Dataset

Property Value

Number of base cases 17
Total paragraphs in the related cases 698
Total true entailing paragraphs 17 (2.43%)
Avg. entailing paragraphs per base case 1.00
Stddev of entailment paragraphs counts 0.00

Table 3: Summary for the Case Law Entailment Task Test
Dataset

Property Value

Number of base cases 44
Total paragraphs in the related cases 1,448
Total true entailing paragraphs 45 (3.10%)
Avg. entailing paragraphs per base case 1.02
Stddev of entailment paragraphs counts 0.7106

Table 4: Summary of Results on the Validation Dataset

Component Precision Recall F-score

Multi word-token similarity 0.4615 0.3529 0.4000
Sentence-based embeddings 0.1739 0.4705 0.2539
BERT 0.5555 0.5882 0.5714
Noun chunks similarity 1.0000 0.1764 0.3000

cases as our validation dataset. Table 2 summarizes the validation
dataset properties.

The o�cial COLIEE test dataset was initially released without
the golden labels, which were only disclosed after the competition
results were published. That dataset’s properties are summarized
on Table 3.

From Tables 1, 2 and 3, we can see that the properties of the
three datasets are similar, which is appropriate for our experiments.
There was also a fourth dataset, which is the development dataset.
That dataset is required for the BERT �ne-tuning process and is
about the same size of the validation dataset. We omit its details
here because it is only used internally by the �ne-tuning process.

4.2 Validation Dataset Results
Table 4 summarizes the results achieved by each component of our
model in isolation on the validation set:

The similarity-based components require a threshold, above
which a case is considered as an entailing paragraph. Those pa-
rameters were empirically set to 0.27 (Multi word-token similarity),
0.78 (Sentence embeddings similarity) and 0.33 (Noun chunks simi-
larity), which were the best parameters for the validation dataset
(see Figure 1 for more details). BERT produces the probability of
each class (entailment, not entailment), so we consider the cases
in which the entailment class probability is greater than the not
entailment class probability.
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Figure 1: Variation of the F-score according to the threshold
for the similarity-based methods

Despite the small volume of training data, BERT had the best per-
formance considering the components in isolation, as can be seen
on Table 2. For that reason, we chose to always include BERT’s best
entry for each case in our combined model. However, the perfor-
mance of BERT by itself is considerably lower than what it achieves
in other datasets, as we mentioned in section 3.3. This might be due
to the lack of su�cient training data, or the fact that, di�erent from
“regular” textual entailment tasks, case law entailment requires
some background information which might not be present on the
sentences themselves. For example, GLUE has textual entailment
samples such as (“No Weapons of Mass Destruction Found in Iraq
Yet,” “Weapons of Mass Destruction Found in Iraq”) whose label
is “not entailment.” Entries in COLIEE, on the other hand, are in
general not so straightforward. For example, consider the entry
below, labelled as an entailment case in the COLIEE training dataset:

Entailed fragment: “Given that the Respondent remains a security
risk whom the Minister has not had su�cient opportunity to
investigate to determine the extent of his involvement with
the LTTE, his release into the community will cause real and
non-speculative irreparable harm. Moreover, the Respondent is a
danger to the public if released on minimal terms and conditions
including a patent lack of supervision in the community by a
surety. Releasing the Respondent directly prevents the Minister’s
e�orts to ensure his availability for future proceedings - including
a possible admissibility hearing; furthermore, it prevents him
from carrying out his mandate of protecting the public and
undermines the safety and security of the Canadian public.”

Entailing paragraph: “Irreparable harm would occur if the
Respondent is released as she would not appear nor be available
for removal from Canada. This would prevent the Minister from
ful�lling his statutory obligations.”

This might suggest that BERT’s performance could be improved
by training it on a large corpus of legal documents, so it could
acquire the background knowledge necessary to process that kind
of information. Despite of that, using the current strategy of only

Table 5: False negative errors in our validation dataset. Re-
sults for the similarity based methods used the best thresh-
olds for each one, mentioned in the beginning of this sub-
section.

Case Cand. BERT Multi-Word Emb. Noun chunks

165 054 TRUE FALSE FALSE FALSE
166 017 TRUE FALSE FALSE FALSE
167 008 FALSE FALSE FALSE FALSE
168 069 TRUE FALSE FALSE FALSE
169 018 TRUE FALSE FALSE FALSE
170 017 TRUE TRUE TRUE TRUE
171 005 FALSE FALSE TRUE FALSE
172 029 FALSE TRUE FALSE TRUE
173 033 TRUE TRUE FALSE FALSE
174 028 FALSE FALSE FALSE FALSE
175 015 TRUE FALSE FALSE FALSE
176 013 FALSE TRUE FALSE TRUE
177 018 TRUE TRUE TRUE TRUE
178 032 FALSE FALSE TRUE FALSE
179 014 FALSE FALSE FALSE FALSE
180 041 TRUE TRUE TRUE TRUE
181 016 TRUE FALSE FALSE FALSE

�ne-tuning the model using part of the training dataset, the BERT
module achieved the best results of all modules considered in isola-
tion (precision: 0.5555, recall: 0.5882, F-score: 0.5714). The errors of
each module in the validation dataset are shown on Table 5.

The experiments above showed that the approaches had some
degree of complementarity, especially considering the multi word-
token similarity and BERT. For that reason, we decided to devise
a combined approach giving more importance to those compo-
nents, as described in Section 3. The performance of the combined
approach on the validation dataset was: precision: 0.6087, recall:
0.8235, F-score: 0.7000.

4.3 Test Dataset Results
We submitted the combined approach to the o�cial COLIEE test
dataset by varying only the threshold on the �nal combined score
(we set the threshold to 0.25, 0.30 and 0.40). Table 6 shows the results
achieved by all teams on that test dataset (each team may submit up
to three results). Our method achieved the highest F-score among
all teams, with a similar F-score in comparison with the results on
the validation dataset, albeit a signi�cant di�erence in the precision
and recall scores.

As previously mentioned, our F-score was similar to the one
achieved on the validation dataset, but the precision and recall
scores varied. That may indicate the validation dataset was not rep-
resentative enough or that our model parameters were somewhat
over �t to that dataset. Something we planned to do but could not
perform in the available competition timeframe was a 10-fold cross
validation, which would take considerable more time because we
would need to �ne tune BERT using 10 di�erent training datasets.
This is proposed as one aspect of future work in Section 5. We also
suggest the potential of experiments for each individual component
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Table 6: Case Law Entailment Task Results

Team Precision Recall F-score

ielab 0.3409 0.3333 0.3371
ielab 0.4545 0.4444 0.4494
ielab 0.2273 0.2222 0.2247
IITP 0.0455 0.0444 0.0449
IITP 0.6591 0.6444 0.6517
IITP 0.7045 0.6889 0.6966
JNLP 0.1364 0.1333 0.1348
JNLP 0.0682 0.0667 0.0674
JNLP 0.5909 0.5778 0.5843
TRCase 0.6818 0.6667 0.6742
TTCL 0.4000 0.8000 0.5333
TTCL 0.3780 0.6889 0.4882
TTCL 0.3882 0.7333 0.5077
UA 0.6364 0.7778 0.7000
UA 0.6296 0.7556 0.6869
UA 0.6538 0.7556 0.7010
UBLTM 0.1182 0.5778 0.1962
UBLTM 0.1273 0.6222 0.2113

in isolation from the o�cial COLIEE test dataset, so we could verify
whether the performances are similar to the ones we achieved on
the validation dataset.

5 FINAL REMARKS AND FUTUREWORK
As �nal remarks, we can conclude from our experiments that:

• The similarity measure which considers the multi-word to-
kens can capture more semantics than usual word based
similarity;

• BERT proved to be a powerful tool, requiring little �ne tuning
and achieving good results in a challenging task. On the ex-
periments executed using our validation dataset, it achieved
the best performance among all components considered in
isolation;

• A combination of BERT and similarity-based techniques can
provide improved results for case law entailment;

• TheUniversal Sentence Encoder performedmuchworse than
BERT. That may indicate it needs training in the speci�c do-
main or that the best way to e�ectively use the generated
embeddings would not be in a distance metric, but, for ex-
ample, as inputs to a separate classi�er, which would then
learn how to correlate the representations and the expected
labels.

We plan to extend this work by performing the following actions:
• Train BERT using a larger case law dataset and checkwhether
it is capable of grasping law-related knowledge. There are
publicly available case law corpus (e.g., Canadian Supreme
Court Reports on https://scc-csc.lexum.com/scc-csc/en/nav.do)
which can be used as input for that kind of training. Fine
tuning the framework with a larger dataset of case law en-
tailment sentences would be probably more e�ective, but
there are not other case law entailment datasets known to

the authors which could be used as input to the �ne tuning
process;

• Run a similar training procedure with tools such as the Uni-
versal Sentence Encoder and ULMFit and experiment to use
their embeddings representations as input to supervised clas-
si�ers;

• Explore more structure-aware tools, such as dependency
trees, (maybe in combination with Named Entity Recogniz-
ers) which might capture more subtle correlations between
the text fragments;

• Extend the error analysis shown in Table 5 to consider what
are the characteristics of the errors observed in each method,
so that we can plan for a better combination of the methods;

• Perform a similar analysis using the test dataset, whose
golden labels were released after the writing of this paper.
We are especially interested on �nding out why the recall
and precision scores varied so much from the experiments on
the validation dataset to the experiments on the test dataset.
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