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Abstract. Given a graph G = (V, E), the 3-path partition problem is to
find a minimum collection of vertex-disjoint paths each of order at most
3 to cover all the vertices of V . It is different from but closely related
to the well-known 3-set cover problem. The best known approximation
algorithm for the 3-path partition problem was proposed recently and
has a ratio 13/9. Here we present a local search algorithm and show, by
an amortized analysis, that it is a 4/3-approximation. This ratio matches
up to the best approximation ratio for the 3-set cover problem.

Keywords: k-path partition · Path cover · k-set cover ·
Approximation algorithms · Local search · Amortized analysis

1 Introduction

Motivated by the data integrity of communication in wireless sensor networks
and several other applications, the k-path partition (kPP) problem was first
considered by Yan et al. [14]. Given a simple graph G = (V,E) (we consider
only simple graphs), with n = |V | and m = |E|, the order of a simple path in G
is the number of vertices on the path and it is called a k-path if its order is k.
The kPP problem is to find a minimum collection of vertex-disjoint paths each
of order at most k such that every vertex is on some path in the collection.

Clearly, the 2PP problem is exactly the Maximum Matching problem,
which is solvable in O(m

√
n log(n2/m)/ log n)-time [7]. For each k ≥ 3, kPP is

NP-hard [6]. We point out the key phrase “at most k” in the definition, that
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ensures the existence of a feasible solution for any given graph; on the other hand,
if one asks for a path partition in which every path has an order exactly k, the
problem is called Pk-partitioning and is also NP-complete for any fixed constant
k ≥ 3 [6], even on bipartite graphs of maximum degree three [11]. To the best of
our knowledge, there is no approximation algorithm with proven performance for
the general kPP problem, except the trivial k-approximation using all 1-paths.
For 3PP, Monnot and Toulouse [11] proposed a 3/2-approximation, based on
two maximum matchings; recently, Chen et al. [2] presented an improved 13/9-
approximation.

The kPP problem is a generalization to the Path Cover problem [5] (also
called Path Partition), which is to find a minimum collection of vertex-disjoint
paths which together cover all the vertices in G. Path Cover contains the
Hamiltonian Path problem [6] as a special case, and thus it is NP-hard and
it is outside APX unless P = NP.

The kPP problem is also closely related to the well-known Set Cover prob-
lem. Given a collection of subsets C = {S1, S2, . . . , Sm} of a finite ground set
U = {x1, x2, . . . , xn}, an element xi ∈ Sj is said to be covered by the subset Sj ,
and a set cover is a collection of subsets which together cover all the elements of
the ground set U . The Set Cover problem asks to find a minimum set cover.
Set Cover is one of the first problems proven to be NP-hard [6], and is also
one of the most studied optimization problems for the approximability [8] and
inapproximability [4,12,13]. The variant of Set Cover in which every given
subset has size at most k is called k-Set Cover, which is APX-complete and
admits a 4/3-approximation for k = 3 [3] and an (Hk − 196

390 )-approximation for
k ≥ 4 [10].

To see the connection between kPP and k-Set Cover, we may take the
vertex set V of the given graph as the ground set, and an �-path with � ≤ k
as a subset; then the kPP problem is the same as asking for a minimum exact
set cover. That is, the kPP problem is a special case of the minimum Exact
Cover problem [9], for which unfortunately there is no approximation result
that we may borrow. Existing approximations for (non-exact) k-Set Cover
do not readily apply to kPP, because in a feasible set cover, an element of the
ground set could be covered by multiple subsets. There is a way to enforce the
exactness requirement in the Set Cover problem, by expanding C to include
all the proper subsets of each given subset Sj ∈ C. But in an instance graph
of kPP, not every subset of vertices on a path is traceable, and so such an
expanding technique does not apply. In summary, kPP and k-Set Cover share
some similarities, but none contains the other as a special case.

In this paper, we study the 3PP problem. The authors of the 13/9-approx-
imation [2] first presented an O(nm)-time algorithm to compute a k-path par-
tition with the least 1-paths, for any k ≥ 3; then they applied an O(n3)-time
greedy approach to merge three 2-paths into two 3-paths whenever possible. We
aim to design better approximations for 3PP with provable performance, and
we achieve a 4/3-approximation. Our algorithm starts with a 3-path partition
with the least 1-paths, then it applies a local search scheme to repeatedly search
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for an expected collection of 2- and 3-paths and replace it by a strictly smaller
replacement collection of new 2- and 3-paths.

The rest of the paper is organized as follows. In Sect. 2 we present the local
search scheme searching for all the expected collections of 2- and 3-paths. The
performance of the algorithm is proved through an amortized analysis in Sect. 3.
We conclude the paper in Sect. 4.

2 A Local Search Approximation Algorithm

The 13/9-approximation proposed by Chen et al. [2] applies only one replace-
ment operation which is to merge three 2-paths into two 3-paths. In order to
design approximation for 3PP with better performance, we examine four more
replacement operations each transfers three 2-paths to two 3-paths with the aid
of a few other 2- or 3-paths. Starting with a 3-path partition with the least
1-paths, our approximation algorithm repeatedly finds a certain expected col-
lection of 2- and 3-paths and replaces it by a replacement collection of one less
new 2- and 3-paths, in which the net gain is exactly one.

In Sect. 2.1 we present all the replacement operations to perform on the
3-path partition with the least 1-paths. The complete algorithm, denoted as
Approx, is summarized in Sect. 2.2.

2.1 Local Operations and Their Priorities

Throughout the local search, the 3-path partitions are maintained to have the
least 1-paths. Our four local operations are designed so not to touch the 1-
paths, ensuring that the final 3-path partition still contains the least 1-paths.
These operations are associated with different priorities, that is, one operation
applies only when all the other operations of higher priorities (labeled by smaller
numbers) fail to apply to the current 3-path partition. We remind the reader that
the local search algorithm is iterative, and every iteration ends after executing a
designed local operation. The algorithm terminates when none of the designed
local operations applies.

Definition 1. With respect to the current 3-path partition Q, a local Opera-
tion i1-i2-By-j1-j2, where j1 = i1 − 3 and j2 = i2 + 2, replaces an expected
collection of i1 2-paths and i2 3-paths of Q by a replacement collection of j1
2-paths and j2 3-paths on the same subset of 2i1 + 3i2 vertices.

Operation 3-0-By-0-2, highest priority 1: When three 2-paths of Q can
be connected into a 6-path in the graph G (see Fig. 1a for an illustration), they
form into an expected collection. By removing the middle edge on the 6-path, we
achieve two 3-paths on the same six vertices and they form the replacement col-
lection. This is the only local operation executed in the 13/9-approximation [2].

In each of the following operations, we need the aid of one or two 3-paths to
transfer three 2-paths to two 3-paths. We first note that for a 3-path u-w-v ∈ Q,
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if (u, v) ∈ E too, then if desired, we may rotate u-w-v into another 3-path with
w being an endpoint (see Fig. 1b for an illustration). In the following, any 3-path
in an expected collection can be either the exact one in Q or the one rotated
from a 3-path in Q.

Operation 3-1-By-0-3, priority 2: We identify two classes of configurations
for the expected collection in this operation. Consider an expected collection of
three 2-paths P1, P2, P3 and a 3-path P4 = u-w-v in Q.

In the first class, which has priority 2.1, u,w, v are adjacent to an endpoint
of P1, P2, P3 in G, respectively (see Fig. 1c for an illustration). The operation
breaks the 3-path u-w-v into three singletons and connects each of them to the
respective 2-path to form the replacement collection of three new 3-paths.

(a) The configuration of
the expected collection for
Operation 3-0-By-0-2.
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w

v

u

w

v

u

w

v

(b) A 3-path u-w-v ∈ Q
can be rotated so that w is
an endpoint if (u, v) ∈ E.
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(c) The first class of configura-
tion of the expected collection
for Operation 3-1-By-0-3.
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(d) The second class of configurations of the
expected collection in Operation 3-1-By-0-3.
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v

P1 P2

P3 P4

P5

(e) The configuration of the expected
collection for Operation 4-1-By-1-3.

Fig. 1. (a), (c–e) illustrate the configurations of the expected collections for the first
three operations, where solid edges are in Q and dashed edges are in E but outside of
Q. (b) illustrates a rotated 3-path in Q.

In the second class, which has priority 2.2, two of the three 2-paths, say
P1 and P2, are adjacent and thus they can be replaced by a new 3-path and a
singleton. We distinguish two configurations in this class (see Fig. 1d for illus-
trations). In the first configuration, the singleton is adjacent to the midpoint w
and P3 is adjacent to one of u and v; in the second configuration, the singleton
and P3 are adjacent to u and v, respectively. For an expected collection of either
configuration, the operation replaces it by three new 3-paths.

Operation 4-1-By-1-3, priority 3: Consider an expected collection of four
2-paths P1, P2, P3, P4 and a 3-path P5 = u-w-v in Q. These four 2-paths can
be separated into two pairs, each of which are adjacent in the graph G, thus
we can replace them by two new 3-paths while leaving two singletons. In the
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configuration for the expected collection in this operation, the two singletons
are adjacent to a common endpoint, say u, of P5 (see Fig. 1e for an illustration),
and they can be replaced by a new 2-path v-w and a new 3-path. Overall, the
operation replaces the expected collection by three new 3-paths and a new 2-
path.

Operation 4-2-By-1-4, lowest priority 4: Consider an expected collection
of four 2-paths P1, P2, P3, P4 and two 3-paths P5 = u-w-v, P6 = u′-w′-v′ in Q.
These four 2-paths can be separated into two pairs, each of which are adjacent
in the graph G, thus we can replace them by two new 3-paths while leaving
two singletons. Each of P5 and P6 should be adjacent to at least one of the
two singletons. We distinguish three classes of configurations for the expected
collection in this operation, for which the replacement collection consists of four
new 3-paths and a new 2-path.

In the first class, the two singletons are adjacent to P5 and P6 at endpoints,
say u and u′, respectively; additionally, one of the five edges (u, v′), (v, u′),
(w, v′), (v, w′), (v, v′) is in E (see Fig. 2a for an illustration).

u
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u′

w′

v′

P1

P2

P3

P4

P5 P6

(a) The first class.

u

w

v
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v′

P1

P2

P3

P4

P5

P6

(b) The second class.
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v

u′

w′

v′

P1

P2

P3

P4
P5 P6

(c) The third class.

Fig. 2. The three classes of configurations of the expected collections for an Operation
4-2-By-1-4, where solid edges are in Q, dashed and dotted edges are in E but outside of
Q. In every class, each dotted edge between P5 and P6 corresponds to one configuration.

In the second class, one singleton is adjacent to an endpoint of a 3-path, say u
on P5, and the other singleton is adjacent to the midpoint w′ of P6; additionally,
one of the six edges (u, u′), (u, v′), (w, u′), (w, v′), (v, u′), (v, v′), is in E (see
Fig. 2b for an illustration).

In the third class, the two singletons are adjacent to the midpoints of the
two 3-paths, w and w′, respectively; additionally, one of the four edges (u, u′),
(u, v′), (v, u′), (v, v′) is in E (see Fig. 2c for an illustration).

In each of the above three classes of configurations, the operation replaces
P5, P6, and the two singletons by two new 3-paths and one new 2-path.

2.2 The Complete Local Search Algorithm Approx

A high-level description of the complete algorithm Approx is depicted in Fig. 3.
For the running time, Step 1 takes in O(nm) time [2]. Note that there are O(n)
2-paths and O(n) 3-paths in Q at the beginning of Step 2, and therefore there
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Algorithm Approx on G = (V,E):

Step 1. compute a 3-path partition Q with the least 1-paths in G;
Step 2. Iteratively perform:

2.1. if Operation 3-0-By-0-2 applies, update Q and break;
2.2. if Operation 3-1-By-0-3 with priority 2.1 applies, update Q and break;
2.3. if Operation 3-1-By-0-3 with priority 2.2 applies, update Q and break;
2.4. if Operation 4-1-By-1-3 applies, update Q and break;
2.5. if Operation 4-2-By-1-4 applies, update Q and break;

Step 3. Return Q.

Fig. 3. A high-level description of the algorithm Approx, where each “break” ends
the current iteration of Step 2.

are O(n6) original candidate collections to be examined, since a candidate col-
lection has a maximum size of 6. When a local operation applies, an iteration
ends and the 3-path partition Q reduces its size by 1, while introducing at most
5 new 2- and 3-paths. These new 2- and 3-paths give rise to O(n5) new candidate
collections to be examined in the subsequent iterations. Since there are at most
n iterations in Step 2, we conclude that the total number of original and new
candidate collections examined in Step 2 is O(n6). Determining whether a can-
didate collection is an expected collection, and if so, deciding the corresponding
replacement collection, can be done in O(1) time. We thus prove that the overall
running time of Step 2 is O(n6), and consequently prove the following theorem.

Theorem 1. The running time of the algorithm Approx is in O(n6).

3 Analysis of the Approximation Ratio 4/3

In this section, we show that our local search algorithm Approx is a 4/3-
approximation for 3PP. The performance analysis is done through amortization.

The 3-path partition produced by the algorithm Approx is denoted as Q;
let Qi denote the sub-collection of i-paths in Q, for i = 1, 2, 3, respectively. Let
Q∗ be an optimal 3-path partition, i.e., it achieves the minimum total number
of paths, and let Q∗

i denote the sub-collection of i-paths in Q∗, for i = 1, 2, 3,
respectively. Since our Q contains the least 1-paths among all 3-path partitions
for G, we have |Q1| ≤ |Q∗

1|. Since both Q and Q∗ cover all the vertices of V , we
have |Q1| + 2|Q2| + 3|Q3| = n = |Q∗

1| + 2|Q∗
2| + 3|Q∗

3|.
Next, we prove the following inequality which gives an upper bound on |Q2|,

through an amortized analysis:

|Q2| ≤ |Q∗
1| + 2|Q∗

2| + |Q∗
3|. (1)

It follows that 3|Q1| + 3|Q2| + 3|Q3| ≤ 4|Q∗
1| + 4|Q∗

2| + 4|Q∗
3|, that is, |Q| ≤

4
3 |Q∗|, and consequently the following theorem holds.
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Theorem 2. The algorithm Approx is an O(n6)-time 4/3-approximation for
the 3PP problem, and the performance ratio 4/3 is tight for Approx.

In the amortized analysis, each 2-path of Q2 has one token (i.e., |Q2| tokens
in total) to be distributed to the paths of Q∗. The upper bound in Eq. (1) will
immediately follow if we prove the following lemma.

Lemma 1. There is a distribution scheme in which

1. every 1-path of Q∗
1 receives at most 1 token;

2. every 2-path of Q∗
2 receives at most 2 tokens;

3. every 3-path of Q∗
3 receives at most 1 token.

In the rest of the section we present the distribution scheme that satisfies the
three requirements stated in Lemma 1.

Denote E(Q2), E(Q3), E(Q∗
2), E(Q∗

3) as the set of all the edges on the paths
of Q2, Q3, Q∗

2, Q∗
3, respectively, and E(Q∗) = E(Q∗

2) ∪ E(Q∗
3). In the subgraph

of G
(
V,E(Q2) ∪ E(Q∗)

)
, only the midpoint of a 3-path of Q∗

3 may have degree
3, i.e., incident with two edges of E(Q∗) and an edge of E(Q2), while all the
other vertices have degree at most 2 since each is incident with at most one edge
of E(Q2) and at most one edge of E(Q∗).

Our distribution scheme consists of two phases. We define two functions
τ1(P ) and τ2(P ) to denote the fractional amount of token received by a path
P ∈ Q∗ in Phase 1 and Phase 2, respectively; we also define the function τ(P ) =
τ1(P ) + τ2(P ) to denote the total amount of token received by the path P ∈ Q∗

at the end of our distribution process. Then, we have
∑

P∈Q∗ τ(P ) = |Q2|.

3.1 Token Distribution Phase 1

In Phase 1, we distribute all the |Q2| tokens to the paths of Q∗ (i.e.,∑
P∈Q∗ τ1(P ) = |Q2|) such that a path P ∈ Q∗ receives some token from a

2-path u-v ∈ Q2 only if u or v is (or both are) on P , and the following three
requirements are satisfied:

1. τ1(Pi) ≤ 1 for ∀Pi ∈ Q∗
1;

2. τ1(Pj) ≤ 2 for ∀Pj ∈ Q∗
2;

3. τ1(P�) ≤ 3/2 for ∀P� ∈ Q∗
3.

In this phase, the one token held by each 2-path of Q2 is breakable but can only
be broken into two halves. Thus for every path P ∈ Q∗, τ1(P ) is a multiple of
1/2.

For each 2-path u-v ∈ Q2, at most one of u and v can be a singleton of Q∗.
If P1 = v ∈ Q∗

1, then the whole 1 token of the path u-v is distributed to v, that
is, τ1(v) = 1 (see Fig. 4a for an illustration). This way, we have τ1(P ) ≤ 1 for
∀P ∈ Q∗

1.
For a 2-path u-v ∈ Q2, we consider the cases when both u and v are incident

with an edge of E(Q∗). If one of u and v, say v, is incident with an edge of
E(Q∗

2), that is, v is on a 2-path P1 = v-w ∈ Q∗
2, then the 1 token of the path u-v
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u

v

1
P1

(a)

u

v w

1

P1

P2

(b)

v′′vv′

u

1
2 1

2
P1

P2

(c)

Fig. 4. Illustrations of the token distribution scheme in Phase 1, where solid edges are
in E(Q2) and dashed edges are in E(Q∗). In (c), u or v can be either an endpoint or
the midpoint of the corresponding 3-path of Q∗

3.

is given to the path P1 ∈ Q∗
2 (see Fig. 4b for an illustration). Note that if u is

also on a 2-path P2 ∈ Q∗
2 and P2 �= P1, then the path P2 receives no token from

the path u-v. The choice of which of the two vertices u and v comes first does
not matter. This way, we have τ1(P ) ≤ 2 for ∀P ∈ Q∗

2 since the 2-path P1 ∈ Q∗
2

might receive another token from a 2-path of Q2 incident at w.
Next, we consider the cases for a 2-path u-v ∈ Q2 in which each of u and

v is incident with an edge of E(Q∗
3). Consider a 3-path P1 ∈ Q∗

3: v′-v-v′′. We
distinguish two cases for a vertex of P1 to determine the amount of token received
by P1 (see Fig. 4c for an illustration). In the first case, either the vertex, say v′,
is not on any path of Q2 or it is on a path of Q2 with 0 token left, then P1

receives no token through vertex v′. In the second case, the vertex, say v (the
following argument also applies to the other two vertices v′ and v′′), is on a path
u-v ∈ Q2 holding 1 token, and consequently u must be on a 3-path P2 ∈ Q∗

3,
then the 1 token of u-v is broken into two halves, with 1/2 token distributed to
P1 through vertex v and the other 1/2 token distributed to P2 through vertex
u. This way, we have τ1(P ) ≤ 3/2 for ∀P ∈ Q∗

3 since the 3-path P1 ∈ Q∗
3 might

receive another 1/2 token through each of v′ and v′′.

3.2 Token Distribution Phase 2

In Phase 2, we will transfer the extra 1/2 token from every 3-path P ∈ Q∗
3 with

τ1(P ) = 3/2 to some other paths of Q∗ in order to satisfy the three requirements
of Lemma 1. In this phase, each 1/2 token can be broken into two quarters, thus
for a path P ∈ Q∗, τ2(P ) is a multiple of 1/4.

Consider a 3-path P1 = v′′-v′-v ∈ Q∗
3. We observe that if τ1(P1) = 3/2, then

each of v, v′, and v′′ must be incident with an edge of E(Q2), the other endpoint
of which must also be on a 3-path of Q∗

3. One of the three vertices, say v, on an
edge (u, v) ∈ E(Q2), must have its corresponding u outside of P1. Denote P2 as
the 3-path of Q∗

3 where u is on. Let w be a vertex adjacent to u on P2. We can
verify that due to Q being a partition with the least 1-paths and by Operation
3-0-By-0-2, w cannot be a singleton of Q1 or on any 2-path of Q2, and thus it
must be on a 3-path of Q3, being either an endpoint or the midpoint (see Fig. 5
for an illustration). We thus conclude that τ1(P2) ≤ 1, and we have the following
lemma.
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v′′ v′ v

u w

P1

P2

P3
u′′ u′

1
2

Fig. 5. An illustration of a 3-path P1 = v-v′-v′′ ∈ Q∗
3 with τ1(P1) = 3/2, where u-v,

u′-v′, u′′-v′′ ∈ E(Q2), P3 ∈ Q3, with w being either the midpoint or an endpoint of
P3, and P2 ∈ E(Q∗

3) is represented by dashed edges, on which w is adjacent to u.

Lemma 2. For any 3-path P1 ∈ Q∗
3 with τ1(P1) = 3/2, there must be another

3-path P2 ∈ Q∗
3 with τ1(P2) ≤ 1 such that

1. u-v is a 2-path of Q2, where v is on P1 and u is on P2, and
2. any vertex adjacent to u on P2 must be on a 3-path P3 of Q3.

The first step of Phase 2 is to transfer this extra 1/2 token back from P1 to
the 2-path u-v through vertex v (see Fig. 5 for an illustration). Thus, we have
τ2(P1) = −1/2 and τ(P1) = 3/2 − 1/2 = 1.

Using Lemma 2 and its notation, let x1 and y1 be the other two vertices on
P3 (P3 = w-x1-y1 or P3 = x1-w-y1). Denote P4 ∈ Q∗ (P5 ∈ Q∗, respectively) as
the path where x1 (y1, respectively) is on. Next, we will transfer the 1/2 token
from u-v to the paths P4 or/and P5 through some pipe or pipes.

We define a pipe r → s → t, where r is an endpoint of a 2-path of Q2 which
receives 1/2 token in the first step of Phase 2, (r, s) is an edge on a 3-path
P ′ ∈ Q∗

3 with τ1(P ′) ≤ 1 (P ′ = P2 here), s and t are both on a 3-path of Q3

(P3 here), and t is a vertex on our destination path of Q∗ (P4 or P5 here) which
will receive token from the 2-path of Q2. r and t are called the head and tail
of the pipe, respectively. For example, in Fig. 6a, there are four possible pipes
u → w → x1, u → w → y1, u′′ → w → x1, and u′′ → w → y1. We distinguish
the cases, in which the two paths P4 and P5 belong to different combinations of
Q∗

1, Q∗
2, Q∗

3, to determine how they receive more token through some pipe or
pipes.

Recall that u can be either an endpoint or the midpoint of P2. We discuss
the cases with u being an endpoint of P2 (the cases for u being the midpoint
can be discussed the same), that is, P2 = u-w-u′′. The following is a summary
of our discussion and results ([1] contains the full details).

Case 1. At least one of P4 and P5 is a singleton of Q∗
1, say P4 = x1 ∈ Q∗

1 (see
Fig. 6 for illustrations). In this case, τ1(P4) = 0, and we transfer the 1/2 token
from u-v to P4 through pipe u → w → x1. We prove in [1] that there are at
most two pipes with tail x1 through each of which could P4 receive 1/2 token,
due to Operation 3-1-By-0-3 and Operation 4-1-By-1-3. That is, we have
τ2(P4) ≤ 1/2 × 2 = 1, implying τ(P4) ≤ 0 + 1 = 1.

Case 2. Both P4 and P5 are paths of Q∗
2∪Q∗

3. In this case, if w is an endpoint of
P3 = w-x1-y1, with y1 on P5, we transfer the 1/2 token from u-v to P5 through
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Fig. 6. The cases when P4 is a singleton of Q∗
1, where solid edges are in E(Q2) or

E(Q3) and dashed edges are in E(Q∗). x1 is the tail of the pipe through which P4

could receive 1/2 token from the 2-path of u-v.

pipe u → w → y1 (see Fig. 7a for an illustration); if w is the midpoint of P3, we
transfer 1/4 token from u-v to P4 through pipe u → w → x1 and the other 1/4
token to P5 through pipe u → w → y1 (see Fig. 7b for an illustration). We prove
in [1] that for any P ∈ {P4, P5}, if τ2(P ) > 0, then we have τ1(P ) ≤ 1/2 and
τ2(P ) ≤ 1, and it falls into one of the following four cases:

1. If w is an endpoint of P3 and τ1(P ) = 0, then there are at most two pipes
through each of which could P receive 1/2 token. That is, τ2(P ) ≤ 1/2 × 2 =
1, implying τ(P ) ≤ 0 + 1 = 1.

2. If w is an endpoint of P3 and τ1(P ) = 1/2, then only through one pipe could P
receive the 1/2 token. That is, τ2(P ) ≤ 1/2, implying τ(P ) ≤ 1/2 + 1/2 = 1.

3. If w is the midpoint of P3 and τ1(P ) = 0, then there are at most four pipes
through each of which could P receive 1/4 token. That is, τ2(P ) ≤ 1/4 × 4 =
1, implying τ(P ) ≤ 0 + 1 = 1.

4. If w is the midpoint of P3 and τ1(P ) = 1/2, then there are at most two pipes
through each of which could P receive 1/4 token. That is, τ2(P ) ≤ 1/4 × 2 =
1/2, implying τ(P ) ≤ 1/2 + 1/2 = 1.

u

x1

w

y1

P1

P2

vv′

u′ u′′

P4

P5y2

x2

1
2

(a)

u w

x1

y1
P1

P2

vv′

u′ u′′
P4

P5

x2

y2

1
4

1
4

(b)

Fig. 7. The cases when both P4 and P5 are in Q∗
2 ∪Q∗

3, where solid edges are in E(Q2)
or E(Q3) and dashed edges are in E(Q∗). In (a), y1 is the tail of the pipe through which
P5 receives 1/2 token from the 2-path u-v; in (b), x1 is the tail of the pipe through
which P4 receives 1/4 token from the 2-path u-v and y1 is the tail of the pipe through
which P5 receives 1/4 token from the 2-path u-v.
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In summary, for any P1 ∈ Q∗ with τ1(P1) = 3/2, we have τ2(P1) = −1/2; for
any P ∈ Q∗ with τ2(P ) > 0, we have τ1(P ) = 0 if τ2(P ) ≤ 1, or τ1(P ) ≤ 1/2 if
τ2(P ) ≤ 1/2. Therefore, at the end of Phase 2, we have

1. τ(Pi) ≤ 1 for ∀Pi ∈ Q∗
1,

2. τ(Pj) ≤ 2 for ∀Pj ∈ Q∗
2,

3. τ(P�) ≤ 1 for ∀P� ∈ Q∗
3.

This proves Lemma 1.

3.3 A Tight Instance for Approx

Figure 8 illustrates a tight instance, in which our solution 3-path partition Q
contains nine 2-paths and three 3-paths (solid edges) and an optimal 3-path
partition Q∗ contains nine 3-paths (dashed edges). Each 3-path of Q∗ receives
1 token from the 2-paths in Q in our distribution process. This instance shows
that the performance ratio of 4/3 is tight for Approx.

v1 v2/u1 v3 u3

v4 v5/u4 v6 u6

u9 v9 v8/u7 v7

v10v11/u10v12u12

v13v14/u13

w1 w2 w3

x1 x2 x3

y1 y2 y3

Fig. 8. A tight instance of 27 vertices, where solid edges represent a 3-path partition
produced by Approx and dashed edges represent an optimal 3-path partition. The
edges (u3i+1, v3i+1), i = 0, 1, . . . , 4, are in E(Q2) ∩ E(Q∗), shown in both solid and
dashed. The vertex u3i+1 collides into v3i+2, i = 0, 1, . . . , 4. In our distribution process,
each of the nine 3-paths in Q∗ receives 1 token from the 2-paths in Q.

Lemma 1 and the tight instance shown above together prove Theorem 2.

4 Conclusions

We studied the 3PP problem and designed a 4/3-approximation algorithm
Approx. Approx first computes a 3-path partition Q with the least 1-paths
in O(nm)-time, then iteratively applies four local operations with different pri-
orities to reduce the total number of paths in Q. The overall running time of
Approx is O(n6). The performance ratio 4/3 of Approx is proved through
an amortization scheme, using the structure properties of the 3-path partition
returned by Approx. We also show that the performance ratio 4/3 is tight for
our algorithm.
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The 3PP problem is closely related to the 3-Set Cover problem, but none
is a special case of the other. The best 4/3-approximation for 3-Set Cover has
stood there for more than three decades; our algorithm Approx for 3PP has
the approximation ratio matches up to this best approximation ratio 4/3. We
leave it open to better approximate 3PP.
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