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Abstract. Amixed shop is to process a mixture of a set of flow-shop jobs
and a set of open-shop jobs. Mixed shops are in general much harder than
flow-shops and open-shops, and have been studied since the 1980’s. We
consider the three machine proportionate mixed shop problem denoted
as M3 | prpt | Cmax, in which each job has equal processing times on
all three machines. Koulamas and Kyparisis (Eur J Oper Res 243:70–
74, 2015) showed that the problem is solvable in polynomial time in
some very special cases; for the non-solvable case, they proposed a 5/3-
approximation algorithm. In this paper, we present an improved 4/3-
approximation algorithm and show that this ratio of 4/3 is asymptoti-
cally tight; when the largest job is a flow-shop job, we present a fully
polynomial-time approximation scheme (FPTAS). On the negative side,
while the F3 | prpt | Cmax problem is polynomial-time solvable, we show
an interesting hardness result that adding one open-shop job to the job
set makes the problem NP-hard if this open-shop job is larger than any
flow-shop job.

Keywords: Scheduling · Mixed shop · Proportionate
Approximation algorithm
Fully polynomial-time approximation scheme

1 Introduction

We study in this paper the following three-machine proportionate mixed shop,
denoted as M3 | prpt | Cmax in the three-field notation [4]. Given three machines
M1,M2,M3 and a set J = F ∪ O of jobs, where F = {J1, J2, . . . , J�} and O =
{J�+1, J�+2, . . . , Jn}, each job Ji ∈ F needs to be processed non-preemptively
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through M1,M2,M3 sequentially with a processing time pi on each machine
and each job Ji ∈ O needs to be processed non-preemptively on M1,M2,M3 in
any machine order with a processing time qi on each machine. The scheduling
constraint is usual in that at every time point a job can be processed by at most
one machine and a machine can process at most one job. The objective is to
minimize the maximum job completion time, i.e., the makespan.

The jobs of F are referred to as flow-shop jobs and the jobs of O are called
open-shop jobs. The mixed shop is to process such a mixture of a set of flow-
shop jobs and a set of open-shop jobs. We assume without loss of generality that
p1 ≥ p2 ≥ . . . ≥ p� and q�+1 ≥ q�+2 ≥ . . . ≥ qn.

Mixed shops have many real-life applications and have been studied since
the 1980’s. The scheduling of medical tests in an outpatient health care facility
and the scheduling of classes/exams in an academic institution are two typical
examples, where the patients (students, respectively) must complete a number
of medical tests (academic activities, respectively); some of these activities must
be done in the same sequential order while the others can be finished in any
order; and the time-spans for all these activities should not overlap with each
other. The proportionate shops were also introduced in the 1980’s [11] and they
are one of the most specialized shops with respect to the job processing times
which have received many studies [12].

Masuda et al. [10] and Strusevich [16] considered the two-machine mixed shop
problem to minimize the makespan, i.e., M2 || Cmax; they both showed that
the problem is polynomial time solvable. Shakhlevich and Sotskov [14] studied
mixed shops for processing two jobs with an arbitrary regular objective function.
Brucker [1] surveyed the known results on the mixed shop problems either with
two machines or for processing two jobs. Shakhlevich et al. [13] studied the mixed
shop problems with more than two machines for processing more than two jobs,
with or without preemption. Shakhlevich et al. [15] reviewed the complexity
results on the mixed shop problems with three or more machines for processing
a constant number of jobs.

When O = ∅, the M3 | prpt | Cmax problem reduces to the F3 | prpt | Cmax

problem, which is solvable in polynomial time [2]. When F = ∅, the problem
reduces to the O3 | prpt | Cmax problem, which is ordinary (or called weakly)
NP-hard [8]. It follows that the M3 | prpt | Cmax problem is at least ordinary NP-
hard. Recently, Koulamas and Kyparisis [7] showed that for some very special
cases, the M3 | prpt | Cmax problem is solvable in polynomial time; for the non-
solvable case, they showed an absolute performance bound of 2max{p1, q�+1}
and presented a 5/3-approximation algorithm.

In this paper, we design an improved 4/3-approximation algorithm for (the
non-solvable case of) the M3 | prpt | Cmax problem, and show that the per-
formance ratio of 4/3 is asymptotically tight. When the largest job is a flow-
shop job, that is p1 ≥ q�+1, we present a fully polynomial-time approximation
scheme (FPTAS). On the negative side, while the F3 | prpt | Cmax problem is
polynomial-time solvable, we show an interesting hardness result that adding
one single open-shop job to the job set makes the problem NP-hard if this open-
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shop job is larger than any flow-shop job. We construct the reduction from the
well-known Partition problem [3].

The rest of the paper is organized as follows. In Sect. 2, we introduce some
notations and present a lower bound on the optimal makespan C∗

max. We present
in Sect. 3 the FPTAS for the M3 | prpt | Cmax problem when p1 ≥ q�+1. The
4/3-approximation algorithm for the case where p1 < q�+1 is presented in Sect. 4,
and the performance ratio of 4/3 is shown to be asymptotically tight. We show
in Sect. 5 that, when there is only one open-shop job Jn and p1 < qn, the
M3 | prpt | Cmax problem is NP-hard, through a reduction from the Partition
problem. We conclude the paper with some remarks in Sect. 6.

2 Preliminaries

For any subset of jobs X ⊆ F , the total processing time of the jobs of X on one
machine is denoted as

P (X ) =
∑

Ji∈X
pi.

For any subset of jobs Y ⊆ O, the total processing time of the jobs of Y on one
machine is denoted as

Q(Y) =
∑

Ji∈Y
qi.

The set minus operation J \ {J} for a single job J ∈ J is abbreviated as J \ J
throughout the paper.

Given that the load (i.e., the total job processing time) of each machine is
P (F) + Q(O), the job J�+1 has to be processed by all three machines, and one
needs to process all the flow-shop jobs of F , the following lower bound on the
optimum C∗

max is established [2,7]:

C∗
max ≥ max{P (F) + Q(O), 3q�+1, 2p1 + P (F)}. (1)

3 An FPTAS for the Case Where p1 ≥ q�+1

In this section, we design an approximation algorithm A(ε) for the M3 | prpt |
Cmax problem when p1 ≥ q�+1, for any given ε > 0. The algorithm A(ε) produces
a schedule π with its makespan Cπ

max < (1 + ε)C∗
max, and its running time is

polynomial in both n and 1/ε.
Consider a bipartition {A,B} of the job set O = {J�+1, J�+2, . . . , Jn}, i.e., A∪

B = O and A∩B = ∅. Throughout the paper, a part of the bipartition is allowed
to be empty. The following procedure Proc(A,B,F) produces a schedule π:

1. the jobs of F are processed in the longest processing time (LPT) order on all
three machines, and every job is processed first on M1, then on M2, lastly on
M3;

2. the jobs of A are processed in the LPT order on all three machines, and every
one is processed first on M2, then on M3, lastly on M1;
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3. the jobs of B are processed in the LPT order on all three machines, and every
one is processed first on M3, then on M1, lastly on M2; and

4. the machine M1 processes (the jobs of) F first, then B, lastly A, denoted as
〈F ,B,A〉;

5. the machine M2 processes A first, then F , lastly B, denoted as 〈A,F ,B〉;
6. the machine M3 processes B first, then A, lastly F , denoted as 〈B,A,F〉.
Proc(A,B,F) runs in O(n log n) time to produce the schedule π, of which an
illustration is shown in Fig. 1.

Fig. 1. An illustration of the schedule π produced by Proc(A, B, F), where {A, B} is
a bipartition of the set O and the jobs of each of A, B, F are processed in the LPT
order on all three machines.

The following two lemmas state that if both Q(A) ≤ p1 and Q(B) ≤ p1, or
both Q(A) ≥ p1 and Q(B) ≥ p1, then the schedule π produced by Proc(A,B,F)
is optimal. Due to the space limit, we refer the readers to our arXiv submission [9]
for the detailed proofs.

Lemma 1 [9]. If both Q(A) ≤ p1 and Q(B) ≤ p1, then the schedule π produced
by Proc(A,B,F) is optimal, with its makespan Cπ

max = C∗
max = 2p1 + P (F).

Lemma 2 [9]. If both Q(A) ≥ p1 and Q(B) ≥ p1, then the schedule π produced
by Proc(A,B,F) is optimal, with its makespan Cπ

max = C∗
max = P (F) + Q(O).

Now we are ready to present the approximation algorithm A(ε), for any ε > 0.
In the first step, we check whether Q(O) ≤ p1 or not. If Q(O) ≤ p1, then we

run Proc(O, ∅,F) to construct a schedule π and terminate the algorithm. The
schedule π is optimal by Lemma1.

In the second step, the algorithm A(ε) constructs an instance of the Knap-
sack problem [3], in which there is an item corresponding to the job Ji ∈ O,
also denoted as Ji. The item Ji has a profit qi and a size qi. The capacity of the
knapsack is p1. The Min-Knapsack problem is to find a subset of items of min-
imum profit that cannot be packed into the knapsack, and it admits an FPTAS
[6]. The algorithm A(ε) runs a (1 + ε)-approximation algorithm for the Min-
Knapsack problem to obtain a job subset A. It then runs Proc(A,O \ A,F)
to construct a schedule, denoted as π1.

The Max-Knapsack problem is to find a subset of items of maximum profit
that can be packed into the knapsack, and it admits an FPTAS, too [5]. In the
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third step, the algorithm A(ε) runs a (1 − ε)-approximation algorithm for the
Max-Knapsack problem to obtain a job subset B. Then it runs Proc(O \
B,B,F) to construct a schedule, denoted as π2.

The algorithm A(ε) outputs the schedule with a smaller makespan between
π1 and π2. A high-level description of the algorithm A(ε) is provided in Fig. 2.

Fig. 2. A high-level description of the algorithm A(ε).

In the following performance analysis, we assume without of loss of generality
that Q(O) > p1. We have the following (in-)equalities inside the algorithm A(ε):

OPT1 = min{Q(X ) | X ⊆ O, Q(X ) > p1}; (2)
p1 < Q(A) ≤ (1 + ε)OPT1; (3)

OPT2 = max{Q(Y) | Y ⊆ O, Q(Y) ≤ p1}; (4)
p1 ≥ Q(B) ≥ (1 − ε)OPT2, (5)

where OPT1 (OPT2, respectively) is the optimum to the constructed Min-
Knapsack (Max-Knapsack, respectively) problem.

Lemma 3. In the algorithm A(ε), if Q(O \ A) ≤ p1 − εOPT1, then for any
bipartition {X ,Y} of the job set O, Q(X ) > p1 implies Q(Y) ≤ p1.

Proof. Note that the job subset A is computed in Step 2.1 of the algorithm
A(ε), and it satisfies Eq. (3). By the definition of OPT1 in Eq. (2) and using
Eq. (3), we have Q(X ) ≥ OPT1 ≥ Q(A) − εOPT1. Furthermore, from the
fact that Q(O) = Q(X ) + Q(Y) = Q(A) + Q(O \ A) and the assumption that
Q(O \ A) ≤ p1 − εOPT1, we have
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Q(Y) = Q(A) + Q(O \ A) − Q(X )
≤ Q(A) + Q(O \ A) − (Q(A) − εOPT1)
= Q(O \ A) + εOPT1

≤ p1 − εOPT1 + εOPT1

= p1.

This finishes the proof of the lemma. ��
Lemma 4. In the algorithm A(ε), if Q(O \ A) ≤ p1 − εOPT1, then C∗

max ≥
P (F) + Q(O) + p1 − OPT2.

Proof. Consider an arbitrary optimal schedule π∗ that achieves the makespan
C∗

max. Note that the flow-shop job J1 is first processed on the machine M1, then
on machine M2, and last on machine M3.

In the schedule π∗, let Si and Ci be the start processing time and the finish
processing time of the job J1 on the machine Mi, respectively, for i = 1, 2, 3.
On the machine M2, let J 1 = O1 ∪ F1 denote the subset of jobs processed
before J1, and J 2 = O2 ∪F2 denote the subset of jobs processed after J1, where
{O1,O2} is a bipartition of the job set O and {F1,F2} is a bipartition of the
job set F \ J1. Also, let δ1 and δ2 denote the total amount of machine idle time
for M2 before processing J1 and after processing J1, respectively (see Fig. 3 for
an illustration).

Fig. 3. An illustration of an optimal schedule π∗, in which J 1 and J 2 are the subsets
of jobs processed on M2 before J1 and after J1, respectively; δ1 and δ2 are the total
amount of machine idle time for M2 before processing J1 and after processing J1,
respectively.

Note that F = J1 ∪ F1 ∪ F2 is the set of flow-shop jobs. The job J1 and the
jobs of F1 should be finished before time S2 on the machine M1, and the job J1

and the jobs of F2 can only be started after time C2 on the machine M3. That
is,

p1 + P (F1) ≤ S2 (6)

and
p1 + P (F2) ≤ C∗

max − C2. (7)
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If Q(O1) ≤ p1, then we have Q(O1) ≤ OPT2 by the definition of OPT2 in
Eq. (4). Combining this with Eq. (6), we achieve that δ1 = S2−P (F1)−Q(O1) ≥
p1 − OPT2.

If Q(O1) > p1, then we have Q(O2) ≤ p1 by Lemma3. Hence, Q(O2) ≤
OPT2 by the definition of OPT2 in Eq. (4). Combining this with Eq. (7), we
achieve that δ2 = C∗

max − C2 − P (F2) − Q(O2) ≥ p1 − OPT2.
The last two paragraphs prove that δ1 + δ2 ≥ p1 − OPT2. Therefore,

C∗
max = Q(O1) + P (F1) + δ1 + p1 + Q(O2) + P (F2) + δ2

= P (F) + Q(O) + δ1 + δ2

≥ P (F) + Q(O) + p1 − OPT2.

This finishes the proof of the lemma. ��
Lemma 5. In the algorithm A(ε), if Q(O \ A) ≤ p1 − εOPT1, then Cπ2

max <
(1 + ε)C∗

max.

Proof. Denote B = O \ B. Note that the job set B computed in Step 3.1 of
the algorithm A(ε) satisfies p1 ≥ Q(B) ≥ (1 − ε)OPT2, and the schedule π2 is
constructed by Proc(B,B,F). We distinguish the following two cases according
to the value of Q(B).

Case 1. Q(B) ≤ p1. In this case, the schedule π2 is optimal by Lemma1.
Case 2. Q(B) > p1. The schedule π2 constructed by Proc(B,B,F) has the

following properties (see Fig. 4 for an illustration):

Fig. 4. An illustration of the schedule π2 constructed by Proc(B, B, F) in Case 2,
where Q(B) ≤ p1 and Q(B) > p1. The machines M1 and M2 do not idle; the machine
M3 may idle between processing the job set B and the job set B and may idle between
processing the job set B and the job set F . M3 starts processing the job set F at time
p1 + Q(B).

1. The jobs are processed consecutively on the machine M1 since J1 is the largest
job. The completion time of M1 is thus Cπ2

1 = Q(O) + P (F).
2. The jobs are processed consecutively on the machine M2 due to Q(B) ≤ p1

and Q(B) > p1. The completion time of M2 is thus Cπ2

2 = Q(O) + P (F).
3. The machine M3 starts processing the job set F consecutively at time p1 +

Q(B) due to Q(B) ≤ p1. The completion time of M3 is Cπ2

3 = P (F) + p1 +
Q(B).
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Note that Cπ2

3 = P (F)+ p1+Q(B) ≥ P (F)+Q(B)+Q(B) = Q(O)+P (F),
implying Cπ2

max = P (F)+ p1+Q(B). Combining Eq. (5) with Lemma4, we have

Cπ2

max = P (F) + p1 + Q(B)
= P (F) + Q(O) + p1 − Q(B)
≤ P (F) + Q(O) + p1 − (1 − ε)OPT2

≤ C∗
max + εOPT2

< (1 + ε)C∗
max,

where the last inequality is due to OPT2 ≤ p1 < C∗
max. This finishes the proof

of the lemma. ��
Lemma 6. In the algorithm A(ε), if p1−εOPT1 < Q(O\A) < p1, then Cπ1

max <
(1 + ε)C∗

max.

Proof. Denote A = O \ A. Note that the job set A computed in Step 2.1 of
the algorithm A(ε) satisfies p1 < Q(A) ≤ (1 + ε)OPT1, and the schedule π1 is
constructed by Proc(A,A,F).

By a similar argument as in Case 2 in the proof of Lemma5, replacing the
two job sets B,B by the two job sets A,A, we conclude that the makespan of the
schedule π1 is achieved on the machine M3, Cπ1

max = P (F) +Q(O) + p1 − Q(A).
Combining Eq. (1) with the assumption that p1 − εOPT1 < Q(A), we have

Cπ1

max < P (F) + Q(O) + εOPT1 ≤ C∗
max + εOPT1 < (1 + ε)C∗

max,

where the last inequality follows from OPT1 ≤ Q(O) ≤ C∗
max. This finishes the

proof of the lemma. ��
Theorem 1. The algorithm A(ε) is a Poly(n, 1/ε)-time (1 + ε)-approximation
for the problem M3 | prpt | Cmax when p1 ≥ q�+1.

Proof. First of all, the procedure Proc(X ,Y,F) on a bipartition {X ,Y} of the
job set O takes O(n log n) time. Recall that the job set A is computed by a (1+ε)-
approximation for the Min-Knapsack problem, which takes a polynomial time
in both n and 1/ε; the other job set B is computed by a (1 − ε)-approximation
for the Max-Knapsack problem, which also takes a polynomial time in both
n and 1/ε. The total running time of the algorithm A(ε) is thus polynomial in
both n and 1/ε too.

When Q(O) ≤ p1, or the job set O\A computed in Step 2.1 of the algorithm
A1(ε) has total processing time not less than p1, the schedule constructed in the
algorithm A(ε) is optimal by Lemmas 1 and 2. When Q(O\A) < p1, the smaller
makespan between the two schedules π1 and π2 constructed by the algorithm
A(ε) is less than (1 + ε) of the optimum by Lemmas 5 and 6. Therefore, the
algorithm A(ε) has a worst-case performance ratio of (1 + ε). This finishes the
proof of the theorem. ��
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4 A 4/3-Approximation for the Case Where p1 < q�+1

In this section, we present a 4/3-approximation algorithm for the M3 | prpt |
Cmax problem when p1 < q�+1, and we show that this ratio of 4/3 is asymptoti-
cally tight.

Theorem 2. When p1 < q�+1, the M3 | prpt | Cmax problem admits an
O(n log n)-time 4/3-approximation algorithm.

Proof. Consider first the case where there are at least two open-shop jobs. Con-
struct a permutation schedule π in which the job processing order for M1 is
〈J�+3, . . . , Jn,F , J�+1, J�+2〉, where the jobs of F are processed in the LPT order;
the job processing order for M2 is 〈J�+2, J�+3, . . . , Jn,F , J�+1〉; the job process-
ing order for M3 is 〈J�+1, J�+2, J�+3, . . . , Jn,F〉. See Fig. 5 for an illustration,
where the start processing time for J�+3 on M2 is q�+1, and the start processing
time for J�+3 on M3 is 2q�+1. One can check that the schedule π is feasible when
p1 < q�+1, and it can be constructed in O(n log n) time.

Fig. 5. A feasible schedule π for the M3 | prpt | Cmax problem with p1 < q�+1.

The makespan of the schedule π is Cπ
max = P (F) + Q(O) + q�+1 − q�+2.

Combining this with Eq. (1), we have

Cπ
max ≤ P (F) + Q(O) + q�+1 ≤ 4

3
C∗

max.

When there is only one open-shop job J�+1, construct a permutation schedule
π in which the job processing order for M1 is 〈F , J�+1〉, where the jobs of F are
processed in the LPT order; the job processing order for M2 is 〈F , J�+1〉; the
job processing order for M3 is 〈J�+1,F〉. If P (F) ≤ q�+1, then π has makespan
3q�+1 and thus is optimal. If P (F) > q�+1, then π has makespan Cπ

max ≤ 2q�+1+
P (F) ≤ 4

3C∗
max. This finishes the proof of the theorem. ��

Remark 1. Construct an instance in which pi = 1
�−1 for all i = 1, 2, . . . , �, q�+1 =

1 and qi = 1
n−�−2 for all i = �+2, �+3, . . . , n. Then for this instance, the schedule

π constructed in the proof of Theorem2 has makespan Cπ
max = 4 + 1

�−1 ; an
optimal schedule has makespan C∗

max = 3+ 1
�−1 + 1

n−�−2 (see for an illustration
in Fig. 6). This suggests that the approximation ratio of 4/3 is asymptotically
tight for the algorithm in the proof of Theorem2.



Approximation Algorithms and a Hardness Result 277

Fig. 6. An optimal schedule for the constructed instance of the M3 | prpt | Cmax

problem, in which pi = 1
�−1

for all i = 1, 2, . . . , n, q�+1 = 1 and qi = 1
n−�−2

for all
i = � + 2, � + 3, . . . , n.

5 NP-Hardness for the Case Where O = {Jn}
and p1 < qn

In this section, we show that the M3 | prpt | Cmax problem with only one
open-shop job is already NP-hard if this open-shop job is larger than any flow-
shop job. We prove the NP-hardness through a reduction from the Partition
problem [3], which is a well-known NP-complete problem.

Theorem 3. The M3 | prpt | Cmax problem with only one open-shop job is
NP-hard if this open-shop job is larger than any flow-shop job.

Proof. An instance of the Partition problem consists of a set S =
{a1, a2, a3, . . . , am} where each ai is a positive integer and a1+a2+. . .+am = 2B,
and the query is whether or not S can be partitioned into two parts such that
each part sums to exactly B.

Let x > B, and we assume that a1 ≥ a2 ≥ . . . ≥ am.
We construct an instance of the M3 | prpt | Cmax problem as follows: there

are in total m+ 2 flow-shop jobs, and their processing times are p1 = x, p2 = x,
and pi+2 = ai for i = 1, 2, . . . , m; there is only one open-shop job with processing
time qm+3 = B + 2x. Note that the total number of jobs is n = m + 3, and one
sees that the open-shop job is larger than any flow-shop job.

If the set S can be partitioned into two parts S1 and S2 such that each part
sums to exactly B, then we let J 1 = J1 ∪ {Ji | ai ∈ B1} and J 2 = J2 ∪ {Ji |
ai ∈ B2}. We construct a permutation schedule π in which the job processing
order for M1 is 〈J 1,J 2, Jm+3〉, where the jobs of J 1 and the jobs of J 2 are
processed in the LPT order, respectively; the job processing order for M2 is
〈J 1, Jm+3,J 2〉; the job processing order for M3 is 〈Jm+3,J 1,J 2〉. See Fig. 7
for an illustration, in which J1 starts at time 0 on M1, starts at time x on M2,
and starts at time B + 2x on M3; J2 starts at time B + x on M1, starts at time
2B+4x on M2, and starts at time 2B+5x on M3; Jm+3 starts at time 0 on M3,
starts at time B + 2x on M2, and starts at time 2B + 4x on M1. The feasibility
is trivial and its makespan is Cπ

max = 3B + 6x, suggesting the optimality.
Conversely, if the optimal makespan for the constructed instance is

3B + 6x = 3qm+3, then we will show next that S admits a partition into two
equal parts.
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Fig. 7. A feasible schedule π for the constructed instance of the M3 | prpt | Cmax

problem, when the set S can be partitioned into two equal parts S1 and S2. The
partition of the flow-shop jobs {J 1, J 2} is correspondingly constructed. In the schedule,
the jobs of J 1 and the jobs of J 2 are processed in the LPT order, respectively.

Firstly, we see that the second machine processing the open-shop job Jm+3

cannot be M1, since otherwise M1 has to process all the jobs of F before Jm+3,
leading to a makespan greater than 3B +6x; the second machine processing the
open-shop job Jm+3 cannot be M3 either, since otherwise M3 has no room to
process any job of F before Jm+3, leading to a makespan larger than 3B + 6x
too. Therefore, the second machine processing the open-shop job Jm+3 has to
be M2, see Fig. 8 for an illustration.

Fig. 8. An illustration of an optimal schedule for the constructed instance of the M3 |
prpt | Cmax problem with O = {Jm+3} and qm+3 = B+2x. Its makespan is 3B+6x =
3qm+3.

Denote the job subsets processed before and after the job Jm+3 on M2 as F1

and F2, respectively. Since x > B, neither of F1 and F2 may contain both J1

and J2, which have processing times x. It follows that F1 and F2 each contains
exactly one of J1 and J2, and subsequently P (F1) = P (F2) = B+x. Therefore,
the jobs of J 1 \ {J1, J2} have a total processing time of exactly B, suggesting a
subset of S sums to exactly B. This finishes the proof of the theorem. ��

6 Concluding Remarks

In this paper, we studied the three-machine proportionate mixed shop problem
M3 | prpt | Cmax. We presented first an FPTAS for the case where p1 ≥ q�+1; and
then proposed a 4/3-approximation algorithm for the other case where p1 < q�+1,
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for which we also showed that the performance ratio of 4/3 is asymptotically
tight. The F3 | prpt | Cmax problem is polynomial-time solvable; we showed an
interesting hardness result that adding only one open-shop job to the job set
makes the problem NP-hard if the open-shop job is larger than any flow-shop
job.

We believe that when p1 < q�+1, the M3 | prpt | Cmax problem can be
better approximated than 4/3, and an FPTAS is perhaps possible. Nevertheless,
a first step towards such an FPTAS is to design an FPTAS for the special case
where there is only one open-shop job and the open-shop job is larger than any
flow-shop job.
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