
Open-Shop Scheduling for Unit Jobs
Under Precedence Constraints

An Zhang1,2, Yong Chen1,2, Randy Goebel2, and Guohui Lin2(B)

1 Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China
{anzhang,chenyong}@hdu.edu.cn

2 Department of Computing Science, University of Alberta, Edmonton, AB, Canada
{rgoebel,guohui}@ualberta.ca

Abstract. We study open-shop scheduling for unit jobs under prece-
dence constraints, where if one job precedes another job then it has
to be finished before the other job can start to be processed. For the
three-machine open-shop to minimize the makespan, we first present
a simple 5/3-approximation based on a partition of the job set into
agreeable layers using the natural layered representation of the prece-
dence graph. We then show a greedy algorithm to reduce the number of
singleton-job layers, resulting in an improved partition, which leads to a
4/3-approximation. Both approximation algorithms apply to the general
m-machine open-shops too.

Keywords: Open-shop scheduling · Precedence constraint
Directed acyclic graph · Approximation algorithm

1 Introduction

Machine scheduling with precedence constraints on the jobs has received much
attention in the past few decades, and several algorithmic techniques such as
the critical path method and the project evaluation and review technique [9] have
been developed from the line of research. Job precedence constraints are common
in construction and manufacturing industries, for example, the bicycle assembly
problem is an earliest precedence constrained scheduling application introduced
by Graham [7].

Precedence constraints describe the job processing order in a way that one or
more jobs have to be finished before another job is allowed to start its processing.
Such relationships together are usually represented as a directed acyclic graph
(DAG) G = (V,E), called the precedence graph, where V is the set of jobs and
an edge (vi, vj) ∈ E states that the job vi precedes the job vj , that is, vi needs
to be finished before vj can start to be processed.

In this paper, we discuss the open-shop scheduling environment and use Om
to denote the m-machine open-shop for some constant m, and O to denote the
open-shop in which the number of machines is part of the input. In either Om
or O, every job needs to be processed non-preemptively by each machine, in any
c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 329–340, 2018.
https://doi.org/10.1007/978-3-030-04651-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04651-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-04651-4_22

330 A. Zhang et al.

machine order, and it is finished (or said completed) when it has been processed
by all the machines. Note that the usual scheduling rules apply to a feasible
schedule, that is, at any time point, a job can be processed by at most one
machine and each machine can be processing at most one job. The makespan
of the schedule is the maximum job completion time. The open-shop scheduling
to minimize the makespan is denoted as Om || Cmax or O || Cmax, which has
received much study [6,9,11,12,15]. In particular, O2 || Cmax is solvable in O(n)-
time, where n denotes the number of jobs [6,9]; Om || Cmax becomes weakly
NP-hard when m ≥ 3 [6] but admits a polynomial-time approximation scheme
(PTAS) [11,12]; O || Cmax is strongly NP-hard and cannot be approximated
within 1.25 [15].

Open-shop scheduling with precedence constraints, denoted as Om | prec |
Cmax or O | prec | Cmax, is more difficult than its classical counterparts, which
can be considered as scheduling without precedence constraints. Several special
classes of precedence graphs have been investigated in the literature. If every job
has at most one predecessor and at most one successor, the precedence graph
is referred to as chains. If every job has at most one successor (one predeces-
sor, respectively), the precedence graph is referred to as an intree (an outtree,
respectively). The fact that the precedence graph belongs to a particular class
may change the computational complexity of the scheduling problem. In general,
one can expect that the precedence constraints increase the problem complexity.
For example, O2 | chains | Cmax becomes NP-hard [13]. For more complexity
results on precedence constrained scheduling, the interested readers can refer to
Lenstra and Rinnooy Kan [8], or Prot and Bellenguez-Morinea [10].

Unlike most past results which are on computational complexity, in this paper
we aim to develop algorithmic positive results for open-shop scheduling with
precedence constraints, from the approximation algorithm perspective. We focus
on the problems restricted to unit jobs, that is, the jobs have the same processing
times on all the machines (i.e., pij = 1); most of these problems remain NP-hard,
or their complexity are still open. To name a few, for an arbitrary precedence
graph, the problem O | pij = 1, prec | Cmax was shown to be strongly NP-
hard by Timkovsky [14]; when the precedence graph is an out-tree, then the
problem O | pij = 1, outtree | Cmax becomes polynomially solvable [1]; for a
more general objective of minimizing the maximum lateness, Timkovsky proved
that O | pij = 1, outtree | Lmax is weakly NP-hard [14], while the problem
O | pij = 1, intree | Lmax is polynomial solvable [2,3]. We note that, however,
there are polynomial time algorithms for O2 | pij = 1, prec | Lmax, even if the
jobs have different release times [2,3].

The problem we study in this paper is the m-machine open-shop for unit
jobs under arbitrary precedence constraints, Om | pij = 1, prec | Cmax, where
m ≥ 3. For this fundamental problem in scheduling theory, there is no known
computational complexity result in the literature. In fact, even when m = 3,
whether or not O3 | pij = 1, prec | Cmax is NP-hard is an open question explicitly
listed in the websites maintained by Brucker and Knust [4] and Dürr [5], and in
the survey paper by Prot and Bellenguez-Morinea [10].

Open-Shop Scheduling for Unit Jobs Under Precedence Constraints 331

We first introduce a natural layered representation for the precedence graph
in Sect. 2, based on which we can construct a partition of the job set into agree-
able subsets. We then construct a schedule using the partition and show that
it is a 5/3-approximation for the problem O3 | pij = 1, prec | Cmax. In Sect. 3,
we propose a greedy algorithm to reduce the number of singleton-job subsets in
the earlier partition, resulting in an improved partition, which leads to a 4/3-
approximation. We also show that both approximation algorithms apply to the
general m-machine open-shops.

2 Preliminaries

We study the problem O3 | pij = 1, prec | Cmax, in which the unit jobs should be
processed under the given precedence constraints. These precedence constraints
are described as a directed acyclic graph (DAG), the precedence graph, in which
a vertex corresponds to a job and a directed edge represents a precedence rela-
tionship between a pair of jobs. In the rest of the paper, we use a job and a
vertex interchangeably. Due to all jobs having unit processing times, we assume
without loss of generality that in any feasible schedule the starting processing
time of every job is an integer.

Let V = {v1, v2, . . . , vn} be the given set of unit jobs. If vi precedes vj ,
that is, we can start processing the job vj only if the job vi is finished by the
three-machine openshop O3, then there is a directed path beginning from vi and
ending at vj . Such a directed path is a directed edge (vi, vj) in the simplest case,
in the DAG G = (V,E).

A subset X ⊆ V of jobs is agreeable if none of the jobs of X precedes another.
In particular, two jobs are agreeable if none of them precedes the other, and thus
they can be processed concurrently on different machines in a feasible schedule.

Lemma 1. An agreeable subset X ⊆ V of jobs can be processed by the three-
machine openshop O3 in |X| units of time if |X| ≥ 3, or in 3 units of time if
|X| = 1, 2.

Proof. Let the jobs of X be v1, v2, . . . , vk. When k = 1, at any time point T ,
v1 can be processed on the first machine M1 (the second machine M2, the third
machine M3, respectively) starting at T (T + 1, T + 2, respectively), and thus
finished within 3 units of time.

When k = 2, at any time point T , v1 can be processed on the first machine
M1 (the second machine M2, the third machine M3, respectively) starting at T
(T + 1, T + 2, respectively); v2 can be processed on the third machine M3 (the
first machine M1, the second machine M2, respectively) starting at T (T + 1,
T + 2, respectively). Thus both of them are finished within 3 units of time.

When k ≥ 3, at any time point T , for j = 1, 2, . . . , k − 2, vj can be pro-
cessed on the first machine M1 (the second machine M2, the third machine M3,
respectively) starting at T + j − 1 (T + j, T + j + 1, respectively); vk−1 can be
processed on the third machine M3 (the first machine M1, the second machine
M2, respectively) starting at T (T + k − 2, T + k − 1, respectively); vk can be

332 A. Zhang et al.

processed on the second machine M2 (the third machine M3, the first machine
M1, respectively) starting at T (T + 1, T + k − 1, respectively). See Fig. 1 for an
illustration. Thus all of them are finished within k units of time. ��

v1M1

M2

M3

T +T k

vk

vk−1

v2

v1

vk

vk−2

v2

v1

vk−1

vk−2

v2

vk

vk−1

vk−2

T + 1

· · ·
· · ·

· · ·

Fig. 1. An sub-schedule to process an agreeable subset X ⊆ V of jobs in |X| units of
time when k = |X| ≥ 3.

Given two disjoint agreeable subsets X1 and X2, if a job of X1 precedes a
job of X2, then we say X1 precedes X2. A collection of mutual disjoint agreeable
subsets is acyclic if the precedence relations among the subsets do not contain
any cycle. A subset of k jobs is called a k-subset, for k = 1, 2, For simplicity,
a 1-subset is also called a singleton.

Corollary 1. Let C be an acyclic partition of V into agreeable subsets, in which
there are b 2-subsets and c singletons. Then a schedule π can be constructed to
achieve the makespan Cπ

max = n + b + 2c, where n = |V |.
Proof. Using Lemma 1, all the n − 2b − c jobs outside of those 2-subsets and
singletons can be finished in n−2b− c units of time, and each 2-subset and each
singleton can be finished in 3 units of time, respectively. Putting them together,
we have a schedule π of makespan Cπ

max = (n − 2b − c) + 3b + 3c = n + b + 2c. ��
By Corollary 1, we wish to solve the problem O3 | pij = 1, prec | Cmax by

partitioning the jobs into acyclic agreeable subsets such that the quantity b+2c
is minimized. Our main contribution is an algorithm that produces an acyclic
partition achieving a number of singletons no more than the number of isolated
jobs (to be defined) in the optimal schedule.

In the rest of the section, we introduce a representation for the DAGs which
is used in our algorithm design and analysis.

2.1 A DAG Representation

Let G = (V,E) be the precedence graph describing all the given precedence
constraints, where a directed path from vi to vj suggests that the job vi precedes

Open-Shop Scheduling for Unit Jobs Under Precedence Constraints 333

the job vj (that is, vj cannot be processed unless vi is finished by the three-
machine openshop). Through out the paper, we let n = |V | and m = |E|.

If (vi, vj) ∈ E and there exists a path from vi to vj not involving the edge
(vi, vj), then we call (vi, vj) a redundant edge, in the sense that the precedence
constraint between every pair of jobs is still there after we remove the edge
(vi, vj) from the graph. We may thus simplify the graph G by removing all
redundant edges, which can be executed in O(m) time by a breadth-first-search
(BFS). Afterwards, for each edge (vi, vj) ∈ E, we call vi a parent of vj and vj a
child of vi. Note that a job can have multiple parents, and multiple children as
well.

In the following layered representation of the graph G = (V,E), each job
will be associated with a level (a positive integer). The first layer consists of all
the jobs with in-degree 0, and these are the level-1 jobs. Iteratively, after the
level-� jobs are determined, they and the edges (these are out-edges) incident
at them are removed from the graph; then the (� + 1)-st layer consists of all
the jobs with in-degree 0 in the remainder graph, and these are the level-(� + 1)
jobs. The process terminates when all the jobs of the original graph G have been
partitioned into their respective layers. We assume that there are �max layers
in total. The entire layer partitioning process is executed in O(m) time. In the
sequel, without loss of generality, a DAG G = (V,E) is always represented in
this way, in which every job is associated with a level and Li denotes the subset
of all the level-i jobs, for i = 1, 2, . . . , �max. See Fig. 2 for an illustration.

R

L1

S = (U, F)

L2

L3

L�max

U1

U2

U3

U�max

Fig. 2. A layered representation of the precedence graph G = (V, E), in which there
are �max layers (each as a dashed rectangle) in total, L1, L2, . . . , L�max . U denotes the
subset of all the vertices on the longest paths in G, Ui = Li ∩ U , for i = 1, 2, . . . , �max

(each as a dashed oval), and S = (U, F) denotes the induced subgraph on U .

334 A. Zhang et al.

Lemma 2. Given a DAG G = (V,E), Li is agreeable for every i, and a level-i
job has at least one level-(i − 1) parent (i ≥ 2).

Proof. By how the layers are constructed. ��
Lemma 3. Given a DAG G = (V,E), the partition C = {L1, L2, . . . , L�max} is
an acyclic collection of agreeable subsets.

Proof. By how the layers are constructed and Lemma 2, Li precedes Lj if and
only if i < j. ��
Lemma 4. Given a DAG G = (V,E), the minimum makespan C∗

max ≥
max{n, 3�max}.
Proof. Since we are dealing with unit jobs, C∗

max ≥ n. Select one job vi from
Li, for every i, such that vi is a child of the job vi−1. One clearly sees that in
any feasible schedule, the job vi starts processing after the job vi−1 is finished
by the three-machine openshop; the makespan of the schedule is thus at least
3�max. This proves the lemma. ��
Theorem 1. A schedule π can be constructed from the partition C =
{L1, L2, . . . , L�max} to achieve the makespan Cπ

max ≤ 5
3C∗

max.

Proof. Let b and c denote the number of 2-subsets and the number of singletons
among L1, L2, . . . , L�max . By Corollary 1 a schedule π can be constructed from C
to achieve the makespan Cπ

max = n + b + 2c.
Using the trivial bound �max ≥ b + c in Lemma 4, we have C∗

max ≥
max{n, 3(b + c)}. It follows that

Cπ
max = n + b + 2c ≤ C∗

max +
2
3
C∗

max =
5
3
C∗

max.

This proves the theorem. ��
Clearly, from the layered representation of the graph G = (V,E), we see that

every longest path begins with a level-1 job and ends at a level-�max job, and
it passes through every intermediate layer. That is, every longest path contains
exactly �max jobs (and �max − 1 edges). Let U denote the subset of all the jobs
on the longest paths and F denote the subset of edges inherited by U (i.e.,
F = E[U]). We call S = (U,F) the spine of the graph G = (V,E), and let
H = G[V −U] denote the subgraph of G induced on the remaining subset V −U
of jobs. See Fig. 2 for an illustration.

We define a connected component in a DAG in the usual way by ignoring
the direction of the edges. If the spine S = (U,F) has more than one connected
component, then we can safely conclude that every layer of the graph G = (V,E)
contains at least two jobs, that is, |Li| ≥ 2 for i = 1, 2, . . . , �max. Recall that our
goal is to partition all the jobs into acyclic agreeable subsets to minimize the
number of singletons. We call such partitions the optimal partitions or optimal
collections of acyclic agreeable subsets. We assume in the rest of the paper that

Open-Shop Scheduling for Unit Jobs Under Precedence Constraints 335

the spine S = (U,F) of the input graph G = (V,E) is connected and there
are singleton layers in S = (U,F), as otherwise we trivially achieve an optimal
partition without any singletons. Let Ui denote the subset of level-i jobs of U ,
for i = 1, 2, . . . , �max. If |Ui| = 1, then the job of Ui, denoted as si, is called a
singleton job of U .

Lemma 5. Given a DAG G = (V,E) and its spine S = (U,F), any acyclic
partition of agreeable subsets contains at least �max subsets.

Proof. Select one job ui from Ui, for every i, such that ui is a child of the job
ui−1. (For example, these can be the jobs on a single longest path.) One clearly
sees that in acyclic partition of agreeable subsets, the jobs ui and uj do not
belong to a common subset when i �= j. This suggests there are at least �max

subsets in the partition. This proves the lemma. ��
Lemma 6. Given a DAG G = (V,E) and its spine S = (U,F), a singleton job
of U cannot be processed concurrently with any other job of U in any feasible
schedule.

Proof. Because the singleton job is not agreeable with any other job of U . ��
Assume there are in total k singleton jobs in U , which are si1 , si2 , . . . , sik ,

where sij ∈ Uij (that is, |Uij | = 1) and 1 ≤ i1 < i2 < . . . < ik ≤ �max. Let vi be
a level-i job outside of U , i.e., vi ∈ Li −Ui. If i > ij and vi is agreeable with sij ,
then none of the jobs of Ui−1 can be a parent of vi; it follows from Lemma 2 that
vi has a parent vi−1 ∈ Li−1 −Ui−1. When i−1 > ij , vi−1 must also be agreeable
with sij , and we may repeat the above argument to conclude that there is a job
vij of Lij − sij which is a predecessor of vi. Since both sij and vij are in Lij ,
they are agreeable (Lemma 2). We thus have proved the following lemma.

Lemma 7. Given a DAG G = (V,E) and its spine S = (U,F), for a singleton
job sij ∈ U if there is a job of V − U agreeable with sij , then there is a level-i
job of Li − Ui with i ≥ ij which is agreeable with sij .

3 A 4/3-Approximation for O3 | prec, pij = 1 | Cmax

We have shown in Theorem 1 that we can construct a schedule π from the
partition C = {L1, L2, . . . , L�max} to achieve the makespan Cπ

max ≤ 5
3C∗

max,
suggesting that the O3 | prec, pij = 1 | Cmax problem admits a linear time
5/3-approximation. In this section, we present an improved 4/3-approximation
algorithm.

3.1 Algorithm Description

Our algorithm is mostly based on the above Lemma7, for each singleton job sij

of U , to find a job of V − U which is agreeable with sij such that they can be

336 A. Zhang et al.

processed concurrently. The algorithm is greedy and iterative, and is denoted as
Approx.

Recall that there are in total k singleton jobs in U , which are si1 , si2 , . . . , sik

(that is, Uij = {sij}), with 1 ≤ i1 < i2 < . . . < ik ≤ �max. There are k + 1 iter-
ations in the algorithm Approx, which together construct an acyclic partition
D = {D�max ,D�max−1, . . . , D2,D1}. We initialize R = V − U .

In the first iteration, sequentially for i = �max, �max −1, . . . , ik +1, we simply
let Di = Li and remove the jobs of Li − Ui from R. If |Lik | ≥ 2, then we let
Dik = Lik and remove the jobs of Lik − sik from R. Otherwise, among all the
jobs of R, we pick one job that is agreeable with sik (i.e., not a predecessor of
sik) and has the maximum level. Assume this job is vi ∈ Li −Ui such that i > ik.
We let Dik = {sik , vi} and remove the job vi from R. If no job of R is agreeable
with sik , then we let Dik = {sik} and say that sik remains as a singleton job in
the partition D. This ends the iteration.

In general, in the j-th iteration (j = 2, 3, . . . , k), sequentially for i = ik+2−j −
1, ik+2−j −2, . . . , ik+1−j +1, we simply let Di = Li and remove the jobs of Li−Ui

from R. We remark that here the set Li might not be the original Li, since some
of its jobs might be picked in earlier iterations and thus have been removed.
Nevertheless, since |Ui| ≥ 2, we conclude that |Di| ≥ 2 too. If |Lik+1−j

| ≥ 2,
then we let Dik+1−j

= Lik+1−j
and remove the jobs of Lik+1−j

− sik+1−j
from

R. Otherwise, among all the jobs of R, we pick one job that is agreeable with
sik+1−j

(i.e., not a predecessor of sik+1−j
) and has the maximum level. Assume

this job is vi ∈ Li − Ui such that i > ik+1−j . We let Dik+1−j
= {sik+1−j

, vi}
and remove the job vi from R. If no job of R is agreeable with sik+1−j

, then we
let Dik+1−j

= {sik+1−j
} and say that sik+1−j

remains as a singleton job in the
partition D. This ends the iteration. A high-level description of such a typical
iteration of the algorithm Approx is depicted in Fig. 3.

The j-th iteration of the algorithm Approx (j = 2, 3, . . . , k):

1. for i = ik+2−j − 1, ik+2−j − 2, . . . , ik+1−j + 1,
1.1. set Di = Li;
1.2. remove the jobs of Li − Ui from R;

2. if |Lik+1−j | ≥ 2,
2.1. set Dik+1−j = Lik+1−j ;
2.2. remove the jobs of Lik+1−j − sik+1−j from R;
2.3. end the iteration.

3. if exists vi ∈ R (maximum level possible) agreeable with sik+1−j ,
3.1. set Dik+1−j = {sik+1−j , vi};
3.3. remove the job vi from R;
3.3. end the iteration.

4. 4.1. set Dik+1−j = {sik+1−j};
4.2. end the iteration.

Fig. 3. A high-level description of a typical iteration of the algorithm Approx.

Open-Shop Scheduling for Unit Jobs Under Precedence Constraints 337

In the last (the (k+1)-st) iteration, sequentially for i = i1−1, i1−2, . . . , 2, 1,
we simply let Di = Li and remove the jobs of Li − Ui from R. Again, we know
that here the set Li might not be the original Li, since some of its jobs might
be picked in earlier iterations. Nevertheless, since |Ui| ≥ 2, we conclude that
|Di| ≥ 2 too. This ends the last iteration and the construction of D is complete.
See Fig. 4 for an illustration on D achieved on the graph G = (V,E) shown in
Fig. 2.

R

L1

S = (U, F)

L2

L3

L�max

D1

D2

D3

D�max

Fig. 4. An illustration on the acyclic partition D = {D�max , D�max−1, . . . , D2, D1}
achieved on the precedence graph G = (V, E) shown in Fig. 2. The �max layers
L1, L2, . . . , L�max are shown as dashed rectangles and each subset Di is shown as a
dashed oval.

3.2 Performance Analysis

The main result in this section is the following theorem.

Theorem 2. The schedule π constructed from the partition D = {D1,D2,
. . . , D�max} has a makespan Cπ

max ≤ 4
3C∗

max.

Proof. We prove first that the partition D is acyclic, in a way that Di precedes
Di+1 for i = 1, 2, . . . , �max − 1. Suppose to the contrary Di precedes Dj but
i > j; then Di precedes Di−1. Note that Di (Di−1, respectively) consists of a
subset of jobs of Li (Li−1, respectively) and possibly a job vr with a smaller
level r ≤ i − 1. It follows that i = ij for some j (that is, sij is a singleton job
of U), and vr precedes a job of Di−1, denoted as vt of level t. Thus we have
r < t ≤ i − 1. If vt is agreeable with sij , then by the algorithm description vt

should be picked into Dij , a contradiction. Hence vt precedes sij , which implies

338 A. Zhang et al.

that vr precedes sij too, again a contradiction. These contradictions together
prove that for any i > j, Di doesn’t precede Dj .

Next consider an optimal schedule π∗ that achieves the minimum makespan
C∗

max, and assume without loss of generality that the makespan is achieved at
the first machine M1. For a singleton job sij of U , Lemma 6 states that it cannot
be processed concurrently with any other job of U in π∗. Therefore, there are at
most two distinct jobs of V − U , such that for each of them, when the machine
M1 is processing it, one of the other machines M2 and M3 is processing sij . We
say that these two jobs of V − U are associated with the singleton job sij . It is
important to note that a job of V −U associated with a singleton job cannot be
associated with another singleton job, for otherwise the two singleton jobs were
processed concurrently in π∗ (contradicting Lemma 6).

Either there is one or two jobs of V − U associated with the singleton job
sij , we pick one randomly. If the picked job has a level less than or equal to ij ,
then we use tij to denote it. If the picked job has a level greater than ij , then
we apply Lemma 7 to locate one of its predecessor jobs with level ij and use tij
to denote this predecessor. One sees that all these tij ’s, if exist, are distinct.

If there is no job of V − U associated with the singleton job sij , we say sij

is isolated in π∗.
Recall that in the partition D, when i /∈ {i1, i2, . . . , ik}, |Di| ≥ 2. If |Dij | = 1,

that is, Dij = {sij}, then we say sij is isolated in the schedule π constructed
from D. We prove in the following the most important property that the number
of isolated jobs in π is not greater than the number of isolated jobs in π∗ (though
the two meanings of “isolated” are different).

Assume sij is isolated in π. We find a path from sij to an isolated job in
π∗ as follows: If sij is isolated in π∗, then the path has length 0. If sij is not
isolated in π∗, that is, we have a job tij associated with sij , then tij should have
been picked by the algorithm Approx in an earlier iteration, since otherwise in
this (k + 1 − j)-th iteration the singleton job sij wouldn’t be left alone in the
set Dij . Therefore, we identify another singleton job sij′ , where j′ > j, which is
not isolated in π because in the (k + 1 − j′)-th iteration the algorithm Approx
picked up tij to accompany the singleton job sij′ . Our path extends from sij

to sij′ . If sij′ happens to be isolated in π∗, then our path ends; otherwise, we
continue to use its associated job tij′ to locate a third singleton job sij′′ , where
j′′ > j too, which is not isolated in π, and our path extends to sij′′ . Due to
the finitely many singleton jobs, our path ends at a singleton job sij∗ , which is
isolated in π∗.

One sees that we have used the associated jobs tij ’s, which are distinct from
each other, to locate an isolated job in π∗ for each isolated job in π. Therefore,
an isolated job in π∗ wouldn’t be discovered by multiple isolated jobs in π. In
other words, the number of isolated jobs in π is not greater than the number of
isolated jobs in π∗, denoted as c∗. Suppose there are b 2-subsets and c singletons
in the partition D; then there are c isolated jobs in π. We have

c ≤ c∗. (1)

Open-Shop Scheduling for Unit Jobs Under Precedence Constraints 339

In the optimal schedule π∗, the machine M1 processes nothing while each of
the other two machines is processing an isolated job. That is, the machine M1

idles for at least 2c∗ units of time before the makespan. Since the load of M1 is
n, we have

C∗
max ≥ n + 2c∗. (2)

On the other hand, we still have �max ≥ b + c and C∗
max ≥ 3�max; therefore,

C∗
max ≥ max{n + 2c∗, 3(b + c)}, (3)

which is a better lower bound than the one in Lemma4. It follows that

Cπ
max = n + b + 2c = (n + 2c) + b ≤ C∗

max +
1
3
C∗

max =
4
3
C∗

max.

This proves that the performance ratio for the algorithm Approx is 4/3.
For the running time, the algorithm Approx maintains the precedence rela-

tionships and updates the subsets Li’s for constructing the partition D. The
most time is spent for locating an agreeable job for accompanying a singleton
job of U , which might take O(n) time. Therefore, it is safe to conclude that the
total running time of the algorithm Approx is O(n2). This finishes the proof of
the theorem. ��
Corollary 2. The problem Om | pij = 1, prec | Cmax admits an O(n2)-time
(2 − 2

m)-approximation algorithm.

Proof. Basically we can construct from the acyclic partition D a schedule with
makespan Cmax ≤ n + (m − 2)b + (m − 1)c. While the lower bounds in Eq. (3)
are updated as C∗

max ≥ max{n+(m− 1)c∗,m(b+ c)}. Since we still have c ≤ c∗,
these two inequalities imply that Cmax ≤ (1 + (m − 2)/m)C∗

max = (2 − 2
m)C∗

max.
��

4 Concluding Remarks

We studied the open-shop scheduling problem for unit jobs under precedence
constraints. The problem has been shown to be strongly NP-hard when the
number of machines is part of the input [14], but left as an open problem when
the number m of machines is a fixed constant greater than 2, since 1978 [8].
We approached this problem by proposing a (2 − 2

m)-approximation algorithm,
for m ≥ 3. Addressing the complexity and designing better approximations are
both challenging and exciting.

Acknowledgements. This research is partially supported by the NSFC Grants
11571252, 11771114 and 61672323, the China Scholarship Council Grant 201508330054,
and the NSERC Canada.

340 A. Zhang et al.

References

1. Bräsel, H., Kluge, D., Werner, F.: A polynomial algorithm for the [n/m/0, tij =
1, tree/Cmax] open shop problem. Eur. J. Oper. Res. 72, 125–134 (1994)

2. Brucker, P.: Scheduling Algorithms. Springer, New York (2007). https://doi.org/
10.1007/978-3-540-69516-5

3. Brucker, P., Jurisch, B., Jurisch, M.Z.: Open shop problems with unit time oper-
ations. Oper. Res. 37, 59–73 (1993)

4. Brucker, P., Knust, S.: Complexity results for scheduling problems (2009). http://
www2.informatik.uni-osnabrueck.de/knust/class/

5. Dürr, C.: The scheduling zoo (2016). http://schedulingzoo.lip6.fr
6. Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. J. ACM

23, 665–679 (1976)
7. Graham, R.L.: Combinatorial scheduling theory. In: Steen, L.A. (ed.) Mathematics

Today Twelve Informal Essays. Springer, New York (1978). https://doi.org/10.
1007/978-1-4613-9435-8 8

8. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of scheduling under precedence
constraints. Oper. Res. 26, 22–35 (1978)

9. Pinedo, M.L.: Scheduling: Theory, Algorithm and Systems. Springer, New York
(2016). https://doi.org/10.1007/978-3-319-26580-3

10. Prot, D., Bellenguez-Morinea, O.: A survey on how the structure of precedence
constraints may change the complexity class of scheduling problems. J. Sched. 21,
3–16 (2018)

11. Sevastianov, S.V., Woeginger, G.J.: Makespan minimization in open shops: a poly-
nomial time approximation scheme. Math. Program. 82, 191–198 (1998)

12. Sevastianov, S.V., Woeginger, G.J.: Linear time approximation scheme for the
multiprocessor open shop problem. Discrete Appl. Math. 114, 273–288 (2001)

13. Tanaev, V.S., Sotskov, Y.N., Strusevich, V.A.: Scheduling Theory: Multi-Stage
Systems. Springer, Heidelberg (1994). https://doi.org/10.1007/978-94-011-1192-8

14. Timkovsky, V.G.: Identical parallel machines vs. unit-time shops and preemptions
vs. chains in scheduling complexity. Eur. J. Oper. Res. 149, 355–376 (2003)

15. Williamson, D.P., et al.: Short shop schedules. Oper. Res. 45, 288–294 (1997)

https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.1007/978-3-540-69516-5
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://schedulingzoo.lip6.fr
https://doi.org/10.1007/978-1-4613-9435-8_8
https://doi.org/10.1007/978-1-4613-9435-8_8
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-94-011-1192-8

	Open-Shop Scheduling for Unit Jobs Under Precedence Constraints
	1 Introduction
	2 Preliminaries
	2.1 A DAG Representation

	3 A 4/3-Approximation for O3 prec, pij = 1 Cmax
	3.1 Algorithm Description
	3.2 Performance Analysis

	4 Concluding Remarks
	References

