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Abstract. Path cover is a well-known intractable problem whose goal
is to find a minimum number of vertex disjoint paths in a given graph to
cover all the vertices. We show that a variant, where the objective func-
tion is not the number of paths but the number of length-0 paths (that is,
isolated vertices), turns out to be polynomial-time solvable. We further
show that another variant, where the objective function is the total num-
ber of length-0 and length-1 paths, is also polynomial-time solvable. Both
variants find applications in approximating the two-machine flow-shop
scheduling problem in which job processing constraints are formulated as
a conflict graph. For the unit jobs, we present a 4/3-approximation algo-
rithm for the scheduling problem with an arbitrary conflict graph, based
on the exact algorithm for the variants of the path cover problem. For
arbitrary jobs where the conflict graph is the union of two disjoint cliques
(i.e., all the jobs can be partitioned into two groups such that the jobs in
a group are pairwise conflicting), we present a simple 3/2-approximation
algorithm.

Keywords: Flow-shop scheduling · Conflict graph · b-matching
Path cover · Approximation algorithm

1 Introduction

Scheduling is a well established research area that finds numerous applications
in modern manufacturing industries and in operations research at large. All

Y. Cai and L. Liu—Co-first authors.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Wang and D. Zhu (Eds.): COCOON 2018, LNCS 10976, pp. 205–217, 2018.
https://doi.org/10.1007/978-3-319-94776-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94776-1_18&domain=pdf


206 Y. Cai et al.

scheduling problems modeling real-life applications have at least two compo-
nents: the machines and the jobs. One intensively studied problem focuses on
scheduling constraints are imposed between a machine and a job, such as a time
interval during which the job is allowed to be processed nonpreemptively on the
machine, while the machines are considered as independent from each other, so
are the jobs. For example, the parallel machine scheduling (the multiprocessor
scheduling in [15]) is one of the first studied problems, denoted as Pm || Cmax in
the three-field notation [20], in which a set of jobs each needs to be processed by
one of the m given identical machines, with the goal to minimize the maximum
job completion time (called the makespan); the m-machine flow-shop scheduling
(the flow-shop scheduling in [15]) is another early-studied problem, denoted as
Fm || Cmax, in which a set of jobs each needs to be processed by all the m given
machines in the same sequential order, with the goal to minimize the makespan.

In another category of scheduling problems, additional but limited resources
are required for the machines to process the jobs [13]. The resources are renew-
able but normally non-sharable in practice; the jobs competing for the same
resource have to be processed at different time if their total demand for a cer-
tain resource exceeds the supply. Scheduling with resource constraints [13,14] or
scheduling with conflicts (SwC) [11] also finds numerous applications [3,9,22]
and has attracted as much attention as the non-constrained counterpart. In this
paper, we use SwC to refer to nonpreemptive scheduling problems with addi-
tional constraints or conflicting relationships among the jobs to disallow them to
be processed concurrently on different machines. We note that SwC is also pre-
sented as the scheduling with agreements (SwA), in which a subset of jobs can be
processed concurrently on different machines if and only if they agree with each
other [4,5]. While in the most general scenario a conflict could involve multiple
jobs, in this paper we consider only those conflicts each involves two jobs and
consequently all the conflicts under consideration can be presented as a conflict
graph G = (V,E), where V is the set of jobs and an edge e = (Jj1 , Jj2) ∈ E rep-
resents a conflicting pair such that the two jobs Jj1 and Jj2 cannot be processed
concurrently on different machines in any feasible schedule.

Extending the three-field notation [20], the parallel machine SwC with a
conflict graph G = (V,E) (also abbreviated as SCI in the literature) [11] is
denoted as Pm | G = (V,E), pj | Cmax, where the first field Pm tells that
there are m parallel identical machines, the second field describes the conflict
graph G = (V,E) over the set V of all the jobs, where the job Jj requires a
non-preemptive processing time of pj on any machine, and the last field specifies
the objective function to minimize the makespan Cmax. One clearly sees when
E = ∅, Pm | G = (V,E), pj | Cmax reduces to the classical multiprocessor
scheduling Pm || Cmax, which is already NP-hard for m ≥ 2 [15]. Indeed, with
m either a given constant or part of input, Pm | G = (V,E), pj | Cmax is
more difficult to approximate than the classical multiprocessor scheduling, as
P3 | G = (V,E), pj = 1 | Cmax and P2 | G = (V,E), pj ∈ {1, 2, 3, 4} | Cmax

are APX-hard [11,26]. There is a rich line of research to consider the unit jobs
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(that is, pj = 1) and/or to consider certain special classes of conflict graphs. The
interested reader might see [11] and the references therein.

In the general m-machine (also called m-stage) flow-shop [15] denoted as
Fm || Cmax, there are m ≥ 2 machines M1,M2, . . . ,Mm, a set V of jobs each
job Jj needs to be processed through M1,M2, . . . ,Mm sequentially with pro-
cessing times p1j , p2j , . . . , pmj respectively. When m = 2, the two-machine flow-
shop problem is polynomial time solvable, by Johnson’s algorithm [23]; the m-
machine flow-shop problem, when m ≥ 3, is strongly NP-hard [16]. After several
efforts [10,16,19,23], Hall presented a polynomial-time approximation scheme
(PTAS) for the m-machine flow-shop problem, for any fixed integer m ≥ 3 [21].
When m is part of input (i.e., an arbitrary integer), there is no known constant
ratio approximation algorithm, and the problem cannot be approximated within
1.25, unless P = NP [33].

The m-machine flow-shop SwC was first studied in 1980’s. Blazewicz et al. [8]
considered multiple resource characteristics including the number of resource
types, resource availabilities and resource requirements; they expanded the mid-
dle field of the three-field notation to express these resource characteristics, for
which the conflict relationships are modeled by complex structures such as hyper-
graphs. At the end, they proved complexity results for several variants in which
either the conflict relationships are simple enough or only the unit jobs are con-
sidered. Further studies on more variants can be found in [6,7,28–30]. In this
paper, we consider those conflicts each involves only two jobs such that all the
conflicts under consideration can be presented as a conflict graph G = (V,E).
The m-machine flow-shop scheduling with a conflict graph G = (V,E) is denoted
as Fm | G = (V,E), pij | Cmax. We remark that our notation is slightly different
from the one introduced by Blazewicz et al. [8], which uses a prefix “res” in the
middle field for describing the resource characteristics.

Several applications of the m-machine flow-shop scheduling with a conflict
graph have been mentioned in the literature. In a typical example of scheduling
medical tests in an outpatient health care facility where each patient (the job)
needs to do a sequence of m tests (the machines), a patient must be accompanied
by their doctor during a test, so two patients under the care of the same doctor
cannot go for tests simultaneously. That is, two patients of the same doctor are
conflicting to each other, and all the conflicts can be effectively described as a
graph G = (V,E), where V is the set of all the patients and an edge represents
a conflicting pair of patients.

In two recent papers [31,32], Tellache and Boudhar studied the prob-
lem F2 | G = (V,E), pij | Cmax, which they denote as FSC. In [32], the
authors summarized and proved several complexity results; to name a few,
F2 | G = (V,E), pij | Cmax is strongly NP-hard when G = (V,E) is the com-
plement of a complete split graph [8,32] (that is, G is the union of a clique
and an independent set), F2 | G = (V,E), pij | Cmax is weakly NP-hard when
G = (V,E) is the complement of a complete bipartite graph [32] (that is, G is
the union of two disjoint cliques), and for an arbitrary conflict graph G = (V,E),
F2 | G = (V,E), pij = 1 | Cmax is strongly NP-hard [32]. In [31], the authors
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proposed three mixed-integer linear programming models and a branch and
bound algorithm to solve the last variant F2 | G = (V,E), pij = 1 | Cmax

exactly; their empirical study shows that the branch and bound algorithm out-
performs and can solve instances of up to 20, 000 jobs.

In this paper, we pursue approximation algorithms with provable perfor-
mance for the NP-hard variants of the two-machine flow-shop scheduling with
a conflict graph. In Sect. 2, we present a 4/3-approximation algorithm for the
strongly NP-hard problem F2 | G = (V,E), pij = 1 | Cmax for the unit jobs with
an arbitrary conflict graph. In Sect. 3, we present a simple 3/2-approximation
algorithm for the weakly NP-hard problem F2 | G = K� ∪ Kn−�, pij | Cmax

for arbitrary jobs with a conflict graph that is the union of two disjoint cliques.
Some concluding remarks are provided in Sect. 4.

2 Approximating F2 | G = (V, E), pij = 1 | Cmax

Tellache and Boudhar proved that F2 | G = (V,E), pij = 1 | Cmax is
strongly NP-hard by a reduction from the well known Hamiltonian path prob-
lem, which is strongly NP-complete [15]. Furthermore, they remarked that
F2 | G = (V,E), pij = 1 | Cmax has a feasible schedule of makespan Cmax = n+k
if and only if the complement G of the conflict graph G, called the agreement
graph, has a path cover of size k (that is, a collection of k vertex-disjoint paths
that covers all the vertices of the graph G), where n is the number of jobs (or ver-
tices) in the instance. This way, F2 | G = (V,E), pij = 1 | Cmax is polynomially
equivalent to the Path Cover problem, which is NP-hard even on some special
classes of graphs including planar graphs [17], bipartite graphs [18], chordal
graphs [18], chordal bipartite graphs [24] and strongly chordal graphs [24].
In terms of approximability, to the best of our knowledge there is no o(n)-
approximation algorithm for the Path Cover problem.

We begin with some terminologies. The conflict graphs considered in this
paper are all simple graphs. All paths and cycles in a graph are also simple. The
number of edges on a path/cycle defines the length of the path/cycle. A length-k
path/cycle is also called a k-path/cycle for short. Note that a single vertex is
regarded as a 0-path, while a cycle has length at least 3. For an integer b ≥ 1, a
b-matching of a graph is a spanning subgraph in which every vertex has degree
no greater than b; a maximum b-matching is a b-matching that contains the
maximum number of edges. A maximum b-matching of a graph can be computed
in O(m2 log n log b)-time, where n and m are the number of vertices and the
number of edges in the graph, respectively [12]. Clearly, a graph could have
multiple distinct maximum b-matchings.

Given a graph, a path cover is a collection of vertex-disjoint paths in the
graph that covers all the vertices, and the size of the path cover is the number
of paths therein. The Path Cover problem is to find a path cover of a given
graph of the minimum size, and the well known Hamiltonian path problem is
to decide whether a given graph has a path cover of size 1. Many variants of
the Path Cover problem have been studied in the literature [1,2,25,27]. We
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mentioned earlier that Tellache and Boudhar proved that F2 | G = (V,E), pij =
1 | Cmax is polynomially equivalent to the Path Cover problem, but to the
best of our knowledge there is no approximation algorithm designed for F2 |
G = (V,E), pij = 1 | Cmax. Nevertheless, one easily sees that, since F2 | G =
(V,E), pij = 1 | Cmax has a feasible schedule of makespan Cmax = n + k if and
only if the complement G of the conflict graph G has a path cover of size k, a
trivial algorithm simply processing the jobs one by one (each on the first machine
M1 and then on the second machine M2) produces a schedule of makespan
Cmax = 2n, and thus is a 2-approximation algorithm.

In this section, we will design two approximation algorithms with improved
performance ratios for F2 | G = (V,E), pij = 1 | Cmax. These two approximation
algorithms are based on our polynomial time exact algorithms for two variants
of the Path Cover problem, respectively. We start with the first variant called
the Path Cover with the minimum number of 0-paths, in which we are given a
graph and we aim to find a path cover that contains the minimum number of
0-paths. In the second variant called the Path Cover with the minimum number
of {0, 1}-paths, we aim to find a path cover that contains the minimum total
number of 0-paths and 1-paths. We remark that in both variants, we do not care
about the size of the path cover.

2.1 Path Cover with the Minimum Number of 0-Paths

Recall that in this variant of the Path Cover problem, given a graph, we
aim to find a path cover that contains the minimum number of 0-paths. The
given graph is the complement G = (V,E) of the conflict graph G = (V,E) in
F2 | G = (V,E), pij = 1 | Cmax. We next present a polynomial time algorithm
that finds for G a path cover that contains the minimum number of 0-paths.

In the first step, we apply any polynomial time algorithm to find a maximum
2-matching in G, denoted as M ; recall that this can be done in O(m2 log n)-
time, where n = |V | and m = |E|. M is a collection of vertex-disjoint paths and
cycles; let P0 (P1, P2, P≥3, C, respectively) denote the sub-collection of 0-paths
(1-paths, 2-paths, paths of length at least 3, cycles, respectively) in M . That is,
M = P0 ∪ P1 ∪ P2 ∪ P≥3 ∪ C.

Clearly, if P0 = ∅, then we have a path cover containing no 0-paths after
removing one edge per cycle in C. In the following discussion we assume the
existence of a 0-path, which is often called a singleton. We also call an ending
vertex of a k-path with k ≥ 1 as an endpoint for simplicity. The following lemma
is trivial due to the edge maximality of M .

Lemma 1. All the singletons and endpoints in the maximum 2-matching M are
pairwise non-adjacent to each other in the underlying graph G.

Let v0 be a singleton. If v0 is adjacent to a vertex v1 on a cycle of C in the
underlying graph G, then we may delete a cycle-edge incident at v1 from M while
add the edge (v0, v1) to M to achieve another maximum 2-matching with one
less singleton. Similarly, if v0 is adjacent to a vertex v1 on a path of P≥3 (note
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that v1 has to be an internal vertex on the path by Lemma1) in the underlying
graph G, then we may delete a certain path-edge incident at v1 from M while
add the edge (v0, v1) to M to achieve another maximum 2-matching with one
less singleton. In either of the above two cases, assume the edge deleted from M
is (v1, v2); then we say the alternating path v0-v1-v2 saves the singleton v0.

In the general setting, in the underlying graph G, v0 is adjacent to the middle
vertex v1 of a 2-path P1, one endpoint v2 of P1 is adjacent to the middle vertex
v3 of another 2-path P2, one endpoint v4 of P2 is adjacent to the middle vertex
v5 of another 2-path P3, and so on, one endpoint v2i−2 of Pi−1 is adjacent to
the middle vertex v2i−1 of another 2-path Pi, one endpoint v2i of Pi is adjacent
to a vertex v2i+1 of a cycle of C or a path of P≥3 (see an illustration in Fig. 1),
on which the edge (v2i+1, v2i+2) is to be deleted. Then we may delete the edges
{(v2j+1, v2j+2) | j = 0, 1, . . . , i} from M while add the edges {(v2j , v2j+1) |
j = 0, 1, . . . , i} to M to achieve another maximum 2-matching with one less
singleton; and we say the alternating path v0-v1-v2-. . .-v2i-v2i+1-v2i+2 saves the
singleton v0.

Fig. 1. An alternating path v0-v1-v2-. . .-v2i-v2i+1-v2i+2 that saves the singleton v0,
where the last two vertices are on a path of P≥3 or a cycle. In the figure, solid edges
are in and dashed edges are outside of the maximum 2-matching M .

Fig. 2. A high-level description of Algorithm A for computing a path cover in the
agreement graph G = (V,E).

The second step of the algorithm is to iteratively find a simple alternating
path to save a singleton; it terminates when no alternating path is found. The
resulting maximum 2-matching is still denoted as M .



Approximation Algorithms for Two-Machine Flow-Shop Scheduling 211

In the last step, we break the cycles in M by deleting one edge per cycle
to produce a path cover. Denote our algorithm as Algorithm A, of which a
high-level description is provided in Fig. 2. We will prove in the next theorem
that the path cover produced by Algorithm A contains the minimum number
of 0-paths.

Theorem 1. Algorithm A is an O(m2 log n)-time algorithm for computing a
path cover with the minimum number of 0-paths in the agreement graph G.

2.2 Path Cover with the Minimum Number of {0, 1}-Paths

In this variant of the Path Cover problem, given a graph, we aim to find a path
cover that contains the minimum total number of 0-paths and 1-paths. Again,
the given graph is the complement G = (V,E) of the conflict graph G = (V,E)
in F2 | G = (V,E), pij = 1 | Cmax. We next present a polynomial time algorithm
called Algorithm B that finds for G such a path cover.

Recall that in Algorithm A for computing a path cover that contains the
minimum number of 0-paths, an alternating path saving a singleton v0 starts
from the singleton v0 and reaches a vertex v2i+1 on a path of P≥3 or on a cycle
of C (see Fig. 1). If v2i+1 is on a cycle, then the last vertex v2i+2 can be any one
of the two neighbors of v2i+1 on the cycle. If v2i+1 is on a k-path, then the last
vertex v2i+2 is a non-endpoint neighbor of v2i+1 on the path (the existence is
guaranteed by k ≥ 3); and the reason why v2i+2 cannot be an endpoint is obvious
since otherwise v2i+2 would be left as a new singleton after the edge swapping.
In the current variant we want to minimize the total number of 0-paths and 1-
paths; clearly v2i+2 cannot be an endpoint either and cannot even be the vertex
adjacent to an endpoint, for the latter case because the edge swapping saves v0
but leaves a new 1-path. To guarantee the existence of such vertex v2i+2, the
k-path must have k ≥ 4, and if k = 4 then v2i+1 cannot be the middle vertex of
the 4-path.

Algorithm B is in spirit similar to but in practice slightly more complex
than Algorithm A, mostly because the definition of an alternating path saving
a singleton or a 1-path is different, and slightly more complex.

In the first step of Algorithm B, we apply any polynomial time algorithm
to find a maximum 2-matching M in G. Let P0 (P1, P2, P3, P4, P≥5, C, respec-
tively) denote the sub-collection of 0-paths (1-paths, 2-paths, 3-paths, 4-paths,
paths of length at least 5, cycles, respectively) in M . We also let P0,1 = P0 ∪ P1

denote the collection of all 0-paths (called singletons) and 1-paths in M .
Let e0 = (v0, u0) be an edge in M . In the sequel when we say e0 is adjacent

to a vertex v1 in the graph G, we mean v1 is a different vertex (from v0 and u0)
and at least one of v0 and u0 is adjacent to v1; if both v0 and u0 are adjacent
to v1, then pick one (often arbitrarily) for the subsequent purposes. This way,
we unify our treatment on singletons and 1-paths, for the reasons to be seen in
the following. For ease of presentation, we use an object to refer to a vertex or
an edge. Like in the last subsection, an ending vertex of a k-path with k ≥ 1 or
an ending edge of a k-path with k ≥ 2 is called an end-object for simplicity.
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Let v0 be a singleton or e0 = (v0, u0) be a 1-path in M . In the underlying
graph G, if v0 is adjacent to a vertex v1 on a cycle of C, or on a path of P≥5, or
on a 4-path such that v1 is not the middle vertex, then we may delete a certain
edge incident at v1 from M while add the edge (v0, v1) to M to achieve another
maximum 2-matching with one less singleton if v0 is a singleton or with one less
1-path. In either of the three cases, assume the edge deleted from M is (v1, v2);
then we say the alternating path v0-v1-v2 saves the singleton v0 or the 1-path
e0 = (v0, u0).

Analogously as in the last subsection, in the general setting, in the underlying
graph G, v0 is adjacent to a vertex v1 of a path P1 ∈ P2,3,4 (if P1 is a 4-path then
v1 has to be the middle vertex). Note that this vertex v1 basically separates the
two end-objects of the path P1 — an analogue to the role of the middle vertex of
a 2-path that separates the two endpoints of the 2-path. We say “an end-object
of P1 is adjacent to v1 via v2”, to mean that if the end-object is a vertex then
it is v2, or if the end-object is an edge, then it is (v2, u2), with the edge (v1, v2)
on the path P1 either way (see an illustration in Fig. 3).

Fig. 3. An alternating path v0-v1-v2-. . .-v2i-v2i+1-v2i+2 that saves the singleton v0 or
the 1-path e0 = (v0, u0), where the last two vertices are on a cycle of C, or on a path of
P≥5, or on a 4-path such that v2i+1 is not the middle vertex. In the figure, solid edges
are in the maximum 2-matching M , dashed edges are outside of M , and a dotted circle
contains an object which is either a vertex or an edge.

Suppose one end-object of P1, which is adjacent to v1 via v2, is adjacent to a
vertex v3 of another P2 ∈ P2,3,4 (the same, if P2 is a 4-path then v3 has to be the
middle vertex); one end-object of P2, which is adjacent to v3 via v4, is adjacent
to a vertex v5 of another P3 ∈ P2,3,4 (the same, if P3 is a 4-path then v5 has to
be the middle vertex); and so on; one end-object of Pi−1, which is adjacent to
v2i−3 via v2i−2, is adjacent to a vertex v2i−1 of another Pi ∈ P2,3,4 (the same,
if Pi is a 4-path then v2i−1 has to be the middle vertex); one end-object of Pi,
which is adjacent to v2i−1 via v2i, is adjacent to a vertex v2i+1 of a cycle of C,
or of a path of P≥5, or of a 4-path such that v2i+1 is not the middle vertex (see
an illustration in Fig. 3), on which a certain edge (v2i+1, v2i+2) is to be deleted.
Then we may delete the edges {(v2j+1, v2j+2) | j = 0, 1, . . . , i} from M while
add the edges {(v2j , v2j+1) | j = 0, 1, . . . , i} to M to achieve another maximum
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2-matching with one less singleton if v0 is a singleton or with one less 1-path. We
say the alternating path v0-v1-v2-. . .-v2i-v2i+1-v2i+2 saves the singleton v0 or the
1-path e0 = (v0, u0). It is important to note that in this alternating path, the
vertex v2 “represents” the end-object of P1, meaning that when the end-object
is an edge, it is treated very the same as the vertex v2.

The second step of the algorithm is to iteratively find a simple alternating
path to save an object of P0,1; it terminates when no alternating path is found.
The resulting maximum 2-matching is still denoted as M .

In the last step, we break the cycles in M by deleting one edge per cycle to
produce a path cover. A high-level description of Algorithm B is similar to
the one for Algorithm A shown in Fig. 2, replacing a singleton by an object of
P0,1. We will prove in Theorem2 that the path cover produced by Algorithm
B contains the minimum total number of 0-paths and 1-paths.

Theorem 2. Algorithm B is an O(m2 log n)-time algorithm for computing a
path cover with the minimum total number of 0-paths and 1-paths in the agree-
ment graph G = (V,E).

Remark 1. The path cover produced by Algorithm B has the minimum total
number of 0-paths and 1-paths in the agreement graph G = (V,E). One may
run Algorithm A at the end of the second step of Algorithm B to achieve
a path cover with the minimum total number of 0-paths and 1-paths, and with
the minimum number of 0-paths. During the execution of Algorithm A, a
singleton trades for a 1-path.

2.3 Approximation Algorithms for F2 | G = (V, E), pij = 1 | Cmax

Given an instance of the problem F2 | G = (V,E), pij = 1 | Cmax, where there
are n unit jobs V = {J1, J2, . . . , Jn} to be processed on the two-machine flow-
shop, with their conflict graph G = (V,E), we want to find a schedule with a
provable makespan.

For a k-path in the agreement graph G = (V,E), where k ≥ 0, for example
P = J1-J2-. . .-Jk-Jk+1, we compose a sub-schedule πP in which the machine
M1 continuously processes the jobs J1, J2, . . . , Jk+1 in order, and the machine
M2 in one unit of time after M1 continuously processes these jobs in the same
order. The sub-makespan for the flow-shop to complete these k + 1 jobs is thus
k + 2 (units of time). Let M = {P1, P2, . . . , P�} be a path cover of size � in
the agreement graph G. For each path Pi we use |Pi| to denote its length and
construct the sub-schedule πPi

as above that has a sub-makespan of |Pi| + 2.
We then concatenating these � sub-schedules (in an arbitrary order) into a full
schedule π, which clearly has a makespan Cπ

max =
∑�

i=1(|Pi| + 2) = n + �.
On the other hand, given a schedule π, if two jobs Jj1 and Jj2 are processed

concurrently on the two machines, then they have to be agreeing to each other
and thus adjacent in the agreement graph G; we select this edge (Jj1 , Jj2). Note
that one job can be processed concurrently with at most two other jobs as there
are only two machines. Therefore, all the selected edges form into a number of
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vertex-disjoint paths in G (due to the flow-shop, no cycle is formed); these paths
together with the vertices outside of the paths, which are the 0-paths, form a
path cover for G. Assuming without loss of generality that two machines cannot
both idle at any time point, the makespan of the schedule is exactly. the sum of
the number of jobs and the number of paths.

We state this relationship between a feasible schedule and a path cover in
the agreement graph G into the following lemma.

Lemma 2 [32]. A feasible schedule π for the problem F2 | G = (V,E), pij =
1 | Cmax one-to-one corresponds to a path cover M in the agreement graph G,
and Cπ

max = n + |M |, where n is the number of jobs in the instance.

Theorem 3. The problem F2 | G = (V,E), pij = 1 | Cmax admits an
O(m2 log n)-time 4/3-approximation algorithm, where n = |V | and m = |E|.
Remark 2. If Algorithm A is used in the proof of Theorem3 to compute a
path cover with the minimum number of 0-paths and subsequently to construct
a schedule π, then we have Cπ

max ≤ 3
2C∗

max. That is, we have an O(m2 log n)-time
3/2-approximation algorithm based on Algorithm A.

When the agreement graph G consists of k vertex-disjoint triangles such that
a vertex of the i-th triangle is adjacent to a vertex of the (i + 1)-st triangle, for
i = 1, 2, . . . , k−1, and the maximum degree is 3, Algorithm B could produce a
path cover containing k 2-paths, while there is a Hamiltonian path in the graph.
This suggests that the approximation ratio 4/3 is asymptotically tight.

3 Approximating F2 | G = K� ∪ Kn−�, pij | Cmax

In this section, we present a 3/2-approximation algorithm for the weakly NP-
hard problem F2 | G = K� ∪ Kn−�, pij | Cmax for arbitrary jobs with a con-
flict graph that is the union of two disjoint cliques. Note that the agreement
graph G = K�,n−� is a complete bipartite graph. Without loss of general-
ity, let the job set of K� be A = {J1, J2, . . . , J�} and the job set of Kn−� be
B = {J�+1, J�+2, . . . , Jn}.

For the job set A, we merge all its jobs (in the sequential order with increasing
indices) to become a single “aggregated” job denoted as JA, with its processing
time on the machine M1 being P 1

A =
∑�

j=1 p1j and its processing time on the

machine M2 being P 2
A =

∑�
j=1 p2j . Likewise, for the job set B, we merge all its

jobs (in the sequential order with increasing indices) to become a single aggre-
gated job denoted as JB , with its two processing times being P 1

B =
∑n

j=�+1 p1j

and P 2
B =

∑n
j=�+1 p2j . We now have an instance of the classical two-machine

flow-shop scheduling problem consisting of only two aggregated jobs JA and
JB , and we may apply Johnson’s algorithm [23] to obtain a schedule denoted
as π. From π we obtain a schedule for the original instance of the problem
F2 | G = K� ∪ Kn−�, pij | Cmax, which is also denoted as π as there is no major
difference. We call this algorithm as Algorithm C.
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Theorem 4. Algorithm C is an O(m)-time 3/2-approximation algorithm for
the problem F2 | G = K� ∪ Kn−�, pij | Cmax, where m is the number of edges in
the conflict graph G.

In the schedule produced by Algorithm C, one sees that when the jobs of
A are processed on the machine M1, the other machine M2 is left idle. This is
certainly disadvantageous. For instance, when the jobs are all unit jobs and |A| =
|B| = 1

2n, the makespan of the produced schedule is 3
2n, while the agreement

graph is Hamiltonian and thus the optimal makespan is only n + 1. This huge
gap suggests that one could probably design a better approximation algorithm
and we leave it as an open question.

4 Concluding Remarks

In this paper, we investigated approximation algorithms for the two-machine
flow-shop scheduling problem with a conflict graph. In particular, we considered
two special cases of all unit jobs and of a conflict graph that is the union of
two disjoint cliques, that is, F2 | G = (V,E), pij = 1 | Cmax and F2 | G =
K� ∪ Kn−�, pij | Cmax. For the first problem we studied the graph theoretical
problem of finding a path cover with the minimum total number of 0-paths and
1-paths, and presented a polynomial time exact algorithm. This exact algorithm
leads to a 4/3-approximation algorithm for the problem F2 | G = (V,E), pij =
1 | Cmax. We also showed that the performance ratio 4/3 is asymptotically tight.
For the second problem F2 | G = K� ∪ Kn−�, pij | Cmax, we presented a 3/2-
approximation algorithm.

Designing approximation algorithms for F2 | G = (V,E), pij = 1 | Cmax

with a performance ratio better than 4/3 is challenging, since one way or the
other, one has to deal with longer paths in a path cover or has to deal with the
original Path Cover problem. Nevertheless, better approximation algorithms
for F2 | G = K� ∪ Kn−�, pij | Cmax can be expected.
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