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Abstract. Our legal question answering system combines legal information
retrieval and textual entailment, and exploits paraphrasing and sentence-level
analysis of queries and legal statutes. We have evaluated our system using the
training data from the competition on legal information extraction/entailment
(COLIEE)-2016. The competition focuses on the legal information processing
required to answer yes/no questions from Japanese legal bar exams, and it
consists of three phases: legal ad-hoc information retrieval (Phase 1), textual
entailment (Phase 2), and a combination of information retrieval and textual
entailment (Phase 3). Phase 1 requires the identification of Japan civil law
articles relevant to a legal bar exam query. For this phase, we have used an
information retrieval approach using TF-IDF and a Ranking SVM. Phase 2
requires decision on yes/no answer for previously unseen queries, which we
approach by comparing the approximate meanings of queries with relevant
articles. Our meaning extraction process uses a selection of features based on a
kind of paraphrase, coupled with a condition/conclusion/exception analysis of
articles and queries. We also identify synonym relations using word embedding,
and detect negation patterns from the articles. Our heuristic selection of attri-
butes is used to build an SVM model, which provides the basis for ranking a
decision on the yes/no questions. Experimental evaluation show that our method
outperforms previous methods. Our result ranked highest in the Phase 3 in the
COLIEE-2016 competition.

Keywords: Legal question answering � Recognizing textual entailment �
Information retrieval � Paraphrasing

1 Task Description and Summary of Our Approach

Our approach to legal question answering combines information retrieval and textual
entailment. We achieve this combination with a number of intermediate steps. For
instance, consider the question “Is it true that a special provision that releases warranty
can be made, but in that situation, when there are rights that the seller establishes on
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his/her own for a third party, the seller is not released of warranty.” A system must first
identify and retrieve relevant documents (typically legal statutes), and subsequently,
identify a most relevant sentence. Finally it must extract and compare semantic con-
nections between the question and the relevant sentences, and confirm a threshold of
evidence about whether an entailment relation holds.

The Competition on Legal Information Extraction/Entailment (COLIEE) 20161

focuses on two aspects of legal information processing related to answering yes/no
questions from legal bar exams: legal document retrieval (Phase 1), and whether there
is a textual entailment relation between a query and relevant legal documents (Phase 2).
In addition, Phase 3 is about combing them for the whole task.

We treat Phase 1 as an ad-hoc information retrieval (IR) task. The goal is to retrieve
relevant Japan civil law statutes or articles that are related to a question in legal bar
exams, from which we can confirm a yes or no answer based on deciding if there is an
entailment relation between the question (or the negation of the question) and the
relevant statutes.

We approach the information retrieval part of this problem (Phase 1) with two
models based on statistical information. One is the TF-IDF model [1], i.e., term
frequency-inverse document frequency. The idea is that relevance between a query and
a document depends on their intersecting word set. The importance of words is mea-
sured with a function of term frequency and document frequency as parameters. Our
terms are lemmatized words, which mean verbs like “attending,” “attends,” and “at-
tended” are lemmatized as the same form “attend.”

Another popular model for text retrieval is a Ranking SVM model [2]. We use that
model to re-rank documents that are retrieved by the TF-IDF model. The model’s
features are lexical words, dependency path bigrams and TF-IDF scores. The intuition
is that the supervised model can learn weights or priority of words based on training
data in addition to, or as an alternative to TF-IDF.

The goal of Phase 2 is to construct yes/no question answering systems for legal
queries, by heuristically confirming entailment of a query (or its negation) from rele-
vant articles. The answer to a question is typically determined by measuring some kind
of semantic similarity between question and answer. Because the legal bar exam query
and relevant articles are complex and varied, we need to carefully determine what kind
of information is needed for confirming textual entailment. Here we exploit a kind of
paraphrasing based on term expansion and word embedding for semantic analysis,
coupled with condition/conclusion/exception analysis on the query and relevant arti-
cles. After constructing a set of pre-trained semantic word embeddings using word2-
vec2, we train the system to learn models for semantic matching between question and
corresponding articles. These feature extraction methods are coupled with negation
analysis, then used to construct an SVM model to provide the required yes/no answers.

1 https://webdocs.cs.ualberta.ca/*miyoung2/COLIEE2016/.
2 https://code.google.com/p/word2vec.
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2 Phase 1: Legal Information Retrieval

2.1 IR Models

Our information retrieval model is a combination of the term frequency–inverse doc-
ument frequency (tf-idf) model and a support vector machine (SVM) re-ranking model.
We will describe the two components in the following.

2.1.1 The TF-IDF Model
One of our baseline models is a tf-idf model implemented in Lucene, an open source IR
system3.

The simplified version of Lucene’s similarity score of an article to a query is:

tf�idf Q;Að Þ ¼
X

t2Q [ A

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tf ðt;AÞ

p
� ½1þ log idf tð Þð Þ�2g ð1Þ

The score tf-idf(Q,A) is a measure which estimates the relevance between a query
Q and an article A. First, for every term t in query A, we compute tf(t,A), and idf(t). The
score tf(t,A) is the term frequency of t in the article A, and idf(t) is the inverse document
frequency of the term t, which is the number of articles that contain t. The final score is
the sum of the scores of terms in both the article and the query. The bigger tf-idf(Q,A),
the more relevance between the query Q and the article A.

The choice of terms in documents is as important as choosing the score functions.
Instead of using the original words in a text, we lemmatize the text with the Stan-
ford NLP tool [15]. After lemmatization, words such as steal, stole, and steals become
steal. In this way, if there is steal in the question, but stole in the article, we can still
retrieve the article as a match.

2.1.2 The Ranking SVM Model
Previous tf-idf models rank the articles based on frequency information. However,
other features, such as the matched phrases between the article and the queries, are
useful too. We use an SVM Ranking model to learn the importance of such features
and then re-estimate the score of each retrieved article from the tf-idf output.

The ranking SVM model was proposed by [2]. That model ranks documents based
on user’s click through data; in our case, the correct articles in the training data. Given
the articles retrieved from the tf-idf model, the ranking SVM will learn to rank correct
articles higher than incorrect ones. More precisely, given the feature vector of a training
instance, i.e. a retrieved article set given a query, denoted by U(Q,Ai), the model tries to
find a ranking that satisfies constraints:

U Q;Aið Þ[U Q;Aj
� � ð2Þ

where Ai is a relevant article for the query Q, while Aj is less relevant.

3 Lucene can be downloaded from http://lucene.apache.org/core/.
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To use this ranking SVM, we incorporate the following types of features:

• Lexical words: the lemmatized normal form of surface structure of words in both
the retrieved article and the query. In the conversion to the SVM’s instance rep-
resentation, this feature is converted into binary features whose values are one or
zero, i.e. if a word exists in the intersection word set or not.

• Dependency pairs: word pairs that are linked by a dependency link, arising from a
dependency parsing. The intuition is that, compared with the bag of words infor-
mation, syntactic information should improve the capture of salient semantic con-
tent. Dependency parse features have been used in many NLP tasks, and improved
IR performance [3]. This feature type is also converted into binary values.

• TF-IDF score (Sect. 2.1.1).

2.2 Experiments

The COLIEE legal IR task has several sets of queries with the Japan civil law articles as
documents (1044 articles in total). Here follows one example of the query and a
corresponding relevant article.

Question: A person who made a manifestation of intention which was induced by duress
emanated from a third party may rescind such manifestation of intention on the basis of duress,
only if the other party knew or was negligent of such fact.

Related Article: (Fraud or Duress) Article 96(1) Manifestation of intention which is induced by
any fraud or duress may be rescinded. (2) In cases any third party commits any fraud inducing
any person to make a manifestation of intention to the other party, such manifestation of
intention may be rescinded only if the other party knew such fact. (3) The rescission of the
manifestation of intention induced by the fraud pursuant to the provision of the preceding two
paragraphs may not be asserted against a third party without knowledge.

Before the final test set was released, we received 8 sets of queries for a dry run.
The 8 sets of data include 412 queries. We used the corresponding 8-fold leave-one-out
cross validation evaluation. The metric for measuring our IR models is Mean Average
Precision (MAP):

MAP Qð Þ = 1
Qj j

X

q2Q

1
m

X

k2 1;mð Þ
precision Rkð Þ ð3Þ

where Q is the set of queries, and m is the number of retrieved articles. Rk is the set of
ranked retrieval results from the first until the kth article. In the following experiments,
we set m as 3 for all queries, corresponding to the column MAP@3 in Table 1. The
SVM’s parameters are set according to the 8-fold cross validation IR performance.
Given the top 20 articles returned by the tf-idf model, the SVM model extracts features
for every article and trains according to the order that relevant articles are ranked higher
than irrelevant ones.

Table 1 presents the results of using the different models. The result shows that the
ranking SVM with all three features achieves the highest performance. We also show
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the standard deviation of the cross-validation, the smallest and largest MAP@3 for 8
folds to show the effect of small training data. It seems the tf-idf model causes larger
deviation than the SVM models. In the last column of Table 1, we show the F-score
results of different models with the top first answers for every query. The F-score is
used as the metric of the competition. We can observe that the SVM models are better
than the tf-idf model. However, no difference is observed between the second model
and the fourth model.

Figure 1 shows the MAP@3 values for every training fold for Model 4 in Table 1.
It shows the model achieves a MAP@3 value larger than 40% for most of the folds.

Table 2 shows our IR result of the final SVM model on the test data and other
systems’ results. iLis7 [19] system with majority vote of decision tree, linear SVM, and
CNN achieved the best result, but in Sect. 3, we will show that our method

Table 1. IR results on dry run data with different models.

Id Models MAP@3
(%)

Standard
deviation
(%)

Smallest
(%)

Largest
(%)

Average
F-score
@1 (%)

1 tf-idf with lemma 39.8 7.0 23.8 45.5 53.4
2 SVM-ranking with

lemma
39.8 6.5 26.1 46.8 60.0

3 SVM-ranking with
lemma and
dependency pair

41.2 5.4 30.1 48.4 56.7

4 Model 3 plus tf-idf
score

43.1 7.1 27.2 49.0 60.0
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Fig. 1. MAP@3 for the 8 cross-validation set of Model 4.
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outperformed iLis7 [19] and showed the best performance in answering yes/no ques-
tions when it is combined with our textual entailment methods.

3 Phase 2: Answering Yes/No Questions

Our system uses a combination of word embedding for semantic analysis and para-
phrasing for term expansion to predict textual entailment. Here we describe the
entailment types and the extraction of features from sentences.

3.1 Entailment Types

We identify a variety of types of entailment as shown in Table 3. By classifying a
yes/no problem as one of these types, we can determine what kind of further infor-
mation is required to provide a decision on entailment.

Table 3 shows our list of query-article types. Note that one article can refer to
another, such as “If there is any latent defect in the subject matter of a sale, the
provisions of Article 566 shall apply mutatis mutandis.” This makes textual entailment
more complex because we also need to analyze the meaning of the referred article.

Table 2. Our IR results on test data vs. other systems’ results

Systems Precision Recall F-score

JNLN1 [17] 0.6105 0.4427 0.5133
HUKB-1 [21] 0.6154 0.4886 0.5447
HUKB-2 [21] 0.6250 0.4962 0.5532
HUKB-3 [21] 0.6316 0.4580 0.5310
HUKB-4 [21] 0.6316 0.4580 0.5310
JNLN2 [22] 0.6211 0.4504 0.5221
iLis7 [19] 0.7272 0.5496 0.6261
JNLN3 [20] 0.6526 0.4733 0.5487
N01-1 [23] 0.3053 0.2214 0.2566
N01-2 [23] 0.4211 0.3053 0.3540
N01-3 [23] 0.4000 0.2901 0.3363
Our system (SVM-ranking with lemma and dependency
pair and tf-idf score)

0.5895 0.4275 0.4956

Table 3. Query-article types

Query-article type Proportion Query-article type Proportion

One article refers to another article 0.182 Question is a specific example 0.092
Multiple relevant articles 0.388 Multiple conditions 0.731
Exceptional case 0.148
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In another case, one query can have multiple relevant articles, so we have to
combine the multiple articles’ meanings, or choose one as most relevant for deter-
mining entailment.

Note also that many statutes have exceptional cases, so we need to recognize if the
query is included in the exceptional case or not. In addition, a query may be one
example of the article case. There are also cases where some articles have multiple
conditions for one conclusion, so we must then confirm if each condition is satisfied in
the query. Overall, many query-article types also require the identification of negation
and synonym/antonym relations to confirm the correct entailment.

The overall description of our procedure of textual entailment is as follows:

1. Find the most relevant article for a given query
2. Divide a query and the corresponding article into “Condition(s),” “Conclusion,” and

“Exception-condition(s).”
3. Term expansion using Paraphrasing
4. Negation and synonym detection
5. Extract features and perform learning using the features

In the following subsections, we explain each step in detail.

3.2 Finding the Most Relevant Article/Sentences

In case that there are multiple relevant sentences, we choose the article with the most
overlapping words with the query. In the selected article, if there exist multiple reg-
ulations, we also choose the one regulation that has most overlapping words with a
query.

3.3 Negation and Synonym Detection

We exploit a process for managing negation and antonyms as described in Kim et al.
[10]. In addition, we approximate word semantic similarity by converting words to
vector representations using the word2vec tool. The output of the semantic similarity is
vector similarity. We used 1,044 legal law articles to train the word embedding by
setting the word2vec vector dimension to 50 which has been most commonly chosen as
the vector dimension in previous work.

3.4 Condition/Conclusion/Exception Detection

From our analysis of the structure of statutes we extract components based on the
following rules:
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conclusion := segmentlast (sentence,keyword),

condition := segmenti (sentence,keyword),
i last

condition := condition [or] condition

condition := sub_ condition [and] sub_ condition

exception_ conclusion := segmentlast (sentence,exception_ keyword),

exception_ condition := segmenti (sentence,exception_ keyword),
i last

exception_ condition := exception_ condition [or] exception_ condition

exception_ condition := sub_ exception_ condition [and] sub_ exception_ condition

So from keywords of a condition, we segment sentences. The keywords of the
condition are as follows: “in case(s),” “if,” “unless,” “with respect to,” “when,” and
“(comma).” After this segmentation, the last segment is considered to be a conclusion,
and the rest of the sentence is considered as a condition. (We used the symbol

P
to

denote the concatenation of the segments.) We also distinguish segments which denote
exceptional cases. Currently, we take the exception_keyword indication as “… this
shall not apply, if (unless).”

The original bar law examinations in the COLIEE data are provided in Japanese
and English, and our initial implementation used a Korean translation, provided by the
Excite translation tool4. We chose Korean because we have a team member whose
native language is Korean, and the characteristics of Korean and Japanese language are
similar. In addition, the translation quality between two languages ensures relatively
stable performance. Because our study team includes a Korean researcher, we can
easily analyze the errors and intermediate rules in Korean. Therefore, the above rules
may not be appropriate for all English sentences, because the segment order can differ.

The following is an example of condition and conclusion detection:

<Civil law example> A person who employs others for a certain business, shall be liable for
damages inflicted on a third party by his/her employees with respect to the execution of that
business; Provided, however, that this shall not apply, if the employer exercised reasonable care
in appointing the employee or in supervising the business, or if the damages could not have
been avoided even if he/she had exercised reasonable care.

4 http://excite.translation.jp/world/.
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(1) Conclusion => shall be liable for damages inflicted on a third party by his/her 
employees with respect to the execution of that business.
(2) Condition => A person who employs others for a certain business
(3) Exception

Conclusion => this shall not apply (opposite of main conclusion)
Condition

Condition =>
Condition => if the employer exercised reasonable care in appointing 

the employee 
Condition (OR) => in supervising the business

Condition(OR) => if the damages could not have been avoided even if 
he/she had exercised reasonable care. 

3.5 Term Expansion Using Paraphrasing

There are many words with similar meanings but different lexical forms (e.g., ‘obligor’
vs. ‘debtor’, ‘rescind’ vs. ‘cancel’, ‘lien’ vs. ‘privilege’, etc.). To resolve these diverse
terms, we use language translation-based paraphrasing. The idea of translation-based
paraphrase is that translating from one language to another and then back, will often
produce semantically similar but lexically distinct outputs. If we assume that the lan-
guage translations preserve semantics, more or less, then lexically distinct terms can be
considered as paraphrases. In our application of this idea, we translate the original
English query/document into German, and then back-translate the German sentences
into English. We then can detect pairs of words/phrases which can be considered as
semantically related: the original English sentence and double-translated English sen-
tence. We used Google translate5, and chose German as the pivot language, which is a
closely related to English, which we hope reduces the number of translation errors.

We performed double translation with 100 article laws in the Japanese Civil Code.
We used the monolingual alignment tool of Sultan et al. [12] to create automatic word
alignments in English. Table 4 shows examples of detected paraphrases using language
translation. We can see that it also detects plural forms and past tense forms, in addition
to words with similar meanings. We extract the top 100 paraphrases, and manually
extracted corresponding Korean words in the Korean-translated Query-Article text.

Table 4. Examples of detected paraphrases

Original word Paraphrased word Original word Paraphrased word

Year Years Establishes Sets
Makes Made Purpose Aim
Warranties Guarantees Matter Area
Released Relieved Pledge Commitment
Assigned Transferred Demand Claim
Respect Relation Referred Designated

5 https://translate.google.com/.
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3.6 Supervised Learning with SVM

Since we cannot anticipate the impact of each linguistic attribute, we use a machine
learning algorithm that learns what information is relevant in the text to achieve our
goal. We have compared our method with SVM, as a kind of supervised learning
model. Using the SVM tool included in the Weka [4] software library6, we performed
cross-validation for the 412 questions. We used a linear kernel SVM because it is
popular for real-time applications as they enjoy both faster training and classification
speeds. Even though our system does not require much time for training, we chose a
linear kernel to see the training performance for this simplest kernel. We used the
following features:

(a) Word Lemma
(b) Lexical semantic features
(c) Negation feature
(d) Sentence analysis feature (condition, conclusion, and exception).

For concept features, we have exploited word embedding using word2vec. When
we use word embedding, we assume the concepts of two words are the same if their
cosine similarity in vector space is larger than 0.8.

The detailed features that we use are as follows:

Feature 1: If i, j{(concept(wi) , Querycondition) (concept(wj) , Articlecondition)}

Feature 2: If i, j{(concept(wi) , Queryconclusion) (concept(wj) , Articleconclusion)}

Feature 3: If Articlesub _ condition

i, j, k{(concept(wi) , Querycondition) (concept(wj) , Articlesub_conditionk)= }

Feature 4: If i, j{(concept(wi) , Querycondition) (concept(wj) , Articleexception_condition)}

Feature 5: If Articlesub _ exception _ condition

i, j, k{(concept(wi) , Querycondition) (concept(wj) , Articlesub_exception_conditionk)= }

Feature 6 : If neg_ level(Querycondition) = neg_ level(Articlecondition)

Feature 7 : If neg_ level(Queryconclusion) = neg_ level(Articleconclusion)

Feature 8 : If neg_ level(Querycondition) = neg_ level(Articleexception_condition)

Features 1 and 2 check if there are overlapping concepts between a query condition
(conclusion) and its relevant article condition (conclusion). Feature 3 checks if there is
an overlapping word between a query condition and its relevant article sub-condition.
Because the article sub-condition is connected with other sub-condition(s), using “and”
as a connector, the query should include the meanings of all the article sub-conditions.
Feature 4 checks if there are overlapping concepts between a query condition and its
article exception-condition. We want to check if the query is included in the excep-
tional case using the feature. Feature 5 confirms that there is no overlapping word
between a query condition and its relevant article sub-exception-condition. Features 6,

6 The SVM function in Weka is provided by libsvm https://www.csie.ntu.edu.tw/*cjlin/libsvm/, and
the linear kernal is from liblinear https://www.csie.ntu.edu.tw/*cjlin/liblinear/.
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7, and 8 check the negation levels between the query condition, article condition, query
conclusion, article conclusion, and article exception-condition. The negation level
(neg_level(segment)) is computed as following: if [negation + antonym] occurs an odd
number of times in the segment, its negation level is 1. Otherwise if the [nega-
tion + antonym] occurs an even number of times, including zero, its negation level is 0.

4 Phase 2: Experimental Results

4.1 Comparison of Our System’s Performance with Others

In the general formulation of the textual entailment problem, given an input text
sentence and a hypothesis sentence, the task is to make predictions about whether or
not the hypothesis is entailed by the input sentence. We report the accuracy of our
method in answering yes/no questions of legal bar exams by predicting whether the
questions are entailed by the relevant civil law articles.

There is a balanced positive-negative sample distribution in the dataset (51.70%
yes, and 48.30% no) for a dry run of COLIEE 2016 dataset, so we consider the baseline
for true/false evaluation is the accuracy when always returning “yes,” which is 51.70%.
Our total data for the dry run has 412 questions.

Table 5 shows the experimental results. An SVM-based model showed accuracy of
62.14% when we did not use word embedding but used the lexical form of each word;
the method of Kim et al. [10] showed 60.92% and that of Kim et al. [11] showed
61.65%. Our SVM augmented system outperformed Kim et al. [10, 11]. The differ-
ences were significant using the Wilcoxon Signed Rank Test at the level of significance
of 0.05. We guess the reasons that our current system shows better results than the
previous systems [10, 11] are as follows: (1) we analyzed queries in more detail and
detected multiple conditions such as “and/or” connections, and then performed
entailment based on the “and/or” logics. (2) We did paraphrasing as term expansion.

Table 5 also shows the experimental results arising when we adjust some of the
features in our method. For example, the accuracy was reduced by 1.70% when we
removed paraphrasing, and the accuracy was reduced by 1.47% when we used word

Table 5. Experimental results on dry run data for Phase 2

Method Accu. (%)

(a) Baseline 51.70
(b) Our method using cross-validation with Supervised learning (SVM) not
using word embedding but using lexical word itself

62.14

(c) Our method using cross-validation with Supervised learning (SVM) using
word embedding

60.67

(d) Cross-validation using Kim et al. [10] 60.92
(e) Cross-validation using Kim et al. [11] 61.65
Without term expansion using paraphrasing from (b) 60.44
Without neg_level() from (b) 49.27
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embedding. This suggests that word embedding does not help capture the semantics
better than the lexical word by itself. We can guess that it may be because of the small
training data for word2vec training. This suggests that we need to construct a higher
volume of legal text data for word2vec training, and then check the performance of
word embedding. When we did not use the negation feature, the accuracy became
lower by 12.87%, which demonstrates the importance of the negation feature.

Table 6 shows the experimental results on the COLIEE-2016 test data. The test
data size is 70 queries for Phase 2 (extracted from the bar exam of 2015), and 95
queries for Phase 3 (extracted from the bar exam of 2014) which are the same with the
test data for Phase 1. Our accuracy on test data is 55.71% for Phase 2, and 55.79% for
Phase 3. As shown in Table 7, our system showed best performance when two phases
are combined (Phase 3), even though our Phase 1 and Phase 2 systems were not the
best in the COLIEE 2015 competition [16]. Our system also performed paraphrasing,
and detected condition-conclusion-exceptions for the query/article; our system
extracted the article segment for which the query is semantically related. In contrast to
other systems (except for Carvalho et al. [17]) that recognized textual entailment from
the whole article to the query, our system compared the approximate semantics from a
specific article segment to the approximated semantics of the query.

4.2 Error Analysis

From unsuccessful instances, we manually classified the error types as shown in
Table 8. The biggest error arises, of course, from the semantic similarity error, and we
believe our word embedding is not sufficient for estimating semantic similarity. In the
future, we will try to include the bar exam text in the training data for the word
embedding. The second biggest error is because of complex constraints in conditions.
As with the other error types, there are cases where a question is an example case of the
corresponding article, and the corresponding article embeds another article. We also
found cases that indicate the need to do more extensive temporal analysis.

It will be interesting if we compare our performance using Korean-translated
sentences with that using original Japanese sentences. We would expect the system
using original sentences to show improved performance, because there would be no
translation errors. As future work, we will construct a Japanese system using
paraphrase/synonym/antonym dictionaries for Japanese, and then analyze how the
translation affects performance.

Table 6. Experimental results on formal run data

Method Accu. (%)

Phase 2 baseline when ‘yes’ labels are all chosen 52.86
Phase 2 system (entailment) 55.71
Phase 3 system (1) (TF-IDF and entailment) 46.32
Phase 3 system (2) (ranking SVM lemma and dependency bigram as features
(a) and entailment)

54.74

Phase 3 system (3) (adding IR score as features into (a) and entailment) 55.79
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5 Related Work

A previous textual entailment method from Bdour and Gharaibeh [5] provided the basis
for a yes/no Arabic question answering system. They used a kind of logical repre-
sentation, and compared the logical representation between queries and documents.
This method may be appropriate for the task where queries and documents have similar
logical representations so it is easier to confirm entailment from one logical repre-
sentation to another. However, our task’s entailment type is more complex, so we take
an approach that approximates the logical content of queries and documents, rather
than attempt any complete transformation to a logical form.

Nielsen et al. [6] extracted features from dependency paths, and combined them
with word-alignment features in a mixture of an expert-based classifier. Zanzotto et al.
[7] proposed a syntactic cross-pair similarity measure for RTE. Harmeling [8] took a
similar classification-based approach with transformation sequence features. Marsi
et al. [9] described a system using dependency-based paraphrasing techniques.

Many methods have been proposed for paraphrasing. One of the methods is the
idea of semantic parsing via paraphrasing [13]. They transform a sentence into a logical
form, and then convert logical forms to canonical form using the Freebase database.
Subsequently, they obtain an association between the original sentence and canonical
forms. However, hundreds of logical/canonical forms have been generated per sentence
in their method, and the method does not show how to choose the best amongst them.

The method of Zhang et al. [14] also uses a pivot language for paraphrasing. Like
us, they translate one language to another, then re-translate from the translated lan-
guage into the original language. They then obtain a paraphrasing set between the
original utterance and double-translated utterance. They showed improved performance
in paraphrase detection using the pivot language translation, so we also employ the

Table 7. IR+Entailment results (Phase 3) on the formal run data in the COLIEE-2016

Run Accu. Run Accu.

JNLN1 [17] 0.4000 iLis7 [19] 0.5368
KIS-1 [18] 0.5158 JNLN3 [20] 0.4737
KIS-2 [18] 0.5158 Our system (1) 0.4632
KIS-3 [18] 0.5263 Our system (2) 0.5474
KIS-4 [18] 0.5263 Our system (3) 0.5579

Table 8. Error types

Error type Accuracy (%) Error type Accu. (%)

Specific example case 9.62 Semantic
similarity error

28.85

Incorrect detection of the most similar
article sentence

10.90 Constraints in
condition

25.00

Incorrect detection of condition,
conclusion, and mismatch

11.54 Etc. 14.10
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language translation-based paraphrasing. But instead of their use of the GIZA++
alignment, we used the monolingual alignment tool of Sultan et al. [12], because
GIZA++, which is for alignment between two different languages, did not show good
performance for our dataset.

6 Conclusion

We have described our most recent implementation for the Competition on Legal
Information Extraction/Entailment (COLIEE)-2016 Task.

For Phase 1, legal information retrieval, we implemented a Ranking-SVM model
for the legal information retrieval task. By incorporating features such as lexical words,
dependency links, and tf-idf score, our model shows better mean average precision than
tf-idf.

For Phase 2, we have proposed a method to answer yes/no questions from legal bar
exams related to civil law. We used an SVM model using paraphrasing and pre-trained
word embedding and query/article condition/conclusion/exception analysis. We show
improved performance over a previous system, and paraphrasing and negation detec-
tion contributed to the performance. In the COLIEE 2016 competition, our system
combining the Phase 1 and Phase 2 ranked highest in the accuracy of answering yes/no
questions. As future work, we will train word2vec by larger texts not by articles to get
the benefit of word embedding, and also try different kernels for SVM training to check
if the kernel selection can increase the entailment performance.
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