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Abstract—Artificial Intelligence (AI) has infiltrated almost
every scientific and social endeavour, including everything from
medical research to the sociology of crowd control. But the
foundation of AI continues to be based on digital representa-
tions of knowledge, and computational reasoning therewith.
Because so much of modern knowledge infrastructure and
social behaviour is connected to AI, understanding the role of
AI in each such endeavour not only helps accelerate progress in
those fields in which it applies, but also creates the challenges
to extend the foundation for modern AI methods.

The simple hypothesis herein is that so-called AI-complete
problems have a role in helping to articulate the appropriate
integration of AI within other disciplines. With the current
growth of interest in “big data” and visualization, we argue
that relatively simple formal structures provide a basis for the
claim that visualization is an AI-complete problem.

The value of confirming this claim is largely to encourage
stronger formalizations of the visualization process in terms
of the AI foundations of representation and reasoning. This
connection will help ensure that relevant components of AI
are appropriately applied and integrated, to provide value
for a basis of a theory of visualization. The sketch of this
claim here is based on the simple idea that visualization is
an abstraction process, and that abstractions from partial
information, however voluminous, directly confronts the non
monotonic reasoning challenge; thus the need for caution in
engineering visualization systems without carefully considering
the consequences of visual abstraction. This is particularly
important with interactive visualization, which has recently
formed the basis for such fields as visual analytics.
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I. INTRODUCTION

The process of visualization is largely about using com-

puter programs to create visual abstractions of multi-

dimensional data, with the general goal of guiding humans to

a variety of inferences otherwise not obtainable from direct

inspection of those data. We refer to base data, which is

some collection of data to be rendered in a visual space,

and pictures, including 2-, 3- and 4-dimensional pictures, as

the result of transforming base data to a picture domain in

which the human visual system can draw inferences.

Our informal argument about the AI-completeness of the

visualization process is not one that becomes immersed in

abstract formalization, but rather exposes connections across

a relatively broad spectrum of formal philosophy, especially

formal language and representation, to make a connection

between visual and logical expressions of information.

The chain of reasoning will not (yet?) withstand the

precise scrutiny of a logician or complexity analyst, but

the motivation is to make an initial connection, and help

the growing community of visualization system engineers

appreciate how pictures are really formal statements in an

abstract visual formal language, and thus subject to all the

same values and challenges of all formal representation and

reasoning literature.

The argument proceeds by noting that visualization is

about abstractions from base data to picture, that base data is

largely incomplete, and that interaction with visualizations

(so-called visual analytics) is akin to formal systems of

representation used in AI question answering systems. The

consequence is that interaction necessarily gives rise to

non-monotonic reasoning. That consequence means that the

identification of scope and content of context provides a

direct connection to AI-complete problems.

The rest of this paper is organized as follows. The next

section provides a brief summary of some of the origins of

the idea of AI-completeness, and acknowledges past work

on making the connection to traditional complexity measures

of NP-complete and NP-hard. This connection is largely

motivated by the desire to exploit traditional methods of

Blum and others to characterize complexity classes, but

adding a human in the loop. Following that, is an equally

brief sketch of how visual analytics and visual interaction

is analogous, perhaps even synonomous with the general

idea of formal systems and interactive question-answering.

That connection shows how even the simplest examples of

historical logic puzzles and cognitive visual anomalies are

closely related. This connection provides the basis for noting

that the foundational concepts of compositionality and con-

text determination arise within existing visualization system

architectures, and must be at least part of the foundation of

emerging theories of visualization.

Finally, should one believe the sketch of the proposition

about the relationship between visualization and formal theo-

ries of context and compositionally, the consequent practical

impact on visualization theories and systems is described,

followed by a summary.
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II. WHAT DOES IT MEAN TO BE “AI COMPLETE?”

The idea of AI completeness is attributed to Fanya

Montalvo, but as Yampolskiy notes [1], the idea of AI-

completeness“has been a part of the field for many years

and has been frequently brought up to express difficulty

of a specific problem.” Yampolskiy elaborates that posi-

tion, and moves towards a more precise characterization

of AI-completeness by considering a formalization of a

human oracle embedded within a problem-solving context.

The foundation concept is that of a problem being“Human

Oracle solvable,” which means that the combination of a

standard human and a programmed machine can solve the

problem. This is also the baseline for an earlier more precise

characterization by Shahaf et al. [2], whose foundation

problem is based on a “Human assisted Turing Machine.”

Both Yampolskiy and Shahaf et alėxploit a framework where

a conventional classification of problem complexity entails

a declaration of the shared problem-solving responsibility

of human and machine. For the complexity traditionalist,

these background ideas provide the basis for considering

the equivalent of polynomial reductions of AI problems to

AI-Complete problems.

For this brief paper, the definitions from Yampolskiy [1, p.

7] provide a simple vocabulary within which one can make

a statement that visualization is an AI-Complete problem:

Definition 1: A problem C is AI-Complete if it has two

properties:

1. It is in the set of AI problems (Human Oracle

solvable).

2. Any AI problem can be converted into C by some

polynomial time algorithm.

Definition 2: AI-Hard: A problem H is AI-Hard if and only

if there is an AI-Complete problem C that is polynomial

time Turing-reducible to H.

Definition 3: AI-Easy: The complexity class AI-easy is the

set of problems that are solvable in polynomial time by

a deterministic Turing machine with an oracle for some

AI problem. In other words, a problem X is AI-easy if

and only if there exists some AI problem Y such that X

is polynomial-time Turing reducible to Y. This means

that given an oracle for Y, there exists an algorithm that

solves X in polynomial time.

While Shahaf et al. provide a notation based on the

conventional complexity measure definitions of Blum ([3]),

the reduction argument considered here will not require

such notational machinery. Instead, we provide an informal

reduction of interactive visualization to the general problem

of non-monotonic reasoning problem, which is easily AI-

complete. Nevertheless, our summary argument could be

notationally, albeit naively, written as:

visualization ≺ any AI − Complete problem C

So while these definitions provide at least an informal bridge

from statements like ”natural language understanding is AI-

complete,” they are convolved with concepts like the services

of a human oracle; still the idea is like traditional complexity

theory, where a problem can be transformed to another

problem in a fashion similar to the familiar reductions of

complexity theory.

Others, including both Yampolskiy and Shahaf et al. (e.g.,

[2]) have sketched a framework for characterizing tough

problems as AI-Complete, and their lists of tough problems

are, perhaps unsurprisingly, focused on both representation

complexity (or sometimes referred to as expressive power

of a representation), and computational complexity, which

is relatively easily characterized as inference complexity, as

in the original characterizations of NP-completeness (e.g.,

[4],[5]).

To provide some idea of the landscape of problems, here

is a list sampled from both [1] and [2]:

Turing Test The baseline of all AI-complete problems.

Natural Language Question Answering The general

problem of building a general question answer system.

Computer Vision The general problem of human quality

visual understanding.

ESP problem The general problem of collaborative la-

belling [6].

With this briefest of AI-completeness background, the

next step is to expose a difficulty technical problem that

lies at the heart of interactive visualization. Once that

connection is established, the informal reduction to existing

AI-Complete problems will be, at least conceptually and

informally, relatively straightforward.

III. INTERACTIVE VISUALIZATION AND THE PROBLEM

OF NON-MONOTONICITY

The current research paradigm comprising “visual analyt-

ics” (e.g., [7], [8], [9] [10], [11], [12]) is very broad, but one

can identify the following informal intersection of common

properties:

I Visualizations are abstractions of base data rendered
in a visual domain Leaving aside debate about

levels of abstraction, appropriate components of

data visualization pipelines, how data is sampled,

compressed, etc., there is general agreement that the

mandate of any process of visualization is to transform

base data to pictures of some kind.

II Visualizations provide guidance to preferred inferences
In general, the process of visualization is intended

to expose inferences not otherwise easily made

on base data. The choices made in the multi-level

dimensionality reduction of data to 3D or 4D are

generally made to encourage inferences on those data

that are somehow more obvious to the human visual

system.

III Interactive Visualization helps to amplify human
visual inference Like adjusting numbers in
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Figure 1. Resolution of the “John wants a sloop” ambiguity

a spreadsheet, human interaction with complex

visualizations should provide the basis for elaborating

obvious visual inference, for finding explanations

underlying such inferences, and for speculative

exploration of new hypothetical inferences.

A significant contribution to the complexity of visualiza-

tion, even as abstracted in principles I, I, III above, is that,

while almost all base data are somehow incomplete or noisy,

visual transformations are still abstractions that somehow

result from a process of dimensionality reduction. So even

the simplest transformations from a set of base data to a

visual representation can create at least ambiguity and often

errors (e.g., [13]).

So what contributes to the claim that visualization AI-

complete? Part of what is required is to consider a picture as

a formal collection of visual “sentences,” like a set of logical

statements, and to consider what happens in the context of

an interaction with a human. Note here the role of the old

idea of question-answering and interaction with a formal, at

least digital, representation of information as some kind of

representation from which inferences can be algorithmically

drawn.

At least since the days of McCarthy’s advice taker [14]1,

the simple idea behind man-machine interaction was that a

machine’s partial representation of the world could change

as the result of interaction.

While there is a substantial and growing literature on in-

teractive visualization and visual “analytics,” (e.g., [15],[7]),

the challenge to a formal semantical basis for visualization

is substantial, if for no other reason that the repertoire of

representations are literally all that humans can see (cf.

formal language foundations of logical semantics).

So in the wide breadth of potential human interaction

with visualizations, there needs to be some discussion about

what a simple visual interaction might be, with the specific

goal of showing how the interaction provides information to

augment any initial visual representation.

To consider how conventional question answering and

visual question-answering are connected, consider the fol-

lowing. Figures 1 and 2 may seem quite dissimilar, but

will help illustrate how simple interaction in two different

representation domains can both result in what McCarthy

1originally published in 1959 and available at http://www-
formal.stanford.edu/jmc/mcc59.pdf

anticipated as the result of a question-answering program

accumulating new knowledge.

Figure 1 derives from Quine’s old representation puzzle,

where a simple logical representation of the phrase “John

wants a sloop” can be rendered as

∃X sloop(X) ∧ wants(X, John)

But as many formal philosophers have pointed out, this

representation of the statement is ambiguous. As Quine so

cleverly wrote, this rendering doesn’t capture whether John

wants a particular sloop, or mere relief from “slooplessness”

[16, p. 177].

But without contesting the scholarly history of the formal

philosophy of quantifiers and propositional attitudes, we can

still see, as in Figure 1, a user interaction might resolve

whether John has a particular sloop in mind, and resolve

the ambiguity in expression Figure 1(a) as either the leftmost

statement in 1(b), in which case the interaction would have

indicated John is not fussy about which particular sloop he

desires, or as in the rightmost statement in 1(b), which, in

this case, declares John’s interested in a particular sloop (in

this case from the old folk song “The Sloop JohnB”).

Figure 2. Resolution of the Necker cube ambiguity

Now returning to the visual ambiguity of the Necker cube,

consider the diagram in Figure 2, taken from [17, p. 933]. As

rendered in Figure 2(a), it is easy to consider a visual query

which provides the interaction possibility to bias the visual

interpretation to one of those in Figure 2(b), by providing

the human user with the interaction capability of inserting

a stick or similar cylindrical object into the ”wire frame”

Necker cube, thus showing which vertex is visually foremost

(one of the two in Figure 2(b)).

This connection between logical and pictorial question

answering will provide the basis for the argument that

visualization is AI-Complete.
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IV. COMPOSITIONALITY AND CONTEXT

The final component for our line of reasoning to con-

firm visualization as AI-complete continues to develop a

parallel to existing paradigms of formal representation and

reasoning, based on the assumption that pictures, even as

abstractions of base data, can still be considered as sentences

of a formal language.

In general, significant semantic — and ultimately com-

putational or syntactic — challenges arise from the notion

of compositionality. The general notion of compositionality

assumes the preservation of component semantics as long

as that semantics is context independent. In the field of

formalisms for natural language processing, for example,

this is not the case, and the formal approaches, typified

by the legacy of Montague, has developed to ensure that

context is a dynamic variable in semantical characterizations

of compositional semantics. As well articulated by people

like Hall-Partee [18] and Steedman [19], the Montague-

like pursuit of compositionally seeks to render ambiguity

as unfulfilled context resolution, so that the ambiguity of

the statement in Figure 1(a) might be directly captured by

the introduction of an explicit context object, which can be

composed within a logical expression something like

wants(γ(contextα, “John”), γ(contextα, ∃x sloop(x))

This creates the opportunity for a compositional interpreta-

tion of context: whether John wants a particular sloop in

context contextα is determined only with further informa-

tion — we suggest user interaction to resolve the ambiguity

as described above.

Here the important point is that determination of context,

whether in resolving ambiguity in logical statements or pic-

tures, is potentially NP-complete from the logical inference

point of view (simply consider enumerating all possible

models for any ambiguous sentence). To find the analog

of context in a visual space, consider again the diagram

of Figure 2, where one of two possible interpretations is

provided by inserting a stick in the 3D interpretation of the

Necker cube. In more complex scenes, the potential number

of “sticks” may well be as large as the number of models,

for a suitably expressive logical formalism.

The last component necessary for the reduction argument

notes the potential non-monotonicity of interactive visual-

ization, for example, as noted in Goebel et al. [20]. Goebel

et al. demonstrate how a naive interpretation of a visual

“pinch” operation on a classical visualization (see Figure

reffig:minard) can create ambiguous consequences because

the base data is simply incomplete. Consider that a “pinch”

at the designated point in Figure reffig:minard has no single

interpretation based on the base data, because the correlation

with pinching and reduction in the size of Napoleon’s army

is simply not given. The direct consequence is that any

visualization interaction must be directly constrained by the

Figure 3. Ambiguity of a “pinch” operation

semantics of the underlying data, not the visual syntax of

the interaction (e.g., pinching your photograph on a tablet

doesn’t make you smaller).

Now the conventional reducibility, approached within a

framework of an AI-completeness formalization, can be

connected in several ways: this includes a formalization of

the complexity of determining context, which is at least

exponential in the size of context variables. In the case

of logical representations, that complexity is related to

the expressiveness of the underlying formal language (e.g.,

propositional logic, first order logic with unary predicates,

etc.). In the case of visualization, the characterization is

much more difficult: it is related to the how a given repertoire

of interactive manipulations can affect the values of that

range of visual variables which can be adjusted by any such

interaction (cf. Figure 3).

V. WHY IT MATTERS: IMMEDIATE CONSEQUENCES FOR

INTERACTIVE VISUALIZATION

The argument that interactive visualization is AI-

Complete can be repeatedly refined with more detail and

precision, like that of the framework of Shahaf et al. [2]

summarized above. But that pursuit would only address and

perhaps reduce the skepticism on this informal argument.

Another avenue of discussion that may better help connect

conventional visualization research is to consider a visual-

ization framework where the base data is unavailable. For

example, the ReVision system of Savva et al. ([21]) takes a

novel approach to improving visualizations by first creating a

fairly accurate classification and analysis of a set of standard

visualization formats (e.g., pie chart, histogram, radar plots,

etc.). Assuming no access to the base data that gave rise to

a visualization, the ReVision system then employs an induc-

tive/machine learning approach to accurately reconstruct that

data conveyed in any one such instance. Once that process

completes, the reconstructed data can then be re-rendered

into an improved visualization.

So the inductive process that, for example, extracts the

scale marks from a pie chart, creates the basis for trans-

forming a less than effective rendering into a perhaps more
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perspicuous visualization, for example, from a pie chart to

a histogram, as in Figure 4.

Note that ReVision, having no access to the base data

from which the visualization was abstracted, must induce

that data required to recreate an alternative visual format.

The idea that this inductive process can wrongly induce any

portion of the intended base data of a visualization is exactly

where the incompleteness of accessible base data coincide.

The consequence is that the accuracy of any ReVision

transformation from one chart style to another depends on

the accuracy of the reconstruction of base data.

In the more general case, as illustrated by the Minard

example, the arbitrary completion of missing base data

produces a bias in any choice of alternatives arising from

visualization interaction.

Figure 4. ReVision transformation from pie chart to histogram

The practical consequences for visualization, and the

engineering of visualization systems, are more important and

they are generally twofold:

1) Any repertoire of visualization interactions must be

coupled with semantic descriptions of the base do-

main.

2) The consequences of visualization interactions on par-

tial data, no matter how dimensionality reduction and

abstraction is done, will be necessarily non-monotonic.

In general, the visualization interaction problem is at least

as complex as the general non-monotonic reasoning problem

[22]. This means, for example, that any visualization theory

or architecture (e.g., [12], [15]) must include a component

that addresses the general complexity of visual reasoning.

In addition, the considerable accumulation of tools and

techniques for visual analytics (e.g., [23], [24]) will have

to consider how to couple visualization constraints in any

general visualization architecture, in order to avoid creating

the equivalent of visual anomalies from any abstraction of

base data in picture space.

This will require the deeper understanding and the disci-

plined engineering of emerging formal characterizations of

visual anomalies, like those considered by Sughihara [25])

and Mortensen ([26]).

VI. SUMMARY AND CONCLUSIONS

If there is value in considering the classification of prob-

lems in the category of AI-Complete problems, one must

consider at least some detail in the formulation of AI-

completeness (as have [2], [1]), and then focus on what any

reductions of existing problems suggest about the challenge

for AI tools and techniques.

Here, we suggest that the process of interactive visualiza-

tion is both an abstraction process and a reasoning process,

and thus has a close correspondence with formal representa-

tions of knowledge and formal methods of reasoning. With

this correspondence made, the AI-completeness of interac-

tive visualization (or, for some, “visual analytics”) emerges

from the general problem of reasoning with incomplete

information, and the general challenge of non-monotonic

reasoning.

The immediate consequences are positive and negative:

the negative are that all visualization architectures must

consider the complexity of reasoning from incomplete in-

formation, and must be careful to ensure that any repertoire

of visual interactions are semantically coupled with the

data domains in question. The positive consequences are

that there are emerging theories of how to formally and

precisely avoid the creation of visual anomalies, which can

be incorporated into theories of interactive visualization.
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