
A PTAS for the Multiple Parallel
Identical Multi-stage Flow-Shops

to Minimize the Makespan

Weitian Tong1,3, Eiji Miyano2, Randy Goebel3, and Guohui Lin3(B)

1 Department of Computer Sciences,
Georgia Southern University, Georgia, Statesboro 30460, USA

wtong@georgiasouthern.edu
2 Department of Systems Design and Informatics,

Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
miyano@ces.kyutech.ac.jp

3 Department of Computing Science,
University of Alberta, Edmonton, Alberta T6G 2E8, Canada

{rgoebel,guohui}@ualberta.ca

Abstract. In the parallel k-stage flow-shops problem, we are given m
identical k-stage flow-shops and a set of jobs. Each job can be processed
by any one of the flow-shops but switching between flow-shops is not
allowed. The objective is to minimize the makespan, which is the finish-
ing time of the last job. This problem generalizes the classical parallel
identical machine scheduling (where k = 1) and the classical flow-shop
scheduling (where m = 1) problems, and thus it is NP-hard. We present
a polynomial-time approximation scheme for the problem, when m and
k are fixed constants. The key technique is to enumerate over schedules
for big jobs, solve a linear programming for small jobs, and add the frac-
tional small jobs at the end. Such a technique has been used in the design
of similar approximation schemes.

Keywords: Multiprocessor scheduling · Flow-shop scheduling ·
Makespan · Linear program · Polynomial-time approximation scheme

1 Introduction

In the parallel k-stage flow-shop problem, we are given m parallel identical k-
stage flow-shops F1, F2, . . . , Fm and a set of n jobs J = {J1, J2, . . . , Jn}. These
k-stage flow-shops are the classic flow-shops, each contains exactly one machine
at every stage, i.e., k sequential machines. Every job has k operations, and
it can be assigned to exactly one of the m flow-shops for processing; once it
is assigned to the flow-shop, its k operations are then respectively processed
on the k sequential machines in the flow-shop. The goal is to minimize the
makespan, which is the completion time of the last job. We denote the problem
for simplicity as (m, k)-PFS. Let M�,1,M�,2, . . . ,M�,k denote the k sequential
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 227–237, 2016.
DOI: 10.1007/978-3-319-39817-4 22

228 W. Tong et al.

machines in the flow-shop F�, for every �. The job Ji is represented as a k-
tuple (pi,1, pi,2, . . . , pi,k), where pi,j is the processing time for the j-th operation,
that is, Ji needs to be processed non-preemptively on the j-th machine in the
flow-shop to which the job is assigned. For all i, j, pi,j is a non-negative real
number.

It is clear to see that, when m = 1, the (m, k)-PFS problem is the classic
flow-shop scheduling [5] (a k-stage flow-shop); when k = 1, the (m, k)-PFS prob-
lem is the classic multiprocessor scheduling [5] (m parallel identical machines).
When the two-stage flow-shops are involved, i.e., k = 2, the (m, 2)-PFS problem
has been previously studied in [4,13,23,26]. Here we first review the complexity
and the approximation algorithms for the flow-shop scheduling and the multi-
processor scheduling problems.

For the k-stage flow-shop problem, it is known that when k = 2 or 3, there
exists an optimal schedule that is a permutation schedule, in which the jobs
are processed on all the k machines in the same order; but when k ≥ 4, it
is shown [3] that there may exist no optimal schedule that is a permutation
schedule. Johnson [17] presented an O(n log n)-time algorithm for the two-stage
flow-shop problem, where n is the number of jobs; the k-stage flow-shop prob-
lem becomes strongly NP-hard when k ≥ 3 [6]. After several efforts [2,6,7,17],
Hall [12] designed a polynomial-time approximation scheme (PTAS) for the
k-stage flow-shop problem, for any fixed constant k ≥ 3. Due to the strong
NP-hardness, such a PTAS is the best possible unless P = NP. When k is a
part of the input (i.e., an arbitrary integer), Williamson et al. [25] showed that
the flow-shop scheduling cannot be approximated within 1.25; nevertheless, it
remains unknown whether this case is APX-complete, that is, whether the prob-
lem admits a constant ratio approximation algorithm.

For the m-parallel identical machine scheduling problem, it is NP-hard when
m ≥ 2 [5]. When m is a fixed integer, the problem admits a pseudo-polynomial
time exact algorithm [5], and Sahni [21] showed that this exact algorithm can
be used to construct a fully PTAS (FPTAS); when m is a part of the input,
the problem becomes strongly NP-hard, but still admits a PTAS by Hochbaum
and Shmoys [14]. The list-scheduling algorithm by Graham [8] is a (2 − 1/m)-
approximation, for arbitrary m.

Besides the (m, k)-PFS problem, another generalization of the flow-shop
scheduling and the multiprocessor scheduling is the so-called hybrid k-stage flow-
shop problem [19,20]. A hybrid k-stage flow-shop is a flexible flow-shop, that con-
tains mj ≥ 1 parallel identical machines in the j-th stage, for j = 1, 2, . . . , k. The
problem is abbreviated as (m1,m2, . . . ,mk)-HFS. A job Ji is again represented as
a k-tuple (pi,1, pi,2, . . . , pi,k), where pi,j is the processing time for the j-th oper-
ation, which can be processed non-preemptively on any one of the mj machines
in the j-th stage. The objective of the (m1,m2, . . . ,mk)-HFS problem is also to
minimize the makespan. One clearly sees that when m1 = m2 = . . . = mk = 1,
the problem reduces to the classic k-stage flow-shop problem; when k = 1, the
problem reduces to the classic m-parallel identical machine scheduling problem.

A PTAS for Parallel Flow-Shop Scheduling 229

The literature on the hybrid k-stage flow-shop problem (m1,m2, . . . ,mk)-
HFS is also rich [19,20], especially on the hybrid two-stage flow-shop problem
(m1,m2)-HFS. First, (1, 1)-HFS is the classic two-stage flow-shop problem which
can be optimally solved in O(n log n) time [17], where n is the number of jobs.
When max{m1,m2} ≥ 2, Hoogeveen et al. [15] showed that the (m1,m2)-HFS
problem is strongly NP-hard. The special cases (m1, 1)-HFS and (1,m2)-HFS
have attracted many researchers’ attention [1,9–11]; the interested reader might
refer to [24] for a survey on the hybrid two-stage flow-shop problem with a single
machine in one stage.

For the general hybrid k-stage flow-shop problem (m1,m2, . . . ,mk)-HFS,
when all the m1, m2, . . ., mk are fixed integers, Hall [12] claimed that the
PTAS for the classic k-stage flow-shop problem can be extended to a PTAS
for the (m1,m2, . . . ,mk)-HFS problem. Later, Schuurman and Woeginger [22]
presented a PTAS for the hybrid two-stage flow-shop problem (m1,m2)-HFS,
even when the numbers of machines m1 and m2 in the two stages are a part
of the input. Jansen and Sviridenko [16] generalized this result to the hybrid k-
stage flow-shop problem (m1,m2, . . . ,mk)-HFS, where k is a fixed integer while
m1,m2, . . . ,mk can be a part of the input. Due to the inapproximability of the
classic k-stage flow-shop problem, when k is arbitrary, the (m1,m2, . . . ,mk)-HFS
problem cannot be approximated within 1.25 unless P = NP [25]. In addition,
there are plenty of heuristic algorithms in the literature for the general hybrid
k-stage flow-shop problem, and the interested readers can refer to the survey by
Ruiz et al. [20].

Compared to the rich literature on the hybrid k-stage flow-shop problem,
the parallel k-stage flow-shop problem is much less studied. In fact, the general
(m, k)-PFS problem is almost untouched, except only the two-stage flow-shops
are involved [4,13,23,26]. He et al. [13] first studied the m parallel identical
two-stage flow-shop problem (m, 2)-PFS, motivated by an application from the
glass industry. In their work, the (m, 2)-PFS problem is formulated as a mixed-
integer programming and an efficient heuristic is proposed [13]. Vairaktarakis
and Elhafsi [23] also studied the (m, 2)-PFS problem, in order to investigate
the hybrid k-stage flow-shop problem. Among other results, Vairaktarakis and
Elhafsi [23] presented an O(nP 3)-time dynamic programming algorithm for solv-
ing the NP-hard (2, 2)-PFS problem optimally, where n is the number of jobs
and P is the sum of all processing times. That is, the (2, 2)-PFS problem can be
solved exactly in pseudo-polynomial time.

The NP-hardness of (2, 2)-PFS implies that the general (m, 2)-PFS problem
is NP-hard, when either m is a part of the input (arbitrary) or m is a fixed integer
greater than one. Zhang et al. [26] studied on how to approximate the (m, 2)-
PFS problem, more precisely only for the special case where m = 2 or 3. They
designed a 3/2-approximation algorithm when m = 2 and a 12/7-approximation
algorithm when m = 3 [26]. Both algorithms are variations of Johnson’s algo-
rithm and the main idea is first to sort all the jobs using Johnson’s algorithm
into a sequence, then to cut this sequence into two (three, respectively) parts
for the two (three, respectively) two-stage flow-shops in order to minimize the

230 W. Tong et al.

makespan. Recently, Dong et al. [4] extended the dynamic programming algo-
rithm for the (2, 2)-PFS problem to solve the (m, 2)-PFS problem, for any fixed
m ≥ 2, in O(nmP 2m+1)-time and O(P 2m)-space. They then designed an FPTAS
for the (m, 2)-PFS problem out of this exact pseudo-polynomial time algorithm.

In this paper, we present a PTAS for the (m, k)-PFS problem when m and k
are fixed integers. Our PTAS borrows some design ideas from the PTAS for the
classic k-stage flow-shop problem by Hall [12]. The key technique is to enumerate
over schedules for big jobs, then to solve a linear programming for small jobs to
obtain the assignments for most of them in each schedule, followed by adding the
fractional small jobs at the end. Such a technique has been used in the design
of similar approximation schemes.

2 A PTAS for the (m, k)-PFS Problem

In the sequel, a schedule for an instance of the (m, k)-PFS problem is an assign-
ment of non-negative starting times to all the operations of the given jobs, each
on one of the m flow-shops, and a feasible schedule is one in which the assign-
ment meets the processing restrictions: (1) each job can have at most one of its
operations undergoing processing at any point in time, (2) each operation of a
job must be processed on a machine non-preemptively for the specified length
of time, and (3) each machine can process at most one operation at any point
in time. We use π∗ to denote an optimal schedule and its makespan is denoted
by OPT.

For ease of presentation, we let Pi =
∑k

j=1 pij denote the total processing
time of the job Ji over all k machines, and assume without loss of generality
that P1 ≥ P2 ≥ . . . ≥ Pn; we also let Qj =

∑n
i=1 pij denote the total processing

time of all the jobs in the j-th stage machines. Define P =
∑n

i=1 Pi =
∑k

j=1 Qj .
The following lemma bounds OPT, the proof of which is omitted due to space
limit.

Lemma 1. We have the following upper and lower bounds on OPT:

max
{

P

mk
, P1

}

≤ OPT ≤ P

m
+ P1.

We normalize the job processing time by dividing each pij by the quantity
2 · max{P/m,P1}, for all i, j. This way, we have

1
2k

≤ OPT ≤ 1. (1)

Note that from the proof of Lemma 1 we also have Cπ ≤ 1, where π is the
schedule produced by the list scheduling algorithm and Cπ denotes its makespan.
We aim to find a better schedule than π and therefore, in the sequel, we consider
only those feasible schedules having a makespan less than or equal to 1.

A PTAS for Parallel Flow-Shop Scheduling 231

We use [n] to denote the set {1, 2, . . . , n}, for every integer n ≥ 1. For some
real number γ ∈ (0, 1), which will be determined later (in Eq. (4)), we partition
the job set J into two subsets of big jobs and small jobs, as follows.

B = {Ji | ∃j ∈ [k], pij ≥ γ}, and S = {Ji | ∀j ∈ [k], pij < γ}. (2)

The next lemma states that there are not too many big jobs, the proof of which
is omitted due to space limit.

Lemma 2. There are at most mk
γ big jobs.

At the high-level, the basic idea in our PTAS is as follows. First we compute
the configuration for each feasible schedule (having a makespan ≤ 1), and the
feasible schedules having the same configuration form into a group; that is, all
feasible schedules are partitioned into groups by their configurations. Then for
each group, we use its configuration to construct a feasible schedule such that its
makespan is very close to the minimum makespan of the schedules in the group.
Lastly, we return the constructed schedule with the minimum makespan over all
the groups.

2.1 Configuration

Recall that π∗ denotes an optimal schedule and its makespan is OPT, which is
lower and upper bounded in Eq. (1). Recall also that the makespan of all the
feasible schedules considered is at most 1. We will determine the parameter γ
later (in Eq. (4)), which depends on the worst-case approximation ratio we want
to achieve.

Let δ ∈ (0, 1) be a multiple of γ (again this multiple will be determined later,
in Eq. (4)), and such that μ = 1/δ is an integer. We call an interval of length δ
a δ-interval. (In our discussion, these intervals are half open.) The time interval
[0, 1) is partitioned into μ consecutive δ-intervals; and we let It denote the t-th
δ-interval [(t − 1)δ, tδ), for each t ∈ [μ].

Given a feasible schedule π (with makespan ≤ 1), for each job Ji, we define
its assignment as Xi = (�, s1, s2, . . . , sk), where � is the index of the flow-shop
to which the job Ji is assigned in the schedule π, and sj records the index of
the δ-interval in which the j-th operation is started. That is, the machine M�,j

starts processing the job Ji in the δ-interval [(sj − 1)δ, sjδ). Let XB = (Xi)Ji∈B
and XS = (Xi)Ji∈S .

In the schedule π, for each δ-interval It, t ∈ [μ] and each machine M�,j ,
(�, j) ∈ [m] × [k], we define Lt,�,j to be the workload of small jobs, which is the
total time inside the interval It the machine M�,j spends for processing small
jobs. Furthermore, we always round Lt,�,j up to the nearest multiple of γ. Let
L = (Lt,�,j)(t,�,j)∈[μ]×[m]×[k].

Then (XB, L) is defined as the configuration of the schedule π, or we say that
the schedule π is associated with the configuration (XB, L). It is important to
note that the configuration does not have any information about the assignments
of small jobs. Clearly, every feasible schedule is associated with exactly one

232 W. Tong et al.

configuration; the feasible schedules associated with the same configuration form
a group. The following Lemma 3 states that there are not too many distinct
configurations, of which the proof is omitted due to space limit. Let C be the
collection of all configurations.

Lemma 3. There are at most (mμk)mk/γ(δ/γ + 1)mkμ distinct configurations.

2.2 The PTAS

We want to construct a feasible schedule for every configuration in C, such that
the makespan of the constructed schedule is very close to the minimum makespan
among all the feasible schedules associated with the same configuration. For sim-
plicity, we fix a configuration and assume that the optimal schedule π∗ is associ-
ated with this configuration. That is, among all the feasible schedules associated
with this configuration, the minimum makespan is OPT.

We describe an algorithm called Slide-I (see Fig. 1) that constructs a feasible
schedule when the assignments of all the jobs of J are known, that is, more
information than the configuration. Using the assignments, the algorithm first
collects for each machine M�,j the set of operations it needs to start in the
interval It; let Ot,�,j denote this set of operations, for every (t, �, j) ∈ [μ] ×
[m] × [k]. Next, the machine M�,j processes the operations of Ot,�,j in a non-
decreasing order of processing time (in fact, any order suffices as long as all
operations can be started in the interval It), denoted as

−→O t,�,j (in Lemma 4 we
prove that all these operations can be started in the interval It, in particular
in the non-decreasing order of processing time); thus the sub-schedule on M�,j

is 〈−→O1,�,j ,
−→O2,�,j , . . . ,

−→Oμ,�,j〉. Lastly, the machine M�,j delays the processing by
2(j − 1)δ time.

Algorithm Slide-I:

Input: m parallel identical k-stage flow-shops, J with known assignments, γ, δ;
Output: A feasible schedule π (with makespan at most OPT + 2(k − 1)δ).

Step 1. For each machine M�,j and each interval It:
1.1. let Ot,�,j be the operation set with starting time in It on M�,j ;
1.2. schedule the operations of Ot,�,j in non-decreasing processing time;
1.2. let πt,�,j denote the sub-schedule for Ot,�,j ;

Step 2. For each machine M�,j :
2.1. concatenate πt,�,j in increasing t;
2.2. let π�,j denote the sub-schedule on M�,j ;

Step 3. For each machine M�,j :
3.1. delay the sub-schedule π�,j by 2(j − 1)δ time;

Step 4. Return the final whole schedule denoted as π.

Fig. 1. A high-level description of Slide-I.

A PTAS for Parallel Flow-Shop Scheduling 233

Lemma 4. If in the configuration the assignments for all the jobs of J are
known, then the algorithm Slide-I produces a feasible schedule with makespan
at most OPT + 2(k − 1)δ.

Proof. The proof is omitted due to space limit.
�
Unfortunately, given a configuration, we do not have the assignment infor-

mation about the small jobs, but only the small job workload for each machine
inside each δ-interval. We next try to obtain from the configuration the assign-
ment information of “most” small jobs. To this purpose, we construct a linear
program (LP) with the decision variables yi,X , each for a small job and an assign-
ment. That is, yi,X = 1 if and only if the small job Ji has an assignment X in
the given configuration. Recall that we use S to denote the set of small jobs and
that there are at most mμk different assignments for each job.

(LP)
∑

X

yi,X = 1, ∀Ji ∈ S;
∑

Ji∈S,X=(�,s1,...,sj=t,...,sk)

pijyi,X ≤ Lt,�,j , ∀(t, �, j) ∈ [μ] × [m] × [k];

y ≥ 0.

In this LP, every small job Ji must have an assignment, and the workload of
the small jobs on the machine M�,j inside the interval It must be less than or
equal to Lt,�,j , due to rounding. Clearly, there are only |S|+kmμ constraints and
therefore the number of variables |S|mμk is considerably larger. It follows that a
basic feasible solution to this LP has at most |S|+kmμ positive values. Note that
for every small job Ji, if there is an X such that yi,X is a positive fractional value,
then there must be another distinct X ′ such that yi,X′ is a positive fractional
value too. Suppose the total number of positive fractional values in the basic
feasible solution is N . Let S1 denote the subset of small jobs for each of which
there is an associated variable having value 1, that is, from the basic solution
we know the assignment for each small job of S1; and let S2 = S − S1 denote
the subset of small jobs for each of which there are some (equivalently, at least
two) associated variables having fractional values. It follows that |S2| ≤ N/2,
and thus |S1| ≥ |S| − N/2. Therefore, the total number of positive values in the
basic solution is at least |S|−N/2+N = |S|+N/2. From |S|+N/2 ≤ |S|+kmμ
we have N ≤ 2kmμ, and thus we conclude that

|S2| ≤ N

2
≤ kmμ. (3)

We summarize the above result from the LP in the following lemma.

Lemma 5. Given a configuration where the assignments for all the jobs of B
are known, the assignments for most, but no more than kmμ, of jobs of S can
be obtained by solving the constructed LP.

234 W. Tong et al.

Now we are ready to describe the second algorithm called Slide-II (see
Fig. 2). In the first step, the algorithm uses the given configuration to a linear
program LP as stated in the above, and obtains a basic solution to the LP. In the
second step, the algorithm retrieves the assignments for the small jobs of S1, and
calls the algorithm Slide-I on the job set B ∪S1 since it has the assignments for
all the big jobs from the given configuration. Let π denote the achieved schedule.
Lastly, the algorithm appends the small jobs of S2 to the end of the schedule π,
arbitrarily but each of the m flow-shops is assigned |S2|/m small jobs. (When
|S2|/m is not integral, some flow-shops are assigned |S2|/m� small jobs of S2,
while the others are assigned �|S2|/m� small jobs.)

Algorithm Slide-II:

Input: m parallel identical k-stage flow-shops, J , a configuration, γ, δ;
Output: A feasible schedule π.

Step 1. Construct a linear program using the configuration and solve it;
1.1. obtain the job subset S1 with known assignments, and S2;

Step 2. Run the algorithm Slide-I on the job subset B ∪ S1;
2.1. obtain a partial schedule π;

Step 3. Append the jobs of S2 to the end of the schedule π;
3.1. each flow-shop is assigned with |S2|/m small jobs of S2;

Step 4. Return the final whole schedule still denoted as π.

Fig. 2. A high-level description of Slide-II.

Lemma 6. Given the configuration, the algorithm Slide-II produces a feasible
solution with makespan at most OPT + 2(k − 1)(δ + γ) + μγ + (kμ + k − 1)γ.

Proof. The proof is omitted due to space limit.
�
Our final algorithm, called Slide-III, for the (m, k)-PFS problem runs the

algorithm Slide-II on every configuration to achieve a schedule, and returns the
best schedule among them, i.e., the one with the minimum makespan.

Theorem 1. The algorithm Slide-III can be designed into a PTAS for the
(m, k)-PFS problem.

Proof. For any ε ∈ (0, 1), we show how to set up the values for the parameters
δ and γ such that the makespan of the schedule returned by the algorithm
Slide-III is within (1 + ε)OPT. Recall that the job processing times have been
normalized to ensure that Eq. (1) holds for OPT. Recall also that δ is a multiple
of γ. For ease of presentation (to avoid the use of ceiling function) we assume
ε = 1

T for some positive integer T . Let

δ =
ε

8k(k − 1)
, and γ =

ε2

64(k + 1)k2(k − 1)
. (4)

A PTAS for Parallel Flow-Shop Scheduling 235

From Lemma 2, the number of big jobs is at most mk/γ, which is polynomial
in m, k, 1

ε . Moreover, when m and k are fixed constants and ε is given (and thus
a constant as well), mk/γ is a constant. Similarly, from Lemma 3, the number of
distinct configurations is at most (mμk)mk/γ(δ/γ + 1)mkμ, which is a constant
when m, k, ε are fixed constants. That is, the algorithm Slide-III makes only a
constant number of calls to the algorithm Slide-II.

Inside the execution of the algorithm Slide-II, the constructed linear pro-
gram LP contains |S| + kmμ constraints and |S|mμk variables. That is, the size
of the LP is polynomial when m, k, ε are fixed. Since a linear program can be
solved in polynomial time, for example by the interior point method [18], and the
running time of the algorithm Slide-I is polynomial in the number of jobs which
have known assignments, the running time of the algorithm Slide-II is polyno-
mial in the number of jobs. In summary, the algorithm Slide-III is polynomial
in n, the number of jobs, when m, k, ε are fixed constants.

For the performance ratio, from Lemma 6 we only need to measure the addi-
tive error term against OPT. By μ = 1/δ and Eq. (4), we have the following:

2(k − 1)(δ + γ) + μγ + (kμ + k − 1)γ
= 2(k − 1)δ + (3(k − 1) + (k + 1)μ) γ

= 2(k − 1)δ +
(

3(k − 1) +
k + 1

δ

)

γ

=
ε

4k
+

(

3(k − 1) +
8(k + 1)k(k − 1)

ε

)
ε2

64(k + 1)k2(k − 1)

=
ε

4k
+

3ε2

64(k + 1)k2
+

ε

8k

=
(

3
4

+
3ε

32(k + 1)k

)
1
2k

ε

<
1
2k

ε.

It follows that the makespan of the schedule produced by the algorithm Slide-
III is less than OPT + 1

2k ε < (1 + ε)OPT, by Eq. (1). This proves the theorem.

�

3 Conclusions

We presented a polynomial-time approximation scheme (PTAS) for the (m, k)-
PFS problem, in which there are m parallel identical k-stage flow-shops. Our
PTAS requires both m and k to be fixed integers. Since the classic k-stage
flow-shop problem is strongly NP-hard for a fixed k ≥ 3, our PTAS seems the
best possible unless P = NP. The APX-hardness of the classic k-stage flow-shop
problem when k is a part of the input implies the APX-hardness of the (m, k)-
PFS problem when k is a part of the input. An open problem is to investigate the
(in-)approximability of the (m, k)-PFS problem when m is a part of the input
while k is a constant.

236 W. Tong et al.

Acknowledgments. Tong was supported by the FY16 Startup Funding from the
Georgia Southern University and an Alberta Innovates Technology Futures (AITF)
Graduate Student Scholarship. Miyano is supported by the Grants-in-Aid for Scientific
Research of Japan (KAKENHI), Grant Number 26330017. Goebel is supported by the
AITF and the Natural Sciences and Engineering Research Council of Canada (NSERC).
Lin is partially supported by the NSERC and his work was mostly done during his
sabbatical leave at the Kyushu Institute of Technology, Iizuka Campus.

References

1. Chen, B.: Analysis of classes of heuristics for scheduling a two-stage flow shop with
parallel machines at one stage. J. Oper. Res. Soc. 46, 234–244 (1995)

2. Chen, B., Glass, C.A., Potts, C.N., Strusevich, V.A.: A new heuristic for three-
machine flow shop scheduling. Oper. Res. 44, 891–898 (1996)

3. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-
Wesley, Reading (1967)

4. Dong, J., Tong, W., Luo, T., Wang, X., Hu, J., Xu, Y., Lin, G.: An FPTAS for
the parallel two-machine flowshop problem. Theor. Comput. Sci. (2016, in press)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

6. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1, 117–129 (1976)

7. Gonzalez, T., Sahni, S.: Flowshop and jobshop schedules: complexity and approx-
imation. Oper. Res. 26, 36–52 (1978)

8. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45, 1563–1581 (1966)

9. Gupta, J.N.D.: Two-stage, hybrid flowshop scheduling problem. J. Oper. Res. Soc.
39, 359–364 (1988)

10. Gupta, J.N.D., Hariri, A.M.A., Potts, C.N.: Scheduling a two-stage hybrid flow
shop with parallel machines at the first stage. Ann. Oper. Res. 69, 171–191 (1997)

11. Gupta, J.N.D., Tunc, E.A.: Schedules for a two-stage hybrid flowshop with parallel
machines at the second stage. Int. J. Prod. Res. 29, 1489–1502 (1991)

12. Hall, L.A.: Approximability of flow shop scheduling. Math. Program. 82, 175–190
(1998)

13. He, D.W., Kusiak, A., Artiba, A.: A scheduling problem in glass manufacturing.
IIE Trans. 28, 129–139 (1996)

14. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34, 144–162 (1987)

15. Hoogeveen, J.A., Lenstra, J.K., Veltman, B.: Preemptive scheduling in a two-stage
multiprocessor flow shop is NP-hard. Eur. J. Oper. Res. 89, 172–175 (1996)

16. Jansen, K., Sviridenko, M.I.: Polynomial time approximation schemes for the mul-
tiprocessor open and flow shop scheduling problem. In: Reichel, H., Tison, S. (eds.)
STACS 2000. LNCS, vol. 1770, p. 455. Springer, Heidelberg (2000)

17. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Res. Logistics Q. 1, 61–68 (1954)

18. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4, 373–395 (1984)

19. Lee, C.-Y., Vairaktarakis, G.L.: Minimizing makespan in hybrid flowshops. Oper.
Res. Lett. 16, 149–158 (1994)

A PTAS for Parallel Flow-Shop Scheduling 237

20. Ruiz, R., Vázquez-Rodŕıguez, J.A.: The hybrid flow shop scheduling problem. Eur.
J. Oper. Res. 205, 1–18 (2010)

21. Sahni, S.K.: Algorithms for scheduling independent tasks. J. ACM 23, 116–127
(1976)

22. Schuurman, P., Woeginger, G.J.: A polynomial time approximation scheme for the
two-stage multiprocessor flow shop problem. Theor. Comput. Sci. 237, 105–122
(2000)

23. Vairaktarakis, G., Elhafsi, M.: The use of flowlines to simplify routing complexity
in two-stage flowshops. IIE Trans. 32, 687–699 (2000)

24. Wang, H.: Flexible flow shop scheduling: optimum, heuristics and artificial intelli-
gence solutions. Expert Syst. 22, 78–85 (2005)

25. Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens, C.A.J., Lenstra, J.K.,
Sevast́janov, S.V.: Short shop schedules. Oper. Res. 45, 288–294 (1997)

26. Zhang, X., van de Velde, S.: Approximation algorithms for the parallel flow shop
problem. Eur. J. Oper. Res. 216, 544–552 (2012)

	A PTAS for the Multiple Parallel Identical Multi-stage Flow-Shops to Minimize the Makespan
	1 Introduction
	2 A PTAS for the (m,k)-PFS Problem
	2.1 Configuration
	2.2 The PTAS

	3 Conclusions
	References

