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ABSTRACT
Although there is a large and growing literature that tackles
the semi-supervised clustering problem (i.e., using some la-
beled objects or cluster-guiding constraints like “must-link”
or “cannot-link”), the evaluation of semi-supervised cluster-
ing approaches has rarely been discussed. The application of
cross-validation techniques, for example, is far from straight-
forward in the semi-supervised setting, yet the problems as-
sociated with evaluation have yet to be addressed. Here we
summarize these problems and provide a solution.

Furthermore, in order to demonstrate practical applica-
bility of semi-supervised clustering methods, we provide a
method for model selection in semi-supervised clustering
based on this sound evaluation procedure. Our method
allows the user to select, based on the available informa-
tion (labels or constraints), the most appropriate clustering
model (e.g., number of clusters, density-parameters) for a
given problem.

1. INTRODUCTION
Cluster analysis is a fundamental conceptual problem in

data mining, in which one aims to distinguish a finite set
of categories to describe a data set, according to similari-
ties or relationships among its objects [13, 20, 23]. It is an
interdisciplinary field that includes elements of disciplines
such as statistics, algorithms, machine learning, and pattern
recognition. Clustering methods have broad applicability in
many areas, including marketing and finance, bioinformat-
ics, medicine and psychiatry, sociology, numerical taxonomy,
archaeology, image segmentation, web mining, and anomaly
detection, to mention just a few [2,16,21,22].

The literature on data clustering is extensive (e.g., see
[19] for a recent survey), and a variety of clustering al-
gorithms have been developed over the past five decades
[7,21,26,34,41]. Despite the rapid development of this area,
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an issue that remains critical and of primary importance
is the evaluation of clustering results. In particular, it is
well-known that different clustering algorithms — or even
the same algorithm with different configurations for its pa-
rameters (e.g., the number of clusters k when this quantity
is required as an input) — may come up with significantly
different solutions when applied to the same data. In this
scenario, which solution is best? This question is essentially
the fundamental problem of model selection, i.e., choosing a
particular algorithm and/or a particular parametrization of
this algorithm amongst a diverse collection of alternatives.

A solution to the model selection problem is not trivial
because, unlike pattern classification, cluster analysis is not
a supervised task. Even the concept of cluster is quite sub-
jective, and may be defined in many different ways [13].
One possible approach for unsupervised model selection is
to use (internal) relative clustering evaluation criteria as
quantitative, commensurable measures of clustering qual-
ity [20,30,36]. This approach, however, has two major short-
comings [36]: (i) criteria that have become well-established
in the literature are restricted to evaluating clusterings with
volumetric (usually globular-shaped) clusters only; they are
not appropriate for evaluating results involving arbitrarily-
shaped (e.g. density-based) clusters; and (ii) it is well-known
that the evaluations and performance of different existing
criteria are highly data-dependent, in a way that makes it
very difficult to choose one specific criterion for a particular
data set.

Apart from unsupervised approaches, there has been a
growing interest in semi-supervised clustering methods, which
are methods developed to deal with partial information about
object properties being clustered, usually given in the form
of clustering constraints (e.g., instance-level pairwise con-
straints) [12, 38], or in the form of a subset of pre-labeled
data objects [9, 28]. The area of semi-supervised clustering
has had more attention in recent years [6], with formulations
of the problem being discussed from a theoretical perspec-
tive [11] and algorithms being developed to deal with semi-
supervision in a variety of ways, including metric learning [8]
and (hard or soft) enforcement of constraint satisfaction [39].
In spite of these advances, the focus has been only on how to
obtain (hopefully better) clustering solutions through semi-
supervised guidance. The problem of model selection has
been notably overlooked.

Here we propose a framework for model selection in semi-
supervised clustering , which we call CVCP (“Cross-Validation
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for finding Clustering Parameters”). The core idea of the
framework is to select models that better fit the user-provided
partial information, from the perspective of classification er-
ror estimation based on a cross-validation procedure. Since
a clustering algorithm provides a relative rather than abso-
lute labeling of the data, our measure for the fit of avail-
able semi-supervised information is designed so that we can
properly estimate a classification error. We have developed
and experimented with estimators conceived for two differ-
ent scenarios: (i) when the user provides as an input to the
framework a subset of labeled objects; or (ii) when the user
provides a collection of instance-level pairwise constraints
(should- and should-not-link constraints). The first scenario
has broader applicability, because constraints can be ex-
tracted from labels; so if labels are provided, the framework
can be applied both to algorithms that work with labels,
and to algorithms that work with constraints. However, in
many applications only constraints may be available, so we
also elaborate on this scenario.

The remainder of this paper is organized as follows. In
Section 2 we discuss the related work. In Section 3 we
present our framework for model selection in semi-supervised
clustering. In Section 4 we report experiments involving real
data sets. Finally, in Section 5 we address the conclusions.

2. RELATED WORK
The evaluation of semi-supervised clustering results may

involve two different problems. First, there is a problem of
external evaluation of new algorithms against existing ones
w.r.t. their results on data sets for which a ground truth
clustering solution is available. Second, there is a practical
evaluation problem of internal, relative evaluation of results
— provided by multiple candidate clustering models (algo-
rithms and/or parameters) — using only the data and labels
or constraints available, particularly to help users select the
best solution for their application.

Regarding the external evaluation problem, the main chal-
lenge is dealing with objects involved in the partial infor-
mation (labels or constraints) used by the semi-supervised
algorithm to be assessed. Indeed, without a suitable setup
for the evaluation, this process can actually mislead the as-
sessment of the clustering results.

The literature contains a variety of approaches for the ex-
ternal evaluation of semi-supervised clustering, which can
be divided into four major categories: (i) use all data: in
this näıve approach, all data objects, including those in-
volved in labels or constraints, are used when computing
an external evaluation index between the clustering solu-
tion at hand and the ground truth. This approach is not
recommended, as it clearly violates the basic principle that
a learned model should not be validated using supervised
training data. Some authors [31, 32, 40, 43] do not mention
the use of any particular approach to address this issue in
their external evaluations, which suggests that they might
have used all the data both for training and for validation;
(ii) set aside: in this approach all the objects involved in la-
bels or constraints during the training stage are just ignored
when computing an external index [9, 10, 24, 25, 28]. Obvi-
ously, this approach does not have the drawback of the first
approach; (iii) holdout : in this approach, the database is di-
vided into training and test data, then labels or constraints
are generated exclusively from the training data (using the
ground truth). Clustering takes place w.r.t. all data objects

as usual, but only the test data is used for evaluation [27,35].
In practice, this is similar to the second (set aside) approach
described above in that both prevent the drawback of the
first approach (use all data), but a possible disadvantage of
holdout is that objects in the training fold that do not hap-
pen to be selected for producing labels or constraints will be
neglected during evaluation; (iv) n-fold cross validation: in
this approach the data set is divided into n (typically 10)
folds and labels or constraints are generated from (n − 1)
training folds combined together. The whole database is
then clustered but the external evaluation index is computed
using only the test fold that was left out. As usual in classifi-
cation tasks, this process is repeated n times using a new fold
as test fold each time [4,5,29,33,37,38]. Note that this latter
procedure alleviates the dependence of the evaluation results
on a particular collection of labels or constraints. For the
other three approaches, this can be achieved by conducting
multiple trials in which labels or constraints are randomly
sampled from the ground truth in each trial; then, summary
statistics such as mean can be computed, as it has been done
in most of the references cited above.

Apart from the aforementioned external evaluation sce-
nario, a more practical problem is how to evaluate the results
provided by semi-supervised clustering algorithms in real ap-
plications where ground truth is unavailable, i.e., when all
we have is the data themselves and a subset of labeled ob-
jects or a collection of clustering constraints. In particular,
given that different parameterizations of a certain algorithm
or even different algorithms can produce quite diverse clus-
tering solutions, a critical practical issue is how to select a
particular candidate amongst a variety of alternatives. This
is the classic problem of model selection, which aims at dis-
criminating between good and not-as-good clustering mod-
els by some sort of data-driven guidance. Notably, to the
best of our knowledge, this problem has not been discussed
in the literature on semi-supervised clustering. This is the
problem that we focus on in the remainder of this paper.

3. SEMI-SUPERVISED MODEL SELECTION
Typical clustering algorithms will find different results de-

pending on input parameters, including the expected num-
ber of clusters or the indication of some density threshold.
Given this parameter dependence, our goal is to provide the
basis for selecting the best of a set of possible models. We
propose the following general framework:

step 1: Determine the quality of a parameter value p for a
semi-supervised clustering algorithm using n-fold cross-
validation by treating the generated partition as a clas-
sifier for constraints. A single step in the n-fold cross-
validation is illustrated in Figure 1.

step 2: repeat (step 1) for different parameter settings

step 3: select the parameter p* with the highest score

step 4: run the semi-supervised clustering algorithm with
parameter value p* using all available information (la-
bels or constraints) given as input to the clustering
algorithm.

The crucial, non-trivial questions for this general frame-
work are how to evaluate (step 1) and how to compare
(step 3) the performance of different models. The question
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Figure 1: Illustration of a single step in an n-fold cross validation to determine the quality score of a parameter
value p in step 1 of our framework. This step is repeated n times and the average score for p is returned as
p’s quality.

of what constitutes appropriate evaluation in the context of
semi-supervised clustering involves several different issues.

First, it is crucial to not use the same information (e.g.,
labels or constraints) twice in both the learning process (run-
ning the clustering algorithm) and in the estimation of the
classification error of the learned clustering model. Other-
wise, the classification error is likely to be underestimated.
We discuss this problem and a solution in Section 3.1

Second, we will have to elaborate on how to actually es-
timate the classification error. For measuring and compar-
ing the performance quantitatively, we will transform the
semi-supervised clustering problem to a classification prob-
lem over the constraints — which are originally available or
that have been extracted from labels — and then use the
well-established F-measure. We provide further details on
this step in Section 3.2.

Finally, we explain the selection of the best model, based
on the previous steps, in Section 3.3.

3.1 Ensuring Independence between Training
Folds and Test Fold

We suggest the use of cross-validation for the evaluation
step and in what follows, provide a description for cross-
validation that ensures independence between training and
test folds. Let us note, though, that the same reasoning
would apply to other partition-based evaluation procedures
such as bootstrapping.

The problem associated with cross-validation, or any eval-
uation procedure based on splitting the available informa-
tion into training and test partitions, can be most easily seen
by considering the transitive closure of constraints. Let us
consider the available objects and the available constraints
(whether given directly or derived from the labels of some
objects) as a graph where the data objects are the ver-
tices and the constraints are the edges, e.g., with weight 0
(cannot-link) and weight 1 (must-link). The transitive clo-
sure provides all edges that can be induced from the given
edges, e.g., if we have, for the objects A, B, C, D, as con-
straints a must-link(A,B), a must-link(C,D) (green links
in Figure 2), and a cannot-link(B,C) (red link in Figure 2),
we can induce the constraints cannot-link(A,C), cannot-
link(A,D), and cannot-link(B,D) (dotted red links in Fig-
ure 2). Note that, although the transitive closure will usu-
ally add a considerable number of edges, neither the graph
overall nor any small components necessarily become com-

Figure 2: Transitive closure for some given con-
straints (example): with given constraints must-

link(A,B), must-link(C,D), and cannot-link(B,C), the
constraints cannot-link(A,C), cannot-link(A,D), and
cannot-link(B,D) can be induced.

pletely connected. For example, if we had the opposite con-
straints cannot-link(A,B), cannot-link(C,D), and must-

link(B,C), the constraints cannot-link(A,C) and cannot-

link(B,D) could be derived, but we would not know any-
thing about (A,D).

We partition the available information into different folds,
to use some part for training and some part for testing.
The transitive closure of pairwise instance level constraints,
whether explicitly computed or not, can lead unintention-
ally to the indirect presence of information in some fold or
partition. For example, suppose a training fold contains the
constraints must-link(A,B) and cannot-link(B,C). If the
test fold contains the constraint cannot-link(A,C), this is
information that was, implicitly, already available during
the clustering process even though only the explicit con-
straints in the training folds were given. Therefore, an ordi-
nary setup for cross-validation for semi-supervised clustering
evaluation can lead to significantly underestimating the true
classification error w.r.t. the constraints. A more sophisti-
cated cross-validation procedure, for example, would have to
split the graph of constraints, possibly cutting some of the
edges, in order to identify truly non-overlapping folds. This
graph-based approach can provide a solution to avoid this
pitfall at an abstract level. In the following, we provide a
more detailed description of two scenarios for a proper cross-
validation procedure, (I) using labeled objects, and (II) us-
ing pairwise instance-level constraints. In both scenarios,
we implement an efficient procedure that essentially results
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Figure 3: Scenario I: Labeled objects are provided.
Labeled objects are distributed on n−1 training folds
and 1 test fold. Constraints are derived from the
labeled objects in n− 1 folds for the training set and
from the nth fold for the test set.

in correctly cutting the graph of constraints, to ensure inde-
pendence between training and test folds.

3.1.1 Scenario I: Providing Labeled Objects
First consider the simpler and more widely applicable sce-

nario where the user provides a certain percentage of labeled
objects. This scenario is more widely applicable because,
from labeled objects, we can derive instance level pairwise
constraints (must-link and cannot-link constraints), and so
use algorithms that require labeled objects as input as well
as those that require a set of instance level constraints. In
our context, this scenario is simpler because we can set up
the cross-validation (and, based on that, the model selection
framework) based on individual objects and, thus, directly
avoid the duplicate use of the same information. This setup
of the framework is as follows.

We partition the set of all labeled objects into the desired
number n of folds (cf. Figure 3). As usual in cross-validation,
one of the folds is left out each time as a test set and the
union of the remaining n− 1 folds provides the training set.
Instance level constraints can then be derived from the la-
bels, independently for the training set (n−1 folds together)
and for the test set. When two objects have the same label,
this results in a must-link constraint; different labels for two
objects result in a cannot-link constraint. If the framework
is applied with an algorithm that uses labels directly, then
we do not need to derive the constraints for the training set,
only for the test set. In either case, only the labels or con-
straints coming from the union of the n−1 training folds are
used in the clustering process. For the test fold, constraints
are necessarily derived and they will obviously not have any
overlap with the information contained in the training folds.
Only these constraints are used for the estimation of the
classification error for the clustering result.

The procedure is repeated n times, using each of the n
folds once as the test fold.

3.1.2 Scenario II: Providing Pairwise Instance-Level
Constraints

If we are directly given a set of (must-link/cannot-link)
constraints, we extend this set by computing the transi-
tive closure (e.g., if we have a must-link(A,B) and a must-

link(B,C) we can derive a must-link(A,C)). A straightfor-
ward approach of using separated components of the con-
straint graph for different partitions could address the issue
of ensuring independence between a training fold and test
fold; but, first, we are not guaranteed to have separated
components, and second, if we were, this would likely result

Figure 4: Scenario II: Pairwise constraints are pro-
vided. Objects involved in constraints are dis-
tributed on n−1 training folds and 1 test fold. Con-
straints between objects in the training folds and
the test fold are removed. The transitive closure of
constraints is computed for all objects in the n − 1
training folds for the training set and for the objects
in the test fold for the test set.

in an imbalanced distribution of information since separated
components are likely to describe different spatial areas of
the data. This approach would lead the algorithm to overfit
to the provided constraints.

To ensure our cross-validation procedure avoids the pitfall
of using the same information for training and testing, we
partition the data objects involved in any pairwise constraint
in training folds and test fold, then delete all constraints that
involve an object from the training fold and an object from
the test fold. For n-fold cross validation, we partition the
objects into n folds and use, in turn, n− 1 folds as training
set and the remaining fold as test set (cf. Figure 4). This
way, when provided with pairwise instance-level constraints,
the cross-validation procedure essentially reduces to the ap-
proach of Scenario I, where we are given labels.

3.2 Transforming the Evaluation of Semi-Su-
pervised Clustering to Classification Eval-
uation

Regardless of whether the clustering algorithm uses the
labels or constraints, we can use the constraints to estimate
the quality of a partition produced by the clustering algo-
rithm. We can consider a produced partition as a classi-
fier that distinguishing the class of must-link (class 1) from
cannot-link (class 0) constraints. In other words (and sim-
ilar to so-called “pair-counting” cluster evaluation [1]) we
evaluate for pairs of objects in the test fold whether their
constraint has been“recognized” by the clustering procedure
(as opposed to evaluating the performance at an object level
where we would consider if a single object is a member of
an appropriate cluster in some clustering solution). A given
clustering solution provides the basis to assess the degree to
which the constraints in the test fold are satisfied or violated.
As a consequence, we do not need to resort to some arbitrary
clustering evaluation measure, but can use the well estab-
lished F-measure to estimate the constraint satisfaction of a
given solution.

The semi-supervised clustering problem can then be con-
sidered as a classification problem as follows: for each test
fold, we have a set of must-link constraints (class 1) and
cannot-link constraints (class 0). The clustering solution
satisfies a certain number of these constraints: pairs of ob-
jects that are involved in a must-link constraint are either
correctly paired in the same cluster (true positive for class 1
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and true negative for class 0) or not (false negative for class
1 and false positive for class 0); likewise, pairs of objects
that are involved in a cannot-link constraint are either cor-
rectly separated in two clusters (true positive for class 0 and
true negative for class 1) or paired in the same cluster (false
negative for class 0 and false positive for class 1). Based on
these numbers, precision and recall, and the F-measure can
be computed for each class. The average F-measure for both
classes is the criterion for the overall constraint satisfaction
of one test fold (see again Figure 1).

3.3 Model Selection
So far, we have noted a possible problem in evaluating

semi-supervised clustering based on pairwise constraints when
using some partition-based (holdout) evaluation such as cross-
validation, and we have elaborated how cross-validation can
avoid this problem. Based on this improved formulation of
a cross-validation framework for semi-supervised clustering
(depending on the nature of the provided data, according to
scenario I or scenario II), we can now discuss the process of
model selection.

Cross-validation is suitable for estimating the classifica-
tion error (here using the F-measure) of a semi-supervised
clustering algorithm on some given data set and given labels
or pairwise constraints based on using n times a certain frac-
tion of the available information for clustering (n−1

n
) and,

in each case, the remaining fraction (i.e., 1
n

) for evaluation.
The average of the average F-measure over all n test folds is
the criterion for the constraint satisfaction of some cluster
model.

Based on this overall error estimation, we can now com-
pare the performance of some semi-supervised clustering al-
gorithm when using different parameters, i.e., we can com-
pare different clustering models. Users who apply this frame-
work can now select the best available model for clustering
their data. To do so, any algorithm is evaluated in cross-
validation for each parameter setting that the user would like
to consider, resulting in different cluster models of different
quality (as judged based on the estimated classification er-
ror, using average F-measure).

Picking the best model based on the error estimate from
a cross-validation procedure is still a guess, assuming that
the error estimation can be generalized to when complete
information is available. In what follows, we provide an
outline of how well this assumption works for a variety of
clustering algorithms applied to different data sets.

4. EXPERIMENTS
Here we provide a preliminary evaluation of our proposed

method for selecting parameters of semi-supervised cluster-
ing methods (called CVCP for “Cross-Validation for finding
Clustering Parameters”).

After discussing the experimental setup, we describe two
types of experiments. In Section 4.2 we first argue that
the “internal” (i.e., classification) F-measure values, used to
select the best parameters, correlate well with the “external”
(i.e., clustering) Overall F-Measure values. Subsequently, in
Section 4.3, we report the performance of CVCP compared
to the “expected” performance when having to guess the
right parameter from the given range.

4.1 Experimental Setup

Semi-Supervised Clustering Methods and Parameters
We apply CVCP using two major representative, semi-super-
vised clustering methods, FOSC-OPTICSDend [10] and
MPCKmeans [8], respectively. FOSC-OPTICSDend is a
density-based clustering method that requires a parameter
MinPts which specifies the minimum number of points re-
quired in the ε-neighborhood of a dense (core) point. MPCK-
means is a variant of K-means, and similarly requires a pa-
rameter k that specifies the number of clusters to be found.

CVCP selects the best parameter values from a range of
considered values. These ranges were set as following: For
MinPts, values in [3, 6, 9, 12, 15, 18, 21, 24] were considered,
since values in the range between 3 and 24 have been widely
used in the literature of density-based clustering for a variety
of data sets. For k, the range of values was set to [2, . . . ,M ],
where M is an upper bound for the number of clusters that
a user would reasonably specify for a given data set.

For both scenarios —“providing labeled objects”and“pro-
viding instance level constraints” — we evaluate the perfor-
mance of the semi-supervised clustering algorithms for dif-
ferent volumes of information, given in the form of labeled
objects and constraints, respectively. For the scenario in
which a subset of labeled objects is given, we show the results
where labels for 5%, 10%, and 20% of all objects (randomly
selected) are given as input to the semi-supervised clustering
method. For the scenario in which a subset of constraints is
given, we first used the ground truth to generate a candidate
“pool” of constraints by randomly selecting 10% of the ob-
jects from each class and generating all constraints between
these objects. From this pool of constraints, we then ran-
domly select subsets of 10%, 20%, and 50% as input to the
semi-supervised clustering method.

All reported values are average values computed over 50
independent experiments for each data set, where for each
experiment a“new”set of labeled objects or constraints were
randomly selected, as described.

Data Sets
For this set of evaluation experiments, we use the following
real data sets which exhibit a variety of characteristics in
terms of number of objects, number of clusters, and dimen-
sionality:

• ALOI: The ALOI data set is a collection of data sets,
for which we will report average performance. The
collection is based on the Amsterdam Library of Ob-
ject Images (ALOI) [15], which stores images of 1000
objects under a variety of viewing angles, illumination
angles, and illumination colours. We used image sets
that were created by Horta and Campello [17] by ran-
domly selecting k ALOI image categories as class labels
100 times for each k = 2, 3, 4, 5, then sampling (with-
out replacement), each time, 25 images from each of
the k selected categories. So each image collection is
composed of a hundred data sets, of images from k cat-
egories; each data set has its own set of k categories.
We used the “k5” image collection, which consists of
100 data sets, each having 125 objects from five cate-
gories, 25 objects from each category. The descriptor
for the objects is colour moments, described by 144
attributes.

335



• UCI: The UC Irvine Machine Learning Repository [3]
maintains numerous data sets as a service to the ma-
chine learning community. From these data sets, we
used the following:

– Iris: This data set contains 3 classes of 50 in-
stances each with 4 attributes, where each class
contains a type of iris plant and attributes for one
instance are the lengths and widths of its sepal
and petal. One class is linearly separable from
the two which are not linearly separable from each
other.

– Wine: This data set contains 178 objects in 13
attributes, with 3 classes. These data are the re-
sults of a chemical analysis of wines grown in the
same region in Italy but derived from three dif-
ferent cultivars.

– Ionosphere: This data set contains 351 instances
with 34 continuous attributes, and two classes.
The attributes describe radar returns from the
ionosphere classified into“good”and“bad”classes
(whether they show evidence of some type of struc-
ture in the ionosphere or not, respectively).

– Ecoli: The “Ecoli” data set contains 336 objects
in 7 attributes, with 8 classes. Classes in this
data set are protein localization sites in E. coli
bacteria.

• Zyeast This data set is a gene-expression data set re-
lated to the Yeast cell cycle. It contains the expression
levels of 205 genes (objects) under 20 conditions (at-
tributes) with 4 known classes; it was used in [42].

Performance Measure
As our external evaluation measure, we use the “Overall
F-Measure” [18]. For a given clustering result, i.e., a par-
tition obtained by a clustering method w.r.t. a given pa-
rameter value, the Overall F-Measure computes the agree-
ment of that partition with the “ground truth” partition as
defined by the class labels of the objects. Note, however,
that this type of ground truth for clustering results has to
be considered with some reservation. For example, the la-
bels for the given classes may not correspond to a cluster
structure that can be found by a particular clustering al-
gorithm/paradigm [14], so we do not expect the absolute
F-measure values to be high for all combinations of data
sets and clustering methods.

In addition, when computing the Overall F-Measure, we
must ensure that the only objects considered are those that
are not involved in the constraints given as input to the
semi-supervised clustering method (see Section 2).

4.2 Correlation with the External Quality
Measure

Recall that CVCP uses an internal, classification F-measure
for the degree of constraint satisfaction in a partition pro-
duced by a clustering method, for a particular parameter
value. In this subsection, we will show that these internal
values of constraint satisfaction quality (based only on the
input provided to the semi-supervised clustering algorithm)
correlate, in general, very well with the overall quality of the
partitions produced by the clustering method for the same
parameter values (as measured by the Overall F-Measure
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Figure 5: FOSC-OPTICSDend (label scenario) —
Curves for a representative data set from ALOI with
correlation coefficient=0.9937
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Figure 6: MPCKmeans (label scenario) — Curves
for a representative data set from ALOI with corre-
lation coefficient=0.9401

w.r.t. the “ground truth” partition). This means that the in-
ternal constraint satisfaction values can, in general, be used
to predict the best performing parameter value for a given
semi-supervised clustering method.

4.2.1 Providing Labeled Objects
We first show some representative examples of the ex-

perimental outcomes of the internal classification scores for
different parameters of the semi-supervised clustering meth-
ods, using 10% of labeled objects as input. Figure 5 shows
the results when using FOSC-OPTICSDend with different
values of MinPts on one of the ALOI data sets in the ALOI
collection. Figure 6 shows the results when using MPCK-
means with different values of k for the same ALOI data
set. Both plots show the internal classification scores and
the clustering score as measured by the Overall F-Measure.
One can clearly see the correlation between the two curves
for this individual data set.
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Table 1: FOSC-OPTICSDend (label scenario)
— correlation of internal scores with Overall F-
Measure

Percent ALOI Iris Wine Ionosphere Ecoli Zyeast

5 0.8019 0.6818 0.9020 0.9177 0.6880 0.9736
10 0.9674 0.6125 0.7880 0.9888 0.8819 0.9433
20 0.9687 0.9902 0.9381 0.9695 0.4570 0.9872

Table 2: MPCKMeans (label scenario) — correla-
tion of internal scores with Overall F-Measure

Percent ALOI Iris Wine Ionosphere Ecoli Zyeast

5 0.9661 -0.1643 0.7021 0.5735 0.4360 -0.4847
10 0.9237 0.0062 0.6639 0.4863 -0.0508 -0.7123
20 0.9238 -0.3155 0.2282 0.4211 0.1017 -0.7151

Table 1 and Table 2 show the average correlation values
(over 50 independent experiments) of internal scores with
the corresponding Overall F-Measure scores for different pa-
rameter values for FOSC-OPTICSDend and MPCKmeans,
respectively. The tables report the average correlation val-
ues for all data sets (columns) and for different amounts of
labeled objects (rows: 5%, 10%, and 20%) provided as input
to the semi-supervised clustering algorithms.

Note that for FOSC-OPTICSDend, the correlation values
are overall very high in almost all cases. For MPCKmeans,
the results are mixed. For ALOI there is a high correlation
with all numbers of provided constraints; for Wine, the cor-
relation is high for 5% and 10% of labeled objects, and low
for 20% of provided objects; for Ionosphere, the correlation is
perhaps “medium” with all numbers of provided constraints;
for Iris, and Ecoli, the correlations are generally low; and for
Zyeast, the correlation is even strongly negative. The low
and negative correlations indicate that MPCKmeans may
not represent the most appropriate clustering paradigm for
these data sets.

4.2.2 Providing Instance-Level Constraints
As for the “label scenario,” we first show some representa-

tive examples of the experimental outcomes that show the
internal classification scores for different parameters of the
semi-supervised clustering methods, providing 10% of con-
straints from the“constraint pool”as input to the algorithm.
Figure 7 shows the results when using FOSC-OPTICSDend
with different values of MinPts, again on one of the ALOI
data sets. Figure 8 shows the results when using MPCK-
means with different values of k for the same ALOI data
set. As in the previous subsection, both figures show the
internal classification scores and the clustering score.

As for the results when providing labeled objects, again
one can visually determine that in this “constraint scenario”
the correlation between the internal classification scores and
the Overall F-Measure for clustering is strong.

Table 3 and Table 4 show the average correlation val-
ues of internal scores with the corresponding Overall F-
Measure values for different parameter values for FOSC-
OPTICSDend and MPCKmeans, respectively. The tables
report the average correlation values for all data sets (columns)
and for different numbers of constraints (from the constraint
pool extracted from 10% of labeled objects from each class)
provided as input to the semi-supervised clustering algo-
rithms (rows: 10%, 20%, and 50%).

As in the label scenario, the correlation values are overall
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Figure 7: FOSC-OPTICSDend (constraint scenario)
— Curves for a representative data set from ALOI
with correlation coefficient=0.9784
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Figure 8: MPCKMeans (constraint scenario) —
Curves for a representative data set from ALOI with
correlation coefficient=0.9862

Table 3: FOSC-OPTICSDend (constraint scenario)
— correlation of internal scores with Overall F-
Measure

Percent ALOI Iris Wine Ionosphere Ecoli Zyeast

10 0.8829 0.7696 0.7970 0.9813 0.9450 0.9140
20 0.9013 0.9066 0.8151 0.9881 0.9412 0.9285
50 0.9029 0.8688 0.8034 0.9681 0.8679 0.9081

Table 4: MPCKMeans (constraint scenario) — cor-
relation of internal scores with Overall F-Measure

Percent ALOI Iris Wine Ionosphere Ecoli Zyeast

10 0.7755 0.2755 0.2416 0.3021 0.2615 -0.6421
20 0.9256 -0.1921 0.3136 0.5354 0.4875 -0.7290
50 0.9314 -0.0486 0.2924 0.2191 0.3910 -0.6502
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Figure 9: FOSC-OPTICSDend (label scenario) —
Boxplot of the distributions of quality values ob-
tained on the ALOI collection, using different per-
centages (x) of labeled points as an input, for CVCP
(CVCP-x) and expected quality (Exp-x).

very high for FOSC-OPTICSDend in all cases, and mixed for
MPCKmeans. As before, the correlation values for MPCK-
means are high for ALOI with all numbers of provided con-
straints; for Wine, Ionosphere, and Ecoli, the correlation is
low to medium for different numbers of provided constraints;
and for Iris and Zyeast the correlations are low, and even
strongly negative for Zyeast, suggesting the same conclu-
sion as before, i.e., that MPCKmeans may not represent the
most appropriate clustering paradigm for these data sets.

4.3 Comparison of Clustering Quality
In this section we show how well semi-supervised clus-

tering methods perform with the parameter values selected
by CVCP. To do so, we report the corresponding Overall
F-measure values. We compare this performance, for both
semi-supervised clustering methods, with the“expected”per-
formance when having to guess the right parameter from the
given range. The expected performance is defined as the av-
erage Overall F-Measure for the semi-supervised clustering
method, measured over all parameter values in the given
range from which CVCP selects its value (for this reason,
we have conservatively restricted the ranges to be small).

Note that for density-based clustering, there is no existing
heuristic for selecting the parameter MinPts that could be
applied in this context. For convex-shaped clusters, many
internal, relative clustering validation criteria have been pro-
posed [36]. These measures have been proposed for com-
pletely unsupervised clustering methods like K-means, and
they can be used for model selection in case of MPCK-
means. One of the best known and best performing such
measures [36] is the Silhouette Coefficient [23], which we
also include in the evaluation of MPCKmeans as a baseline,
in addition to the expected quality.

4.3.1 Providing Labeled Objects
In this subsection, we show results for the scenario when

labeled objects are provided as input to the semi-supervised
clustering methods.
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Figure 10: MPCKmeans (label scenario) — Boxplot
of the distributions of quality values obtained on the
ALOI collection, using different percentages (x) of
labeled points as an input, for CVCP (CVCP-x),
expected quality (Exp-x), and Sihhouette (Sil-x).

Table 5: FOSC-OPTICSDend (label scenario) — av-
erage performance using 5 percent of labeled data
as an input. 89/100 in ALOI were significant.

Data sets CVCP Expected CVCP Expected
Mean Mean std std

ALOI 0.7489 0.7154 0.0531 0.0039
Iris 0.7251 0.6982 0.0360 0.0042

Wine 0.4659 0.4580 0.0326 0.0049
Ionosphere 0.6036 0.5328 0.0311 0.0063

Ecoli 0.6555 0.6532 0.0192 0.0040
Zyeast 0.9154 0.8946 0.0310 0.0124

Table 6: FOSC-OPTICSDend (label scenario) — av-
erage performance using 10 percent of labeled data
as an input. 100/100 in ALOI were significant.

Data sets CVCP Expected CVCP Expected
Mean Mean std std

ALOI 0.8485 0.7293 0.0620 0.0071
Iris 0.7615 0.7006 0.0401 0.0066

Wine 0.4717 0.4569 0.0261 0.0161
Ionosphere 0.6189 0.5738 0.0086 0.0065

Ecoli 0.6026 0.5659 0.0723 0.0071
Zyeast 0.9349 0.8939 0.0347 0.0297

Table 7: FOSC-OPTICSDend (label scenario) — av-
erage performance using 20 percent of labeled data
as an input. 100/100 in ALOI were significant.

Data sets CVCP Expected CVCP Expected
Mean Mean std std

ALOI 0.8569 0.7290 0.0415 0.0106
Iris 0.8251 0.7116 0.0554 0.0126

Wine 0.5569 0.5127 0.0338 0.0191
Ionosphere 0.6228 0.5181 0.0106 0.0088

Ecoli 0.5749 0.5668 0.0202 0.0112
Zyeast 0.9628 0.8980 0.0204 0.0069
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Table 8: MPCKmeans (label scenario) — average
performance using 5 percent of labeled data as an
input. 100/100 in ALOI were significant.

Data sets CVCP Exp Silh CVCP Exp Silh
Mean Mean Mean std std std

ALOI 0.7001 0.6250 0.5875 0.0506 0.0045 0.0105
Iris 0.5585 0.5649 0.4456 0.0452 0.0055 0.0057
Wine 0.6523 0.6341 0.3772 0.0416 0.0045 0.0054
Ionosphere 0.6159 0.6119 0.4602 0.0641 0.0051 0.0039
Ecoli 0.4914 0.5025 0.3783 0.0812 0.0037 0.0046
Zyeast 0.5055 0.5346 0.5352 0.0469 0.0043 0.0072

Table 9: MPCKmeans (label scenario) — average
performance using 10 percent of labeled data as an
input. 100/100 in ALOI were significant.

Data sets CVCP Exp Silh CVCP Exp Silh
Mean Mean Mean std std std

ALOI 0.7196 0.6253 0.5876 0.0485 0.0077 0.0103
Iris 0.5475 0.5645 0.4444 0.0492 0.0083 0.0066
Wine 0.6392 0.6334 0.3753 0.0425 0.0073 0.0099
Ionosphere 0.6681 0.6129 0.4601 0.0853 0.0059 0.0054
Ecoli 0.4705 0.5021 0.3785 0.0719 0.0051 0.0063
Zyeast 0.4846 0.5347 0.5387 0.0494 0.0056 0.0087

Table 10: MPCKmeans (label scenario) — average
performance using 20 percent of labeled data as an
input. 100/100 in ALOI were significant.

Data sets CVCP Exp Silh CVCP Exp Silh
Mean Mean Mean std std std

ALOI 0.7290 0.6271 0.5881 0.0410 0.0131 0.0162
Iris 0.5697 0.5676 0.4457 0.0539 0.0132 0.0122
Wine 0.6397 0.6367 0.3777 0.0278 0.0106 0.0124
Ionosphere 0.6857 0.6133 0.4605 0.0729 0.0078 0.0079
Ecoli 0.4800 0.4992 0.3798 0.0310 0.0072 0.0093
Zyeast 0.5303 0.5360 0.5383 0.0290 0.0087 0.0143

Before reporting the average performance for the differ-
ent data sets and amounts of labeled objects, we visualize
the distributions of the quality values (Overall F-Measure)
obtained for the data sets in the ALOI collection, using box-
plots.

Figure 9 shows different distributions of quality values for
ALOI when using FOSC-OPTICSDend: (1) the quality of
FOSC-OPTICSDend when using the value for parameter
MinPts selected by CVCP, for different percentages x of la-
beled objects as input, denoted as CVCP-x in the figure;
(2) the expected quality of FOSC-OPTICSDend when hav-
ing to guess the value for the parameter MinPts, denoted
analogously as Exp-x in the figure. One can clearly see that
selecting the parameter value MinPts using CVCP gives a
much better performance in general than the expected per-
formance when one has to randomly select the parameter
value from the given range. This is true for every amount of
used labeled objects, but the difference is more pronounced
when using larger numbers of labeled objects.

Figure 10 shows similarly the distribution of quality val-
ues on ALOI when using MPCKmeans: (1) the quality of
MPCKmeans when using the value for parameter k selected
by CVCP, (2) the expected quality, and (3) the quality ob-
tained when selecting the parameter value for k that has
the best Silhouette Coefficient. Using Silhouette Coefficient
leads to better quality than the expected quality, but CVCP

gives even better quality than the Silhouette Coefficient, for
all amounts of labeled objects used. For MPCKmeans, we
see again the effect that the quality improves when using
larger numbers of labeled objects as input. The absolute F-
measure values are overall at a lower level for MPCKmeans
than for FOSC-OPTICSDend.

Tables 5, 6, and 7 report the average performance on all
data sets when using FOSC-OPTICSDend, for 5%, 10%,
and 20% of labeled objects, respectively. The values shown
are the mean and the standard deviation of the performance
when selecting MinPts using CVCP, and the mean and stan-
dard deviation of the expected performance (computed over
50 experiments).

Tables 8, 9, and 10 report similarly the average perfor-
mance on all data sets when using MPCKmeans, for 5%,
10%, and 20% of labeled objects, respectively. For MPCK-
means we show in addition to the mean and standard de-
viation of the performance when selecting k using CVCP,
and the expected performance, also the performance when
selecting k using Silhouette Coefficient.

In all tables, we show the best mean performance for a
data set in bold, if the difference to the other mean perfor-
mance results is statistically significant at the α = 0.05 level,
using a paired t-test. For the ALOI data set collection, we
did the test for each of the 100 data sets in the collection
separately; the number of data sets for which a difference
was statistically significant is given in the table captions.

One can observe that for the semi-supervised, density-
based clustering approach FOSC-OPTICSDend, CVCP leads
consistently to a much better performance than the expected
performance. The difference is statistically significant in al-
most all cases, except for Wine and Ecoli when only 5% of la-
beled objects are used as input for FOSC-OPTICSDend. For
MPCKmeans, CVCP outperforms expected performance and
Silhouette significantly for ALOI, Wind, Ionosphere, and
Ecoli when using 10% or 20% of labeled objects. When using
5% of labeled objects, the difference in performance for Iris
and Ionosphere are not statistically significant, and for Ecoli
the expected performance is slightly better than CVCP, and
because of very small variance in fact statistically signifi-
cant. For Zyeast, Silhouette leads to the best MPCKmeans
performance. We observe furthermore, that for all data sets
except Wine, the density-based clustering paradigm seems
to produce much better clustering results, indicated by much
higher Overall F-Measure values. The results also suggest
that CVCP outperforms the other methods in cases when
the overall clustering quality can be high, indicating that in
cases when no good parameter exists that can lead to a good
clustering result, the selection of the “best” value by CVCP
can not be significantly better than other methods. This is
the case for several data set when using MPCKmeans. (Re-
call also that it has been observed before that class labels
may not correspond to a cluster structure that can be found
by a particular clustering algorithm/paradigm [14].)

4.3.2 Providing Instance-Level Constraints
In this subsection, we show results for the scenario when

constraints are provided directly as input to the semi-supervised
clustering methods.

Again, we show first a boxplot of the distribution of the
quality values obtained for the data sets in ALOI.

Figure 11 shows different distributions of quality values
on ALOI when using FOSC-OPTICSDend, and Figure 12
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Figure 11: FOSC-OPTICSDend (constraint sce-
nario) — Boxplot of the distributions of quality val-
ues obtained on the ALOI collection, using different
percentages (x) of constraints from the constraint
pool as an input, for CVCP (CVCP-x) and expected
quality (Exp-x).
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Figure 12: MPCKmeans (constraint scenario) —
Boxplot of the distributions of quality values ob-
tained on the ALOI collection, using different per-
centages (x) of constraints from the constraint pool
as input, for CVCP (CVCP-x), expected quality
(Exp-x), and Sihhouette (Sil-x).

Table 11: FOSC-OPTICSDend (constraint scenario)
— average performance using 10 percent of con-
straints from the constraint pool as an input. 97/100
in ALOI were significant.

Data sets CVCP Expected CVCP Expected
Mean Mean std std

ALOI 0.8205 0.7230 0.0674 0.0115
Iris 0.8541 0.7483 0.0489 0.0261

Wine 0.6139 0.5469 0.0446 0.0333
Ionosphere 0.5969 0.5003 0.0264 0.0096

Ecoli 0.5977 0.5376 0.0267 0.0270
Zyeast 0.9586 0.8923 0.0301 0.0286

Table 12: FOSC-OPTICSDend (constraint scenario)
— average performance using 20 percent of con-
straints from the constraint pool as an input. 99/100
in ALOI were significant.

Data sets CVCP Expected CVCP Expected
Mean Mean std std

ALOI 0.8462 0.7209 0.0547 0.0120
Iris 0.8606 0.7391 0.0446 0.0279

Wine 0.6165 0.5529 0.0415 0.0361
Ionosphere 0.6116 0.5212 0.0136 0.0054

Ecoli 0.6443 0.5955 0.0624 0.0492
Zyeast 0.9705 0.8974 0.0131 0.0033

Table 13: FOSC-OPTICSDend (constraint scenario)
— average performance using 50 percent of con-
straints from the constraint pool as an input. 99/100
in ALOI were significant.

Data sets CVCP Expected CVCP Expected
Mean Mean std std

ALOI 0.8523 0.7234 0.0445 0.0106
Iris 0.8833 0.7502 0.0160 0.0239

Wine 0.5760 0.5249 0.0604 0.0494
Ionosphere 0.6088 0.5191 0.0172 0.0045

Ecoli 0.6016 0.5584 0.0318 0.0355
Zyeast 0.9698 0.8981 0.0160 0.0030

Table 14: MPCKmeans (constraint scenario) — av-
erage performance using 10 percent of constraints
from the constraint pool as an input. 94/100 in
ALOI were significant.

Data sets CVCP Exp Silh CVCP Exp Silh
Mean Mean Mean std std std

ALOI 0.7267 0.6286 0.5967 0.0630 0.0050 0.0061
Iris 0.5918 0.5676 0.4445 0.0706 0.0065 0.0054
Wine 0.6357 0.6444 0.3808 0.0376 0.0037 0.0037
Ionosphere 0.6955 0.6095 0.4618 0.0467 0.0028 0.0020
Ecoli 0.4854 0.5059 0.3796 0.1021 0.0027 0.0043
Zyeast 0.5214 0.5257 0.5377 0.0375 0.0026 0.0051

shows different distributions of quality values on ALOI when
using MPCKmeans, for different percentages x of used con-
straints. As before, we show the performance of CVCP as
well as the expected performance, and for MPCKmeans the
performance when selecting k via Silhouette Coefficient.

The results are very similar to the results obtained in the
scenario when labeled objects are provided, leading to the
same conclusions for the ALOI data collection: using CVCP
to select MinPts for FOSC-OPTICSDend gives much bet-
ter performance than the expected performance, and using
CVCP to select k for MPCKmeans give much better than
both the expected performance and the performance using
Silhouette Coefficient. And, again, we can observe that the
results improve when using larger numbers of constraints as
input (more so for FOSC-OPTICSDend than for MPCK-
means), and that the absolute F-measure values are overall
at a lower level for MPCKmeans.

Tables 11, 12, and 13 report the average performance on
all data sets when using FOSC-OPTICSDend, for 10%, 20%,
and 50% of constraints selected from the constraint pool.
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Table 15: MPCKmeans (constraint scenario) — av-
erage performance using 20 percent of constraints
from the constraint pool as an input. 96/100 in
ALOI were significant.

Data sets CVCP Exp Silh CVCP Exp Silh
Mean Mean Mean std std std

ALOI 0.7295 0.6202 0.5815 0.0491 0.0052 0.0060
Iris 0.5991 0.5644 0.4442 0.0072 0.0056 0.0049
Wine 0.6395 0.6452 0.3768 0.0052 0.0027 0.0034
Ionosphere 0.7082 0.6088 0.4594 0.0228 0.0030 0.0027
Ecoli 0.5151 0.5079 0.3835 0.0993 0.0031 0.0044
Zyeast 0.5233 0.5210 0.5351 0.0330 0.0030 0.0048

Table 16: MPCKmeans (constraint scenario) — av-
erage performance using 50 percent of constraints
from the constraint pool as an input. 97/100 in
ALOI were significant.

Data sets CVCP Exp Silh CVCP Exp Silh
Mean Mean Mean std std std

ALOI 0.7319 0.6197 0.5807 0.0394 0.0050 0.0059
Iris 0.6008 0.5657 0.4454 0.0069 0.0055 0.0046
Wine 0.6389 0.6407 0.3762 0.0061 0.0035 0.0046
Ionosphere 0.6115 0.6076 0.4619 0.0403 0.0027 0.0026
Ecoli 0.4997 0.5045 0.3789 0.0928 0.0035 0.0040
Zyeast 0.5257 0.5251 0.5409 0.0446 0.0028 0.0051

Again, the values shown are the mean and the standard
deviation of the performance when selecting MinPts using
CVCP, and the mean and standard deviation of the expected
performance (over 50 experiments).

Tables 14, 15, and 16 report similarly the average per-
formance on all data sets for MPCKmeans, including the
performance when selecting k using Silhouette Coefficient.

The results for the constraint scenario are very similar
to those for the label scenario, giving the same overall pic-
ture that CVCP is very effective in selecting a good pa-
rameter value for semi-supervised clustering methods. The
performance is, in general (except for some MPCKmeans
results), significantly improved compared to the expected
performance and compared to using Silhouette (for MPCK-
means).

5. CONCLUSION
We have proposed a model selection method, CVCP, for

semi-supervised clustering, based on a sound cross-validation
procedure that uses given input constraints within the semi-
supervised clustering algorithm (either explicitly or implic-
itly as as set of labeled objects). The method automatically
finds the most appropriate clustering parameter values (e.g.,
number of clusters, density-parameters), which are normally
determined manually. The method is described in detail,
and an extensive experimental evaluation has confirmed the
effectiveness of the proposed method.

Future work will include the study of CVCP in combi-
nation with other semi-supervised clustering methods, and
an investigation of how our approach could be extended to
compare and select alternative clustering methods.
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