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Abstract. We investigate the minimum independent dominating set in
perturbed graphs g(G, p) of input graph G = (V,E), obtained by negat-
ing the existence of edges independently with a probability p > 0. The
minimum independent dominating set (MIDS) problem does not admit a
polynomial running time approximation algorithm with worst-case per-
formance ratio of n1−ε for any ε > 0. We prove that the size of the
minimum independent dominating set in g(G, p), denoted as i(g(G, p)),
is asymptotically almost surely in Θ(log |V |). Furthermore, we show that

the probability of i(g(G, p)) ≥
√

4|V |
p

is no more than 2−|V |, and present

a simple greedy algorithm of proven worst-case performance ratio
√

4|V |
p

and with polynomial expected running time.

Keywords: Independent set, independent dominating set, dominating
set, approximation algorithm, perturbed graph, smooth analysis.

1 Introduction

An independent set in a graph G = (V,E) is a subset of vertices that are pair-wise
non-adjacent to each other. The independence number of G, denoted by α(G),
is the size of a maximum independent set in G. One close notion to independent
set is the dominating set, which refers to a subset of vertices such that every
vertex of the graph is either in the subset or is adjacent to some vertex in the
subset. In fact, an independent set becomes a dominating set if and only if it is
maximal. The size of a minimum independent dominating set of G is denoted by
i(G), while the domination number of G, or the size of a minimum dominating
set of G, is denoted by γ(G). It follows that γ(G) ≤ i(G) ≤ α(G).

Another related notion is the (vertex) coloring of G, in which two adjacent
vertices must be colored differently. Note that any subset of vertices colored
the same in a coloring of G is necessarily an independent set. The chromatic
number χ(G) of G is the minimum number of colors in a coloring of G. Clearly,
α(G) · χ(G) ≥ |V |.
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The independence number α(G) and the domination number γ(G) (and the
chromatic number χ(G)) have received numerous studies due to their central
roles in graph theory and theoretical computer science. Their exact values are
NP-hard to compute [4], and hard to approximate. Raz and Safra showed that the
domination number cannot be approximated within (1 − ε) log |V | for any fixed
ε > 0, unless NP ⊂ DTIME(|V |log log |V |) [9,3]; Zuckerman showed that neither
the independence number nor the chromatic number can be approximated within
|V |1−ε for any fixed ε > 0, unless P = NP [14]; for i(G), Halldórsson proved that
it is also hard to approximate within |V |1−ε for any fixed ε > 0, unless NP ⊂
DTIME(2o(|V |)) [5].

The above inapproximability results are for the worst case. For analyzing the
average case performance of approximation algorithms, a probability distribution
of the input graphs must be assumed and the most widely used distribution of
graphs on n vertices is the random graph G(n, p), which is a graph on n labeled
vertices 1, 2, . . . , n, and each edge is chosen to be an edge of G independently
and with a probability p, where 0 ≤ p = p(n) ≤ 1. A graph property holds
asymptotically almost surely (a.a.s.) in G(n, p) if the probability that a graph
drawn according to the distribution G(n, p) has the property tends to 1 as n
tends to infinity [1].

Let Ln = log1/(1−p) n. Bollobás [2] and �Luczak [7] showed that a.a.s.
χ(G(n, p)) = (1 + o(1))n/Ln for a constant p and χ(G(n, p)) = (1 +
o(1))np/(2 ln(np)) for c/n ≤ p(n) ≤ o(1) where c is a constant. It follows
from these results that a.a.s. α(G(n, p)) = (1 − o(1))Ln for a constant p and
α(G(n, p)) = (1 − o(1))2 ln(np)/p for C/n ≤ p ≤ o(1). The greedy algorithm,
which colors vertices of G(n, p) one by one and picks each time the first available
color for a current vertex, is known to produce a.a.s. in G(n, p) with p ≥ nε−1 a
coloring whose number of colors is larger than the χ(G(n, p)) by only a constant
factor (see Ch. 11 of the monograph of Bollobás [1]). Hence the largest color
class produced by the greedy algorithm is a.a.s. smaller than α(G(n, p)) only by
a constant factor.

For the domination number γ(G(n, p)), Wieland and Godbole showed that
a.a.s. it is equal to either �Ln− L((Ln)(ln n))�+1 or �Ln− L((Ln)(ln n))�+2, for
a constant p or a suitable function p = p(n) [13]. It follows that a.a.s. i(G(n, p)) ≥
�Ln− L((Ln)(ln n))� + 1. Recently, Wang proved for i(G(n, p)) an a.a.s. upper
bound of �Ln− L((Ln)(lnn))�+k+1, where k = k(p) ≥ 1 is the smallest integer
satisfying (1 − p)k < 1

2 [12].
Average case performance analysis of an approximation algorithm over ran-

dom instances could be inconclusive, because the random instances usually have
very special properties that distinguish them from real-world instances. For in-
stance, for a constant p, the random graph G(n, p) is expected to be dense. On
the other hand, an approximation algorithm performs very well on most random
instances can fail miserably on some “hard” instances. For instance, it has been
shown by Kučera [6] that for any fixed ε > 0 there exists a graph G on n vertices
for which, even after a random permutation of vertices, the greedy algorithm
produces a.a.s. a coloring using at least n/ log2 n colors, while χ(G) ≤ nε. To
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overcome this, Spielman and Teng [10] introduced the smoothed analysis. This
new analysis is a hybrid of the worst-case and the average-case analyses, and
it inherits the advantages of both, by measuring the expected performance of
the algorithm under slight random perturbations of the worst-case inputs. If the
smoothed complexity of an algorithm is low, then it is unlikely that the algo-
rithm will take long time to solve practical instances whose data are subject to
slight noises and imprecision. Though the smoothed analysis concept was intro-
duced for the complexity of algorithms, we extend its idea to depict the essential
properties of problems.

In this paper, we study the approximability of the minimum independent
dominating set (MIDS) problem under the smoothed analysis, and we present
a simple deterministic greedy algorithm beating the strong inapproximability
bound of n1−ε, with polynomial expected running time. Our probabilistic model
is the smoothed extension of random graph G(n, p) (also called semi-random
graphs in [8]), proposed by Spielman and Teng [11]: given a graph G = (V,E),
we define its perturbed graph g(G, p) by negating the existence of edges inde-
pendently with a probability of p > 0. That is, g(G, p) has the same vertex set
V as G but it contains edge e with probability pe, where pe = 1 − p if e ∈ E or
otherwise pe = p. For sufficiently large p, Manthey and Plociennik presented an
algorithm approximating the independence number α(g(G, p)) with a worst-case
performance ratio O(

√
np) and with polynomial expected running time [8].

Re-define Ln = log1/p n. We first prove on γ(g(G, p)), and thus on i(g(G, p))

as well, an a.a.s. lower bound of Ln−L((Ln)(ln n)) if p > 1
n . We then prove on

α(g(G, p)), and thus on i(g(G, p)) as well, an a.a.s. upper bound of 2 lnn/p if
p < 1

2 or 2 lnn/(1 − p) otherwise. Given that the a.a.s. values of α(G(n, p)) and
i(G(n, p)) in random graph G(n, p), our upper bound comes with no big surprise;
nevertheless, our upper bound is derived by a direct counting process which
might be interesting by itself. Furthermore, we extend our counting techniques
to prove on i(g(G, p)) a tail bound that, when 4 ln2 n/n < p ≤ 1

2 , Pr[i(g(G, p)) ≥√
4n/p] ≤ 2−n. We then present a simple greedy algorithm to approximate

i(g(G, p)), and prove that its worst case performance ratio is
√

4n/p and its
expected running time is polynomial.

2 A.a.s. Bounds on the Independent Domination Number

We need the following several facts.

Fact 1. e
x

1+x ≤ 1 + x ≤ ex holds for all x ∈ [−1, 1].

Fact 2.
(
n
r

)r ≤ (nr
) ≤ (ner

)r
holds for all r = 0, 1, 2, . . . , n.

Fact 3. (Jensen’s Inequality) For a real convex function f(x), numbers x1, x2,

. . ., xn in its domain, and positive weights ai, f
(∑

aixi∑
ai

)
≤

∑
aif(xi)∑

ai
; the in-

equality is reversed if f(x) is concave.
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Given any graph G = (V,E), let g(G, p) denote its perturbed graph, which has
the same vertex set V as G and contains edge e with a probability of

pe =

{
1 − p, if e ∈ E,

p, otherwise.

2.1 An a.a.s. Lower Bound

Recall that γ(g(G, p)) and i(g(G, p)) are the domination number and the inde-
pendent domination number of g(G, p), respectively. Also, Ln = log1/p n.

Theorem 1. For any graph G = (V,E) and 1
n < p ≤ 1, a.a.s.

γ(g(G, p)) ≥ Ln− L((Ln)(lnn)).

Proof. Let Sr be the collection of all r-subsets of vertices in g(G, p), and these(
n
r

)
sets of Sr are ordered in some way. Define Irj as a boolean variable to indicate

whether or not the j-th r-subset of Sr, Vj , is a dominating set; set Xr =
∑

j I
r
j .

Clearly, γ(g(G, p)) < r implies that there are size-r dominating sets. There-
fore,

Pr[γ(g(G, p)) < r] ≤ Pr[Xr ≥ 1] ≤ E(Xr),

where E(Xr) is the expected value of Xr. (We abuse the notation E a little, but
its meaning should be clear at every occurrence.)

For the j-th r-subset Vj , let Ej be the subset of induced edges on Vj from the
original graph G = (V,E); let V c

j = V − Vj , the complement subset of vertices.
Also, for each vertex u ∈ V c

j , define E(u, Vj) = {(u, v) ∈ E | v ∈ Vj}, and its
size nuj = |E(u, Vj)|. Using Fact 1, we can estimate E(Xr) as follows:

E(Xr) =

(n
r)∑

j=1

E(Irj ) =

(n
r)∑

j=1

∏

u∈V c
j

⎛

⎝1 −
∏

v∈Vj

(
1 − p(u,v)

)
⎞

⎠

≤
(n
r)∑

j=1

∏

u∈V c
j

exp

⎛

⎝−
∏

v∈Vj

(
1 − p(u,v)

)
⎞

⎠

=

(n
r)∑

j=1

exp

⎛

⎝−
∑

u∈V c
j

∏

v∈Vj

(
1 − p(u,v)

)
⎞

⎠

=

(n
r)∑

j=1

exp

⎛

⎝−
∑

u∈V c
j

pnuj (1 − p)r−nuj

⎞

⎠

=

(n
r)∑

j=1

exp

⎛

⎝−
∑

u∈V c
j

(
p

1 − p

)nuj

(1 − p)r

⎞

⎠ .
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Since function f(x) = ( p
1−p )x is convex in the domain [0, n], by Jensen’s Inequal-

ity, the above becomes

E(Xr) ≤
(n
r)∑

j=1

exp

⎛

⎜
⎜
⎜
⎝
−
(

p

1 − p

)
1

n− r

∑

u∈V c
j

nuj

(n− r)(1 − p)r

⎞

⎟
⎟
⎟
⎠

.

Since function g(x) = e−axb with a = ( p
1−p )

1
n−r and b = (n−r)(1−p)r is concave

in the domain [0, n2], again by Jensen’s Inequality, we further have

E(Xr) ≤
(
n

r

)
exp

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

−
(

p

1 − p

)
1

(n− r)
(
n
r

)
(n
r)∑

j=1

∑

u∈V c
j

nuj

(n− r)(1 − p)r

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

. (1)

Recall that nuj is number of edges in the original graph G = (V,E) between
u and vertices of Vj . Each edge e ∈ E is thus counted towards the quantity⎛

⎜
⎝

(n
r)∑

j=1

∑

u∈V c
j

nuj

⎞

⎟
⎠ exactly 2

(
n− 2

r − 1

)
times. That is,

(n
r)∑

j=1

∑

u∈V c
j

nuj = 2

(
n− 2

r − 1

)
|E| =

(
n
r

)
r(n − r)|E|
(
n
2

) . (2)

Using Eq. (2), Fact 2 and r = Ln− L((Ln)(ln n)), Eq. (1) becomes

E(Xr) ≤
(
n

r

)
exp

⎛

⎝−
(

p

1 − p

) r|E|
(n
2) (n− r)(1 − p)r

⎞

⎠

≤
(
n

r

)
exp

(
−
(

p

1 − p

)r

(n− r)(1 − p)r
)

≤
(
ne

r

)r

exp
(
− pr(n− r)

)

≤ exp
(
r lnn + r − r ln r − (Ln)(lnn)

n
(n− r)

)

= exp((Ln)(lnn) − L((Ln)(lnn)) lnn + r − r ln r

−(Ln)(lnn) + r(Ln)(ln n)/n)

= exp (−L((Ln)(lnn)) lnn− r (ln r − (Ln)(lnn)/n− 1))

≤ exp (−L((Ln)(lnn)) lnn− r (ln r − 2)) . (3)
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The right hand side in Eq. (3) approaches 0 when n → +∞. Since p > 1
n

guarantees r ≥ 1, Ln − L((Ln)(lnn)) is an a.a.s. lower bound on γ(g(G, p)).
This proves the theorem. �

Since Pr[i(g(G, p)) < r] ≤ Pr[γ(g(G, p)) < r], we have the following corollary:

Corollary 1. For any graph G = (V,E) and 1
n < p ≤ 1, a.a.s.

i(g(G, p)) ≥ Ln− L((Ln)(ln n)).

2.2 An a.a.s. Upper Bound

Recall that α(g(G, p)) is the independence number of g(G, p).

Theorem 2. For any graph G = (V,E), a.a.s.

α(g(G, p)) ≤
{

2 lnn
p , if p ∈ (2 lnn

n , 12 ],
2 lnn
1−p , if p ∈ [ 12 , 1 − 2 lnn

n ).

Proof. Let Sr be the collection of all r-subsets of vertices in g(G, p), and these(
n
r

)
sets of Sr are ordered in some way. Define Irj as a boolean variable to indicate

whether or not the j-th r-subset of Sr is an independent set; set Xr =
∑

j I
r
j .

Since α(g(G, p)) > r implies that there is at least one independent r-subset, i.e.
Xr > 0, the probability of the event α(g(G, p)) > r is less than or equal to the
probability of the event Xr > 0, i.e.

Pr[α(g(G, p)) > r] ≤ Pr[Xr > 0].

On the other hand, let Ar
j denote the event Irj = 0, i.e. the j-th r-subset is not

independent. It follows that Xr = 0 is equivalent to the joint event ∩jA
r
j , i.e.

Pr[Xr = 0] = Pr[∩jA
r
j ] ≥

∏

j

Pr[Ar
j ] =

∏

j

(1 − Pr[Irj = 1]).

Therefore, we have

Pr[α(g(G, p)) > r] ≤ 1 −
∏

j

(1 − Pr[Irj = 1]). (4)

Let Er
j denote the subset of edges of g(G, p), each of which connects two vertices

in the j-th r-subset of Sr. Note that |Er
j | ∈ [0,

(
r
2

)
]. Among all the edges of Er

j ,
assume there are nr

j of them coming from the original edge set E of G. It follows
that

Pr[Irj = 1] =
∏

e∈Er
j

(1 − pe) =

(
p

1 − p

)nr
j

(1 − p)(
r
2).

Using this and Fact 1 in Eq. (4) gives us

Pr[α(g(G, p)) > r] ≤ 1 −
∏

j

(1 − Pr[Irj = 1])
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≤ 1 −
(n
r)∏

j=1

exp

(

− Pr[Irj = 1]

1 − Pr[Irj = 1]

)

= 1 − exp

⎛

⎜
⎝−

(n
r)∑

j=1

Pr[Irj = 1]

1 − Pr[Irj = 1]

⎞

⎟
⎠

= 1 − exp

⎛

⎜
⎝−

(n
r)∑

j=1

(
p

1−p

)nr
j

(1 − p)(
r
2)

1 −
(

p
1−p

)nr
j

(1 − p)(
r
2)

⎞

⎟
⎠ . (5)

Consider the function f(x) = axb
1−axb in Eq. (5), where a = p

1−p > 0, b = (1 −
p)(

r
2) ∈ (0, 1), and 0 ≤ x ≤ (r2

)
. Since its derivative

f ′(x) =
axb ln a

(1 − axb)2

⎧
⎪⎨

⎪⎩

< 0, if a < 1,

= 0, if a = 1,

> 0, if a > 1,

f(x) is strictly decreasing if a < 1, or strictly increasing if a > 1. Therefore, the
maximum value of function f(x) is achieved at x = 0 if a ≤ 1, or at x =

(
r
2

)
if

a ≥ 1.
When p ≤ 1

2 , that is a = p
1−p ≤ 1, Eq. (5) becomes

Pr[α(g(G, p)) > r] ≤ 1 − exp

⎛

⎜
⎝−

(n
r)∑

j=1

(1 − p)(
r
2)

1 − (1 − p)(
r
2)

⎞

⎟
⎠

= 1 − exp

(

−
(
n

r

)
(1 − p)(

r
2)

1 − (1 − p)(
r
2)

)

. (6)

To prove Pr[α(g(G, p)) > r] → 0 as n → +∞, we only need to prove that
(
n
r

) (1−p)(
r
2)

1−(1−p)(
r
2)

→ 0 as n → +∞. Using Fact 2, we have

(
n

r

)
(1 − p)(

r
2)

1 − (1 − p)(
r
2)

=

(
n
r

)

(
1

1−p

)(r
2) − 1

≤
(
ne
r

)r

(
1

1−p

)(r
2) − 1

. (7)

Setting r = 2 lnn/p. We see that r → +∞ as n → +∞. On the other hand,
when r is large enough, we have

(
1

1 − p

)(r
2)

− 1 =

(
1

1 − p

)(r
2)

(1 − o(1)). (8)

Using Eq. (8) and Fact 1, when n is sufficiently large, Eq. (7) becomes
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(
n

r

)
(1 − p)(

r
2)

1 − (1 − p)(
r
2)

≤
(
ne
r

)r

(
1

1−p

)(r
2)

(1 + o(1)) =

⎛

⎜
⎜
⎝

ne

r
(

1
1−p

) r−1
2

⎞

⎟
⎟
⎠

r

(1 + o(1))

=

⎛

⎜
⎜
⎝

ne

r
(

1 + p
1−p

) r−1
2

⎞

⎟
⎟
⎠

r

(1 + o(1))

≤

⎛

⎜
⎝

ne

r exp
( p

1−p

1+ p
1−p

· r−1
2

)

⎞

⎟
⎠

r

(1 + o(1))

=

(
ne

r exp
(
p · r−1

2

)

)r

(1 + o(1))

=

(
ne1+

p
2

re
rp
2

)r

(1 + o(1)) (9)

=

(
e1+

p
2

r

)r

(1 + o(1))

≤
(
e

5
4

r

)r

(1 + o(1)). (10)

The quantity

(
e

5
4

r

)r

in Eq. (10) is less than 0.5r when n is sufficiently large, the

latter approaches 0 when n → +∞. This proves that when p ≤ 1
2 , Pr[α(g(G, p)) >

r] → 0 as n → +∞. That is, when p ≤ 1
2 , a.a.s. α(g(G, p)) ≤ 2 lnn/p.

When p ≥ 1
2 , that is a = p

1−p ≥ 1, q = 1 − p ≤ 1
2 and exactly the same

argument as when p ≤ 1
2 applies by replacing p with 1 − q, which shows that

a.a.s. α(g(G, p)) ≤ 2 lnn/(1 − p). This proves the theorem. �

Since α(g(G, p)) ≥ i(g(G, p)), Pr[i(g(G, p)) > r] ≤ Pr[α(g(G, p)) > r] and thus
we have the following corollary:

Corollary 2. For any graph G = (V,E), a.a.s.

i(g(G, p)) ≤
{

2 lnn
p , if p ∈ (2 lnn

n , 1
2 ],

2 lnn
1−p , if p ∈ [ 12 , 1 − 2 lnn

n ).

3 A Tail Bound on the Independent Domination Number

Theorem 3. For any graph G = (V,E) and p ∈ (4 ln2 n
n , 1

2 ],

Pr[i(g(G, p)) ≥
√

4n

p
] ≤ Pr[α(g(G, p)) ≥

√
4n

p
] ≤ 2−n.
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Proof. The proof of this theorem flows exactly the same of the proof of Theo-
rem 2. In fact, with p ≤ 1

2 , we have both Eq. (6) and Eq. (7) hold. Different from

the proof of Theorem 2 where r = 2 lnn/p, we have now r =
√

4n
p ≥ 2 lnn/p

and therefore Eq. (8) holds as well. Again, using Eq. (8) and Fact 1, when n
is sufficiently large, Eq. (9) still holds. It then follows from Fact 1 that Eq. (6)
becomes

Pr[i(g(G, p)) ≥ r] ≤ Pr[α(g(G, p)) ≥ r]

≤ 1 − exp

(

−
(
ne1+

p
2

re
rp
2

)r

(1 + o(1))

)

. (11)

Using r =
√

4n
p , we prove in the following that

(
ne1+

p
2

re
rp
2

)r
(1 + o(1)) = o(1). And

consequently by Fact 1 again and r =
√

4n
p ≥ √

8n, Eq. (11) becomes

Pr[i(g(G, p)) ≥ r] ≤
(
ne1+

p
2

re
rp
2

)r

(1 + o(1)) ≤ e

2

(
ne1+

p
2

re
rp
2

)r

=
e

2
exp

(
−r

(
ln r +

1

2
rp− lnn− 1 − p

2

))

=
e

2
exp

(
−r

(
ln r +

1

4
rp− lnn− 1 − p

2

)
− 1

4
r2p

)

=
e

2
exp

(
−r

(
ln r +

1

4
rp− lnn− 1 − p

2

)
− n

)
. (12)

The quantity
(
ln r + 1

4rp− lnn− 1 − p
2

)
in Eq. (12) is non-negative when n ≥ 2,

since

ln r +
1

4
rp− lnn− 1 − p

2
≥ 1

2
ln(8n) +

1

4

√
4np− lnn− 1 − 1

4

≥ 1

2
ln(8n) +

1

4

√

4n · 4 ln2 n

n
− lnn− 1 − 1

4

=
1

2

(
ln(8n) − 5

2

)
≥ 0.

It follows that Eq. (12) becomes

Pr[i(g(G, p)) ≥ r] ≤ e

2
exp

(
−r

(
ln r +

1

4
rp− lnn− 1 − p

2

)
− n

)

≤ e

2
e−n < 2−n.

This proves the theorem. �
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4 Approximating the Independent Domination Number

We present next a simple algorithm, denoted as Approx-IDS, for computing an
independent dominating set in g(G, p). In the first phase, algorithm Approx-IDS
repeatedly picks a maximum degree vertex and updates the graph by deleting the
picked vertex and all its neighbors; it terminates when there is no more vertex

and returns a subset I of V . If |I| ≤
√

4n
p , algorithm Approx-IDS terminates

and outputs I; otherwise it moves into the second phase. In the second phase,
algorithm Approx-IDS performs an exhaustive search over all subsets of V , and
returns the minimum independent dominating set I∗.

Theorem 4. For any graph G = (V,E) and p ∈ (4 ln2 n
n , 1

2 ], algorithm Approx-

IDS is a
√

4n
p -approximation to the MIDS problem on the perturbed graph g(G, p),

and it has polynomial expected running time.

Proof. Note that i(g(G, p)) ≥ 1. The subset I of V computed by algorithm
Approx-IDS is a dominating set, since every vertex of V is either in I, or is
a neighbor of some vertex in I. Also, no two vertices of I can be adjacent,
since otherwise one would be removed in the iteration its neighbor was picked
by the algorithm. Therefore, I is an independent dominating set of g(G, p).
It follows that if algorithm Approx-IDS terminates after the first phase, |I| ≤√

4n
p · i(g(G, p)). Also clearly the first phase takes O(n3) time.

In the second phase, a maximum of 2n subsets of V are examined by the
algorithm. Since checking each of them to be an independent dominating set or
not takes no more than O(n2) time, the overall running time is O(2nn2). Note

that this phase returns I∗ with |I∗| = i(g(G, p)). As α(g(G, p)) ≥ |I| >
√

4n
p ,

Theorem 3 tells that the probability of executing this second phase is no more
than 2−n. Therefore, the expected running time of the second phase is O(n2).
This proves the theorem. �

5 Conclusions

We have performed a smooth analysis for approximating the minimum indepen-
dent dominating set problem. The probabilistic model we used is the perturbed
graph g(G, p) of the input graph G = (V,E) [11]. We have proved a.a.s. bounds
and a tail bound on the independent domination number of g(G, p), and pre-

sented an algorithm with the worst-case performance ratio of
√

4|V |
p and with

polynomial expected running time.
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