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Abstract—Semantic vectors, or language embeddings, are used
in computational linguistics to represent language for a variety of
machine related tasks including translation, speech to text, and
natural language understanding. These semantic vectors have
also been extensively studied in correlation with human brain
data, showing evidence that the representation of language in the
human brain can be modeled through these vectors with high
correlation. Further, various attempts have been made to study
how the human brain represents and understands music. For
example, it has been shown that EEG data of subjects listening
to music can be used for tempo detection and singer gender
recognition. We propose studying the relationship between the
EEG data of subjects listening to audio and the audio feature
vectors modeled after the semantic vectors in computational
linguistics. This could provide new insight into how the brain
processes and understands music.

I. INTRODUCTION

Tasks that apply machine learning to brain data generally
involve some sort of classification paradigm, in which a model
is trained on many examples of brain data in response to
particular stimuli and later used to predict the same stimuli.
A classic example of this is the P300 speller [1], in which
subjects can use their mind to interact with a computer. In
the P300 speller setup, a subject views a digital keyboard on
a computer screen. The keyboard is displayed in a grid-like
fashion. The program then flashes horizontal and vertical rows
of the grid while the subject wears an EEG headset and focuses
on the letter they wish to spell. When the row or column of the
letter they are focusing on flashes, the subject’s brain elicits a
well-known event-related potential (ERP) response. However,
this ERP can often be masked by noise inherent to EEG data
collection. It is possible to detect the ERP in a real-time, noise-
resilient manner using machine learning. This requires training
a classifier with many examples of a P300 response.

In addition, machine learning can also be applied to brain
data in a more generative manner. Prior work by Mitchell et
al. [2] showed that the brain response for a given stimulus
can be predicted, even for a stimulus that the model had not
seen before. This prediction is performed using word vectors,
a concept borrowed from the field of natural language pro-
cessing. Word vectors are single points in a high dimensional
space that are designed to capture the semantics of a word.
They are typically generated by processing a large text corpus
to extract collocation information. Instead of learning the
association between a label and brain data, the model learns

the association between the semantic word vectors and brain
data. This allows the model to predict the brain response to a
given stimulus. Our aim is to explore whether or not a similar
correlation exists between brain data and semantic music
vectors. We follow a similar machine learning methodology
to previous work connecting EEG data and natural language
understanding. This type of approach can provide new insights
into how the brain processes and understands music.

II. RELATED WORK

As discussed, Mitchell et al. [2] showed that fMRI data can
be correlated to semantic word vectors in the brain. This same
technique was shown by Sudre et al. [3] to work in MEG,
which has the additive benefit of tracking neural activity with
high time resolution. Work has also been done using EEG
by Murphy et al. [4] to apply machine learning techniques to
semantic analysis in the brain. Using a similar methodology
to Mitchell et al. they were able to predict EEG activity
for unseen words and differentiate between two categories of
words with 63% accuracy. Xu et al. [5] used the previous fMRI
data and MEG data to perform the 2 vs 2 test with popular
semantic word vectors, and further revealed the correlation
between brain data and word vectors.

Music Imagery Information Retrieval (MIIR) is a sub-field
of Music Information Retrieval (MIR) which studies brain
activities which are recorded during various music-related
tasks such as a person listening or imagining a particular piece
of music [6]. EEG has been used on a wide variety of MIR
tasks such as predicting emotions, tempo estimation, and audio
fingerprinting. Hsu et al. [7] used EEG recording of subjects
listening to music to perform music emotion recognition and
Stober et al. [8] proved that EEG recordings could be used
to classify and understand rhythm perception. The OpenMIIR
dataset [6] is widely used for various MIR tasks, and recently,
this dataset was used to perform tempo estimation [6].

Wang et al. [9] proposed the music2vec model to learn a
probability distribution of music pieces, with the underlying
idea that similar music pieces have similar concepts. Their
model adopted the Skip-Gram model [10] and was trained on
the music listening records of users. Another interesting model
is chord2vec [11], which utilizes a sequence-to-sequence
modeling approach based on a multilayer Long Short-Term
Memory (LSTM) network with two layers of 512 hidden units
each, to predict chords which are used in similar contexts.
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There are also techniques [12] where acoustic features such
as the chromogram, tempogram, mel spectrogram, mel spec-
trogram cepstral coefficients (MFCCs), contrast, and Tonnetz
are extracted and then given as the input to a convolutional
neural network (CNN). The activations of the fully connected
layer before the output layer are taken as the latent embedding
for the input music. Other work generated music feature
vectors from symbolic music notation, and used deep auto
encoders to learn latent semantic representations for speech
signals [13]. Learned music embeddings are also widely used
for music recommendation tasks [14]. Our study evaluates
music vectors generated from various sources and correlates
them with music EEG data to test the hypothesis that the music
vectors represent music features in a similar fashion to how
the human brain imaging represents music.

III. DATASET

The brain data we used for this experiment is the OpenMIIR
dataset [6], which contains 64-channel EEG data of 120
music fragment exposures ranging from 7 – 16 seconds in
length at 512Hz. There are 12 music tracks categorized into 4
lyrical songs, 4 songs with the lyrics removed, and 4 non-
lyrical longs. The dataset was collected by measuring the
response of 10 subjects aged 19 – 36. The brain data has
been preprocessed both manually and automatically. Manual
preprocessing consists of a standard visual channel inspection,
which allows removing bad channels (due to a poor connection
or malfunctioning electrode) and interpolating their values
based on the surrounding known-good channels. Filters are
used to reduce the frequency range to 0.5 – 30Hz, baseline
correction is used to adjust for signal drift, and independent
component analysis is used to remove cyclic artifacts (such as
eye blinks).

IV. METHODOLOGY

Our work involved three phases: 1) generating music vec-
tors, 2) extracting music features from the EEG datasets,
and 3) performing correlation tests between music vectors
and brain data. Music vectors can be generated from either
raw audio or symbolic data. The quality of the generated
music vectors can be evaluated by performing K-means or
agglomerative clustering. The intuition is that similar music
pieces should be clustered together in the vector space. Once
the vectors are extracted we can correlate them with EEG data.
To study the correlation between music vectors and EEG music
vectors we use representational similarity analysis (RSA) [15]
and the linear models approach [3].

A. Representational Similarity Analysis

Representational Similarity Analysis (RSA) provides a
means to measure correlations between two representational
models of the same subject. RSA uses the Representational
Dissimilarity Matrix (RDM) to compare different representa-
tional models. We create an RDM containing a cell for each
audio pair in the EEG dataset. The cell holds the correlation
distance (1 - correlation coefficient) of the EEG data for that

Fig. 1. Visualization of an RDM example

audio pair. In other words, an RDM is a pairwise correlation
distance matrix of the audio EEG data. The more similar an
audio pair is, the more similar their EEG data should be, hence,
the closer their correlation distance should be. Another RDM
of the same audio pairs is created for the audio vectors in a
similar fashion. This provides us with two correlation matrices
we can later evaluate to determine the correlation between the
EEG data and audio vectors. If the RDMs of the audio vectors
and the EEG data have high correlation, then it shows they
both capture the similarity between songs. This analysis has a
risk of failure if any of the audio vector or EEG data fails to
capture the similarity between songs, but is a simple approach.

B. Linear Models Approach

The linear models approach utilizes a set of linear models
that each predict a semantic feature in the music vector.
Following Mitchel et al. [2] and Sudre et al. [3], the individual
EEG exposures are averaged for each song to remove noise,
generating a set of training data. In our case, we also average
across all subjects leaving us with a total of 12 samples. This is
one EEG exposure per audio clip. At training time, we train
n linear ridge regression models (where n is the length of
the audio feature vector used) to each predict their associated
element of the feature vector based on the averaged EEG data
matching that particular audio clip. At evaluation time, we
provide the full EEG exposure to each linear model and each
model predicts its respective element of the feature vector.
Collectively, this model takes EEG data as input and produces
an audio vector in response that is believed to be associated
with the underlying music.

C. 2 vs 2 Test

The 2 vs 2 test is a correlation test that simplifies a vector
comparison into a binary classification task. This test can be
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Fig. 2. The 2 vs 2 test allows us to reduce the model to a binary decision task,
where a successful comparison occurs when the sum of the distances between
the vectors for the correctly aligned songs (green lines) is smaller than the sum
of the distances for the incorrectly aligned songs (red lines). Here we label
the predicted and ground truth vectors used in the linear models approach.

used as a tool for proving that two data sources are correlated.
We utilize the 2 vs 2 test for the RSA model and the linear
models approaches to evaluate whether they could capture
correlation between the EEG data and the music vectors.

The models are evaluated in a “leave two out” fashion, in
which we take every possible combination of two songs from
the total set. For the linear models, we train the model on the
remaining data and test it on the two held out samples. The
two predicted audio vectors are then compared against their
ground truths vectors using the 2 vs 2 comparison. For RSA,
we take the two rows corresponding to the two songs from
the audio vector matrix and EEG exposure matrix. The four
vectors are compared in a similar fashion using the 2 vs 2
comparison. To perform the 2 vs 2 comparison, we check if
the sum of the distance between the two correctly matched
pairs is smaller than the sum of the distance between the two
incorrectly matched pairs as in:

d(yi, ŷi) + d(yj , ŷj) < d(yi, ŷj) + d(yj , ŷi) (1)

If true, the comparison is considered successful. The overall
2 vs 2 accuracy is the percentage of successful 2 vs 2
comparisons. Chance accuracy, or the accuracy we expect to
see if the EEG data is not correlated with the audio vectors,
will be near 50%. Statistical significance is then validated
using a permutation test.

D. EEG Processing

OpenMIIR provides one raw EEG data file per test partic-
ipant in FIF format. Each file contains all EEG recordings
of the participant, which consists of 240 trials (12 stimuli
* 4 conditions * 5 blocks). The 12 stimuli are ordered
randomly per condition and block [8]. The data has 68
channels with sampling frequency of 512 Hz. The random
order of trials made the extraction of the EEG data somewhat
challenging, and more preprocessing was involved than an-
ticipated originally. The preprocessing scripts uses the deep
thought library developed by Sebastian Stober, which utilizes
the MNE library and independent component analysis (ICA)
(https://github.com/sstober/openmiir-rl-2016) [16].

E. Audio Feature Extraction

Experiments [17] have been done recently to correlate music
features such as the RMS and spectral flux with the EEG
dataset (NMED-H) [18] using a technique called Canonical
Correlation Analysis. Therefore we decided to explore more

Fig. 3. The MFCC (top) and mel spectrogram (bottom) plot generated for
the song “Chim Chim Cher-ee” with 40 MFCCs using the librosa library

musical features such as the MFCCs, spectral centroid, root
mean square energy (RMSE), tonal centroid features, and
constant-Q chromogram. These features along with other
features such as the mel spectrogram, chromogram, and tem-
pogram (a rhythm feature) are generated using the librosa
library [19] for the same set of songs used by the EEG
dataset experiment [6]. The MFCC and mel spectrogram plot
for the song “Chim Chim Cher-ee” is shown under Figure 3.
The generated features are averaged and pearson correlation
matrices are generated for each of the features. These are then
used for the RSA and linear models approaches.

F. Tag Feature Extraction

In addition to experimenting with various audio features,
we also decided to explore the use of tag prediction models
as features. Our goal is to capture the overall semantics of an
audio piece, for which tag predictions may work as a reason-
able high-level approximation. Many trained models exist that
can map a music piece to a vector of probabilistic estimations
for each tag, which we treat as our “feature vector”. This also
allowed us to begin development of the correlation models
against a baseline vector that is easy to generate, even if we
do not necessarily anticipate high accuracy with them.

We downloaded a convolutional neural network model for
this task developed by Choi et al. [20] using Keras and
Tensorflow. Pre-trained weights were also available for this
model. We adapted the Keras-based code to generate tag
feature vectors for each of the songs available in the EEG
dataset using the CNN model and weights.

V. RESULTS

The following section details the results of our experiments
to find correlation between semantic music features and the
brain activity dataset. Additionally, while working on this
project we had the opportunity to explore other classifiers
related to the dataset.
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A. Correlation Experiments

We generated our audio feature music vectors using the
librosa library in Python. We extracted music features such as
the MFCCs, RMSE, spectral centroid, chroma STFT, spectral
roll-off, tempogram, harmonics, and beats then attempted to
correlate them with the EEG music vectors using the RSA
and linear models 2 vs 2 tests. We also generated tag feature
music vectors using the Keras/Tensorflow libraries in Python.
We detected no correlation between the EEG data and the
music vectors for all features with the exception of the MFCC
and tempogram features from the audio feature music vectors.
The RSA analysis scored 0.63 out of 1.0 for the normalized
tempogram features of the songs extracted using librosa.
Similarly, we performed the RSA with 100 MFCCs extracted
using librosa for each song which resulted in a score of 0.62.
The linear models approach did not detect correlation in any
of the cases.

However, we can not confirm the presence of any correlation
without a permutation test. Therefore, we performed 1,000
iterations of the RSA test after performing randomization
of the EEG music vector rows during each iteration. The
histogram for the permutation test results on the tempogram
features, which creates our null distribution which we can use
for significance testing, is shown under Figure 4. A similar
permutation test was conducted for the MFCC features as
well. The permutation test confirmed we detected statistically
significant weak correlation between the music EEG vectors
and their corresponding MFCC / tempogram features with
p < 0.01. These weak correlation scores are based on the
average across all the 9 participants. However, we are hesitant
to conclude our original hypothesis is correct because it
does not seem to generalize well for more semantically-based
features that we extracted from the songs or to our other
linear models approach. It is also interesting that there is a
big deviation in the RSA test scores across participants.

B. Performing Song Identification from EEG Data

Another task that we attempted to perform is song identifi-
cation from the raw EEG data alone. There were 12 songs
in the dataset and each song was repeated five times per
participant. The dataset used for song identification therefore
has 60 samples per each song (a total of 540). We split this
data into train and test with a ratio of 80:20. A logistic
regression model was trained using the sklearn library to
perform song identification. The linear model was hyper-tuned
and we achieved a classification accuracy of 0.287 using
increased regularization during training (C = 0.001). The
F1 score was found to be 0.286 and the confusion matrix
for this classification task is shown under Figure 5. This
shows that there is enough information in the EEG data to
distinguish between songs across all 9 participants. On the
analysis of the confusion matrix, we can clearly see that
most of the classification errors are between the same pairs
of songs which differ only in the presence or absence of
lyrics. For example “ChimChimLyrics” is often confused with
“ChimChimNoLyrics”.

Fig. 4. The histogram of the permutation test for the RSA analysis between
song tempogram feature extracted using librosa library and the music EEG
vectors after randomizing the rows during each iteration of the permutation
test.

Fig. 5. The confusion matrix generated for the song prediction from raw
EEG data using logistic regression.

We hypothesize that EEG data does not encode enough
information to help us identify presence or absence of lyrics in
music. This could explain why songs with lyrics were often
confused with the same song without lyrics, as indicated in
the confusion matrix. In order to validate our hypothesis, we
trained another logistic regression model to identify whether
songs did or did not have lyrics based on the raw EEG data.
There were 240 songs with lyrics and 300 songs without lyrics
across 5 trials across all 9 participants. The data was split into
train and test in the ratio 80:20. The classification accuracy was
0.67 which is within the chance accuracy for this task. This
implies that there was not enough information in the raw EEG
data available for the classifier to create a decision boundary
which separates the songs with lyrics from the songs without
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lyrics.

VI. DISCUSSION

Our results show that we have been able to detect some
statistically significant correlation, but are not able to confi-
dently show it in all cases. The following is a discussion on
the results, including our new classifier.

A. Potential Dataset Issues

The dataset by Stober was useful for its focus on music and
its quality EEG data collection. After some experimentation
with the dataset throughout the course of this project, we’ve
determined it has several features that make it difficult to
adapt for our task and may result in challenges to finding
correlations. One of the primary issues is the quantity of data
available in the study. The dataset spans twelve songs with
ten subjects. Because one subject’s data was discarded, this is
only a total of 540 trials. Generally, in the equivalent language
literature the number of stimuli is several times higher. This
is an understandable limitation of applying machine learning
models to brain data studies, given that brain data is expensive
to collect even in a more affordable methodology such as EEG,
but poses a problem for this research. These twelve songs
may not provide sufficient coverage of the vector space for
the model to learn a useful mapping to differentiate between
two stimuli. This is further compounded when considering that
four of the tracks are non-lyrical versions of four other tracks,
which reduces the amount of information gained from those
and leaves only eight fully original tracks.

Subjects were exposed a total of five times for each stim-
ulus. In the equivalent language literature twenty exposures
are typically used. EEG data can be challenging to work
with due to the noise involved with capturing, and this is
typically mitigated by averaging across a number of exposures.
With less exposures, the averaging becomes less effective
at removing noise. Further, these exposures were captured
over different sessions which makes averaging less effective.
Between sessions a subject’s state-of-mind, level of fatigue,
attention, and other attributes change which can effect brain
data. Further, a removal and replacement of the cap is likely to
produce readings with different electrode connection quality
and slightly altered placement. In our experiments, the raw
brain data was often not correlated between identical subjects
and identical tracks for different sessions which supports our
hypothesis that this makes higher level tasks difficult.

B. Correlation Task Discussion

We identified weak yet statistically significant correlation
between EEG music vectors and music features, specifically
the tempogram and MFCC features. We confirmed this corre-
lation using the permutation test. Our findings are in agreement
with Kaneshiro et al. [18] who found weak correlation in
their EEG responses dataset based on Hindi songs and music
features such as beats, tempo, and zero crossing error. Hindi
songs generally have a higher rate of rhythm, beats, and tempo
as compared to English carols and classical songs which may

explain why our experiments did not find weak correlation
with the zcr, beats, or other features. Both the RSA and
the linear models 2 vs 2 tests search for weak correlation
between two datasets. All the previous experiments, including
our experiment, have shown some correlation with tempo of
the songs with the EEG datasets. This suggests that tempo
may be the easiest feature to detect from EEG.

We were not able to detect correlation with the linear models
even in cases which we could with the RSA model, which we
hypothesize is related to the size of the available training data
as discussed. The RSA 2 vs 2 model does not require training
and does not have a similar limitation (although it does benefit
from increased data as well). This issue may also be related
to the averaging method used, specifically the linear models
averages across subjects while the RSA model averages only
within subjects. As mentioned, the variance between individual
exposures / subjects can lead to issues with this averaging.

C. Classification Task Discussion

Our logistic regression classifier improved on the state of the
art in song prediction from raw EEG data. Earlier experiments
by Stober [6] extracted and learned music features from EEG
data using auto encoders. However, we found that we could
match this performance without any expensive or complicated
feature learning by just tuning the hyper parameters of a more
simple classifier. We attempted to learn the music features
directly from raw audio features using the mel spectrogram,
however we did not find any correlation with the learned fea-
tures from raw audio and the EEG data. It may be worthwhile
to explore additional methods of feature extraction from EEG
data in future work.

VII. FUTURE WORK

While working on this project we have found the key
difficulty to be the dataset. While it is a good dataset, it is
likely not optimal for this task. As such, we have identified a
number of possible areas for future work with regards to data
collection.

Losorelli et all. [18] have recently created a new tempo
focused EEG dataset called NMED-T. The dataset includes
EEG recordings of twenty participants listening to ten full-
length songs. The songs are all 4.5 minutes to 5 minutes
in length and contain vocals. Compared to the OpenMIIR
dataset used in the experiments for this paper, the NMED-T
dataset features full length songs in a larger variety of genres,
which may be more effective compared to when the task is
performed on less than ten seconds of recording per song.
Although language literature suggests shorter and more sudden
stimuli may be more useful, this dataset forms one option for
expanding our methodology to other brain data sets.

We are planning a new experiment which would be better
tuned to this task. To begin, we would select a series of audio
tracks from a variety of genres that provided good coverage
of the semantic music space. Sections would be manually
extracted from each track to meet a standardized length. While
the previous experiment had tracks ranging in length, in our
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task it makes sense to record identical length for all tracks
since the input EEG data needs to be the same shape between
tracks. We would ideally also increase the participant count
and exposure count. Increasing the exposure count will allow
us to average across trials and reduce noise, while increasing
the subject count will reduce the likelihood of our 2 vs 2
accuracy being far from chance value. A higher subject count
also shows generalization better and can be used for reducing
noise further when averaged across subjects.

The collection approach taken by the original dataset fol-
lows good EEG collection practices, and we would follow
a similar fashion including full 64 sensor recording and the
preprocessing procedure used by Stober. However, we would
perform the experiment on subjects in a single-session manner,
instead of separating collection over multiple exposures. It is
important to balance subject fatigue with these requirements.
If the session is too long, subjects will not wish to continue or
have difficulty paying attention. A rough estimate of 40 tracks
with 10 second recordings repeated 10 times per subject gives
a session length of slightly over one hour, which is reasonable
and leaves room for breaks, queues, or extensions if necessary.

We have additionally discussed the idea of performing this
experiment with sound-based dataset of tracks, as opposed to
a music-based dataset of tracks. An example stimuli would be
“the sound of door knocks”. These events should be signifi-
cantly shorter than a piece of musical work, which makes it
easier to collect a larger variety of data. We also hypothesize
that this dataset would contain a larger semantic variety, and
be easier to detect in brain data. Comparisons could be made
between EEG recording of participants listening to an event,
imagining the event, and perceiving the word which represents
the event. It would be a novel dataset to create and experiment
on.

VIII. CONCLUSION

We have studied the relationship between the EEG data of
subjects listening to audio and the audio feature vectors mod-
eled after the semantic vectors in computational linguistics.
We found statistically significant weak correlation between the
MFCC and tempogram music features with the music EEG
vectors using the RSA 2 vs 2 analysis. We also found that we
could distinguish between the songs from the EEG data using
a simple linear classifier, specifically logistic regression. Our
linear model achieved state of the art accuracy in song identi-
fication from just the raw EEG as compared to previous work
which achieved the similar results using complex music feature
extraction of the EEG data via auto encoder techniques. We
also argue that EEG does not capture complex music semantics
related to lyrics and further suggest future experiments with
better data collection strategies for this task. We believe that
the results of our experiments are interesting, and provide new
insight into how the brain processes and understands music.
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