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Abstract

Greedy Best First Search (GBFS) is a powerful algorithm at
the heart of many state-of-the-art satisficing planners. The
Greedy Best First Search with Local Search (GBFS-LS) algo-
rithm adds exploration using a local GBFS to a global GBFS.
This substantially improves performance for domains that
contain large uninformative heuristic regions (UHR), such as
plateaus or local minima.
This paper analyzes, quantifies and improves the performance
of GBFS-LS. Planning problems with a mix of small and
large UHRs are shown to be hard for GBFS but easy for
GBFS-LS. In three standard IPC planning instances analyzed
in detail, adding exploration using local GBFS gives more
than three orders of magnitude speedup. As a second con-
tribution, the detailed analysis leads to an improved GBFS-
LS algorithm, which replaces larger-scale local GBFS explo-
rations with a greater number of smaller explorations.

Introduction
Greedy Best First Search (GBFS) is the core search engine
used in many state-of-the-art satisficing planners (Bonet and
Geffner 2001; Helmert 2006; Lipovetzky and Geffner 2011;
Xie, Müller, and Holte 2014b). GBFS always expands a
node that minimizes a heuristic function h, without consid-
ering its g-value. GBFS can often find a solution quickly,
but it might be of poor quality. When GBFS is used in a
satisficing planner, an any-time policy is usually applied:
the planner uses GBFS to find the first solution, and after
that uses better quality search algorithms, such as Restarting
Weighted-A* (RWA*) (Richter, Thayer, and Ruml 2010), to
improve the plan quality.

The performance of GBFS strongly depends on the qual-
ity of the heuristic function. Domain-independent heuristic
functions such as hFF (Hoffmann and Nebel 2001) have
known weaknesses that can lead to misleading heuristic es-
timates (Nakhost, Hoffmann, and Müller 2012; Xie et al.
2014; Imai and Kishimoto 2011).

One of the main problems of GBFS are Uninformative
Heuristic Regions (UHR), which include plateaus and local
minima. Xie, Müller, and Holte (2014a) propose a general
framework, GBFS with Local Exploration (GBFS-LE), to
attack this problem. Local exploration using random walks
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# of node expansions number of nodes
needed for escaping (NEE)

[1,10] 456 (7.1%)
(10, 100] 66 (1.0%)

(100, 1000] 0 (0%)
>1000 5874 (91.8%)

Table 1: Number of nodes with different number of escaping
node expansions.

or local GBFS is invoked when global GBFS has failed to
improve the heuristic value for a specified number of expan-
sions.

One implementation of the GBFS-LE framework, GBFS
with local GBFS (GBFS-LS), is the focus of the current pa-
per. GBFS-LS differs from GBFS in the addition of a local
GBFS, and was experimentally shown to yield a substan-
tial improvement for IPC planning domains that have large
UHRs. The current work analyzes the reasons for this im-
provement in detail.

The analysis will illustrate that a search method such as
GBFS, which uses a global open list, can become stuck in
the union of many distinct UHRs from different parts of the
search space, which combine to form a large virtual UHR
over the open list. This weakness of GBFS can be overcome
by local exploration.

Example of a Large Virtual UHR
Instance #21 from the IPC-2004 pipesworld-notankage do-
main shows a clear case of such a large virtual UHR. Figure
1 plots the accumulated search time that GBFS and GBFS-
LS need to reach the first node with a given minimum hFF -
value. GBFS requires almost 1000 seconds to decrease its
minimum h-value from 2 to 1. GBFS-LS solves the whole
problem in 2 seconds.

To understand the cause of this difference in performance,
consider the following snapshot of GBFS: the minimum h-
value (hmin) on the Open list is 2, there are 6396 nodes n on
the Open list with h(n) = 2, and, since none of them has a
child c with h(c) < 2, GBFS expands all 6396 nodes. In con-
trast, GBFS-LS expands only a small fraction of these nodes
since some have a relatively quick local escape to a node n′

with h(n′) < 2. To quantify this, a small local GBFS was
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Figure 1: Search time (in seconds) of GBFS and GBFS-LS
with hFF for a given h-value (x-axis) to first become the
minimum of all h-values generated up to that time. 2004-
pipesworld-notankage instance #21.

started from each of these nodes n to determine NEE(n), the
number of nodes expanded by a local GBFS search starting
at n before a node with h(n) < 2 is encountered. Table 1
lists the order of magnitude of NEE(n) for these nodes. 7.1%
of nodes, a non-negligible fraction, allow for a very quick es-
cape, with NEE (n) ≤ 10. In contrast, standard GBFS with-
out local exploration requires 1.8 million node expansions to
reach a node with h(n) < 1. This analysis illustrates the ex-
istence of small UHRs within a large virtual UHR and gives
a hint of why local GBFS can substantially reduce the time
required to reach a goal state.

Contributions and Organization of the Paper
The contributions of this work can be summarized as fol-
lows:
• Illustrate that there are both small UHRs and large UHRs

in the open list of GBFS;
• Explain why adding local GBFS improves the perfor-

mance;
• Show how to further improve the performance of GBFS

based on the distribution of NEE values as in the example
above.
The remainder of the paper is organized as follows. A

more detailed analysis is presented to illustrate the existence
of multiple UHRs and why GBFS-LS outperform the GBFS
on three IPC instances. A modification of GBFS-LS, which
further improves performance, is proposed and tested exper-
imentally. The paper concludes with a discussion of possible
future work.

The Problem of Simultaneous Expansion of
Multiple Uninformative Heuristic Regions

This section investigates the problem of GBFS with mul-
tiple UHRs by analyzing search behaviour in three IPC
planning instances: 2000-Schedule #10-0, 2004-pipesworld-
notankage #21, and 2008-Cyber-security #01. hFF is used

Figure 2: The distribution of NEE values over the 5000
picked nodes in 2000-Schedule #01, 2004-pipesworld-
notankage#21, and 2008-cybersecurity #01.

as the heuristic. Experiments use one core of a 2.8 GHz In-
tel Xeon CPU machine with 4 GB memory and 30 minutes
per instance.

In all three instances, GBFS gets stuck at hmin = 2. It
fails to find a lower h-value in 30 minutes for 2000-Schedule
#1, needs 1.8 million node expansions ( 1000 seconds) in
2004-pipesworld-notankage #21 to decrease hmin from 2
to 1, and needs 2.5 million node expansions in nearly 800
seconds to achieve the same step in 2008-Cybersecurity #1.
GBFS-LS search time for completely solving these three in-
stances is 28.26, 2.29 and 4.32 seconds respectively.

Small UHRs and Large UHRs
Given an expansion limit L (1000 in our experiments), a
node n on the global open list is said to be a small UHR
if a local GBFS search from n generates a node v with
h(v) < hmin after expanding L or nodes. i.e. NEE (n) ≤ L.
Otherwise, n is a large UHR.

The following experiments investigate the frequency of
small and large UHRs in the open list of GBFS for the three
planning instances above. The experiment begins when the
first node n1 with h(n1) = 2 is added to the open list. The
experiment has the following three steps:

1. Keep GBFS running for 10,000 initializing expansions in
order to add more new nodes to the open list.

2. Define set S as the first 5000 nodes in the open list at this
point in time. Use random tie-breaking to choose among
nodes with equal h-value.

3. Run local GBFS from each node n ∈ S, setting h = hFF ,
hmin = 2, L = 1000. Each local search uses an initially
empty local open list and a local closed list initialized with
the (fixed) global closed list. Both the local open list and
the local closed list are discarded afterwards. The NEE of
all nodes in S is recorded.

For the three test instances, Figure 2 shows the percentage
of nodes with a NEE value less than or equal to the value
on the x-axis. A non-negligible percentage of nodes with a
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relatively small NEE are found in all three instances. A local
search starting from any of these nodes succeeds in reducing
hmin. This result helps explain why GBFS-LS can quickly
make progress, and can be orders of magnitude faster than
GBFS.

The distribution of NEE varies among the three instances.
For example, the value of x such that 5% of the nodes have a
NEE (n) ≤ x is 6 for 2005-pipesworld-notankage #21, but
is 38 for 2000-Schedule #01, and 195 for 2008-cybersecurity
#01. For ease of comparison, a reference line with y=5% is
shown in the figure. In each case, while the majority of the
5000 analyzed nodes seem to be located in large UHRs and
cause the local search to fail, there is a sufficient number
of nodes in small UHRs that local GBFS can make quick
progress.

Besides the three domains for which examples were
analyzed above, co-occurring small and large UHRs
were detected in 10 further IPC domains: 1998-Mystery,
1998-Mystery-Prime, 2002-Depot, 2002-Driverlog, 2004-
PSR-Large, 2006-Rovers, 2006-Storage, 2006-Pipesworld-
Tankage, 2008-Scanalyzer and 2008-Transport. All these
domains contain some instances where the GBFS expands
a significantly larger number of nodes than the GBFS-LS
in improving some hmin and meanwhile the GBFS-LS only
expands a small number of nodes (less than 5,000) in find-
ing such an improvement. In these instances, co-occurring
small and large UHRs can be easily detected using the same
method above.

Why does GBFS not explore Small UHRs?
In the cases analyzed above, enough small UHRs exist,
from which local GBFS can easily escape. Why does global
GBFS not find an escape path from these small UHRs? Is
GBFS just unlucky, and always picks nodes with high NEE?
The answer is no. Further analysis shows that all the escape
paths found by local GBFS go through at least one barrier
node n with h(n) > hmin. This means that all these small
UHRs are local minima, not plateaus from which global
GBFS could escape. While local GBFS can expand across
such barrier nodes very quickly, GBFS is forced to exhaus-
tively expand all nodes n′ in all UHRs with h(n′) = hmin,
before it can expand any nodes with larger h.

As an extreme example, assume that all but one of the
UHRs are local minima needing only 2 node expansions to
escape from and that the other UHR contains a large num-
ber of nodes n′ with h(n′) = hmin. GBFS has to expand
all the nodes in the large UHR before it can find an escape
path from one of the others. The discussion here matches the
observation by Xie, Müller, and Holte (2014a) that GBFS-
LS only improves the performance in domains that contain
large UHRs. Such barrier nodes also exist for other two com-
monly used heuristics: causal graph (CG) (Helmert 2004)
and context-enhanced additive (CEA) (Helmert and Geffner
2008).

However, not all small UHRs must be local minima. As an
example, in 2006-Pipesworld-Tankage instance #32, GBFS
needs 4706 node expansions in 13 seconds to improve hmin

from 6 to 5, while it takes GBFS-LS 6.6 seconds and 1621
node expansions starting from the same open list. The vir-

tual UHR over the open list contains both local minima
and plateaus. Because the global GBFS can escape from
the plateaus, GBFS-LS does not improve the performance
as dramatically as it does in the three instances above.

More Exploration with Smaller Local GBFS
Greedy Best First Search with Local Search (GBFS-LS)
(Xie, Müller, and Holte 2014a) is the same as GBFS ex-
cept it executes a local GBFS whenever the global GBFS
(G-GBFS) seems stalled. G-GBFS is considered stalled if
it fails to improve its minimum heuristic value hmin for a
specified number STALL_SIZE of node expansions, set to
1000 by default. In this case GBFS-LS runs a small local
GBFS for exploration, from a best node n in the (global)
open list. After each local exploration, the mechanism for
detecting stalled global search is reset.

Local GBFS can dramatically improve the time to solu-
tion, if used for nodes in small UHRs. In the original GBFS-
LS algorithm from Xie, Müller, and Holte’s work (2014a),
a single local GBFS is called and expands up to 1000 nodes
whenever G-GBFS did not improve hmin over its last 1000
expansions. Therefore each single local GBFS is relatively
expensive.

The experiments above suggest that using more frequent
but smaller local searches may be a good tradeoff. To inves-
tigate this with minimal changes to the algorithm, the pro-
posed new scheme GBFS-LS-X×Y , where X×Y = 1000,
runs X local searches with Y expansions each from X ran-
dom nodes in the best (minimum h) bucket in the open list.
If there are fewer than X nodes in this bucket, the remaining
nodes are chosen from the next-best bucket(s). Our experi-
ments include the following pairs of (X,Y ): (1, 1000), (10,
100), (100, 10) and (1000, 1).

Experiments were run on the same set of 2112 prob-
lems as in Xie, Müller, and Holte’s work (2014a), in 54
domains from the first seven International Planning Com-
petitions (IPC 1 to 7), using one core of a 2.8 GHz Intel
Xeon CPU machine with 4 GB memory and 30 minutes per
instance. Results for planners which use randomization are
averaged over five runs. All planners are implemented on the
Jasper (Xie, Müller, and Holte 2014b) code base, which is
downloaded from the IPC-8 website.1 The translation from
PDDL to SAS+ was done only once, and this common pre-
processing time is not counted in the 30 minutes.

Table 2 compares the new algorithms with GBFS and
GBFS-LS. Three widely used planning heuristics are tested:
FF (Hoffmann and Nebel 2001), causal graph (CG) (Helmert
2004) and context-enhanced additive (CEA) (Helmert and
Geffner 2008). Table 2 shows the coverage on all 2112 IPC
instances. Overall, GBFS-LS-10×100 outperforms GBFS,
GBFS-LS and other configurations for all three heuristics.

GBFS-LS-1×1000 and GBFS-LS-1000×1 are added for
evaluating the influence of randomness. While GBFS-LS ap-
plies a deterministic first-in-first-out approach in picking the
starting node for local GBFS, GBFS-LS-1×1000 applies the
random tie-breaking. However, these two algorithms achieve
very similar coverage results. Similarly, GBFS-LS-1000×1

1http://helios.hud.ac.uk/scommv/IPC-14/
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(a) FF heuristic (b) CG heuristic (c) CEA heuristic

Figure 3: Comparison of search time of GBFS-LS-10×100 with GBFS-LS for three different heuristics. For each heuristic, we
compared all 5 runs results of GBFS-LS-10×100 with GBFS-LS, and one typical run is selected.

Heuristic GBFS GBFS-LS GBFS-LS-1×1000 GBFS-LS-10×100 GBFS-LS-100×10 GBFS-LS-1000×1
FF 1561 1641 1641.0 1678.2 1659.2 1576.4
CG 1513 1608 1600.2 1618.4 1595.2 1516.4
CEA 1498 1592 1577.2 1612.4 1609.8 1497.0

Table 2: IPC coverage out of 2112 for GBFS, GBFS-LS, GBFS-LS-1×1000, GBFS-LS-10×100, GBFS-LS-100×10 and
GBFS-LS-1000×1. three standard heuristics.

is very close to a GBFS version that applies the random tie-
breaking, which also results in a very similar coverage re-
sult to GBFS. These two data points show that the superior
performance of GBFS-LS-10×100 over GBFS-LS is due to
running a larger number of small local searches and not due
to the randomness in the node selection process.

Figure 3 compares the search time of GBFS-LS-10×100
with GBFS-LS over the IPC benchmarks. Every point in
the figure represents one problem instance, with the search
time for GBFS-LS on the instance plotted on the x-axis and
the time for GBFS-LS-10×100 on the y-axis. Only prob-
lems for which both algorithms need at least 0.1 seconds
are shown. Points below the main diagonal represent in-
stances that GBFS-LS-10×100 solves faster than GBFS-
LS. For ease of comparison, additional reference lines in-
dicate 2 times, 10 times and 50 times relative speed. Data
points within a factor of 2 are shown in grey in order to
highlight the instances with substantial differences. Prob-
lems that were only solved by one algorithm within the 1800
second time limit are included at x = 10000 or y = 10000.
For all the heuristics tested, besides its improved coverage,
GBFS-LS-10×100 also shows a substantial improvement in
search time over GBFS-LS, with many more results in the
factor 2 to 10 speed up region favouring the new algorithm.

The same modification was also tested with LAMA-LS,
which replaces the GBFS component of LAMA-2011 with
GBFS-LS (Xie, Müller, and Holte 2014a). Unfortunately,
there is no noticeable improvement here: LAMA-LS and
LAMA-LS-10×100 are very similar in both coverage and
search time. One possible reason is that the major enhance-
ments in LAMA-2011 such as deferred evaluation, preferred
operators (Richter and Helmert 2009) and multiple heuris-
tics (Richter and Westphal 2010), already cover some bad
scenarios for GBFS-LS. This is a topic for future study.

Conclusion and Future Work
This paper illustrates the multiple UHRs problem of GBFS
using three IPC examples, and explains why adding local
GBFS improves the performance of GBFS. As suggested by
the analysis, it is confirmed that running a larger number of
smaller local searches further improves the performance.

Future work should explore whether the same problem oc-
curs in classical heuristic search domains, such as sliding
tile puzzles (Korf and Taylor 1996). Valenzano et al. (2014)
show that replacing preferred operators with random actions
can achieve about half the improvement of preferred opera-
tors. Similarly, replacing the secondary heuristic in multiple
heuristics with a purely random heuristic achieves about half
the improvement of multiple heuristics. The multiple UHR
problem might be a contributing cause of these two phenom-
ena.
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