
Minimizing Node Expansions in
Bidirectional Search with Consistent Heuristics

Eshed Shaham
School of Engineering and CS

Hebrew University of Jerusalem
Jerusalem, Israel

eshed.shaham@mail.huji.ac.il

Ariel Felner
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel
felner@bgu.ac.il

Nathan R. Sturtevant
CS Department

University of Denver
United States

sturtevant@cs.du.edu

Jeffrey S. Rosenschein
School of Engineering and CS

Hebrew University of Jerusalem
Jerusalem, Israel
jeff@cs.huji.ac.il

Abstract

A* is optimally effective with regard to node expansions
among unidirectional admissible algorithms—those that only
assume that the heuristic used is admissible. Among bidirec-
tional algorithms the Fractional MM algorithm is optimally
effective (given the correct parameters) among admissible al-
gorithms. This paper generalizes the bidirectional result to
more complex settings where more information on the prob-
lem domain can be exploited: (1) When the cost of the mini-
mal edge ε is known. (2) When the algorithm knows that the
heuristics are consistent. This characterization uses a novel
algorithm called MT. MT is similar to Fractional MM and is
also optimally effective, but simpler to analyze.

1 Introduction and Overview
A shortest-path problem, P , is defined as an n-tuple (G =
{V,E}, start, goal, hF , hB). G is a graph, start, goal ∈ V
and the aim is to find the least-cost path (with cost C∗) be-
tween start and goal. Bidirectional search algorithms in-
terleave two separate searches, a search forward from start
and a search backward from goal. fF , gF and hF indicate
f -, g-, and h-costs in the forward search and similarly fB ,
gB and hB in the backward search.

Recent research has studied the minimal work (measured
by node expansions) required to find and prove an optimal
solution, characterizing the conditions for necessary node
expansions in front-to-end and front-to-front search (Eck-
erle et al. 2017). Subsequent work reformulated these con-
ditions as a must-expand graph (GMX), showing that the
minimum vertex cover of this graph corresponds to the min-
imum number of necessary expansions (Chen et al. 2017).
Finally, the structure of GMX was analyzed to understand
the nature of the minimum vertex cover. The fractional MM
(fMM(p)) algorithm was developed that will expand exactly
the minimum vertex cover, given the correct parameter, p,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which controls the fraction of the optimal path at which the
forward and backward frontiers meet (Shaham et al. 2017).

In this paper we generalize the theory behind fMM to other
problem settings. First, we present the meet at the threshold
algorithm (MT) which is an algorithm similar to fMM. MT
takes a threshold t, and guarantees that the two bidirectional
frontiers will meet at distance t from the start and C∗ − t
from the goal. Next, we extend the theory to other problem
settings and generalize MT accordingly. Let IAD be the set
of solvable problem instances in which the heuristics are ad-
missible, and let ICON be the subset of problems in IAD
where the heuristics are consistent. Admissible algorithms
are algorithms that must be able to optimally solve all in-
stances from IAD. Such algorithms have no further knowl-
edge about the problem and/or the heuristic, and they cannot
exploit such knowledge even if it is available. The assump-
tions made by recent papers on bidirectional search, follow-
ing the classic analysis of A* (Dechter and Pearl 1985), have
been to analyze admissible algorithms running on problem
instances with consistent heuristics. That is, the behavior of
admissible algorithms was only studied when running on
instances from ICON . We denote these assumptions as the
base case and label it by IAD/ICON along the following no-
tation: What can be assumed by the algorithm on the prob-
lem instances / The instances the algorithm is executed on.

The assumptions in the base case (IAD/ICON) are
limited—the heuristics on the problem instances are consis-
tent but the algorithms cannot exploit that. In this paper we
relax these strict assumptions and study the minimum vertex
cover of GMX in the following two cases:

Case 1: The algorithm is given the cost of the smallest
edge ε and is allowed to exploit that knowledge. We label
this case as IADε/ICONε and show the adaptations that are
needed to generalize IAD/ICON to IADε/ICONε.

Case 2: The algorithm is allowed to exploit the fact that
both the forward and backward heuristics (hF and hB) are
consistent. We label this case ICON/ICON . In this case al-
gorithms can assume that they are running on instances from

The Eleventh International Symposium on Combinatorial Search
(SoCS 2018)

81

start goal

u v

Figure 1: A path from start to goal that goes via u and v

ICON and can exploit a front-to-front heuristic that is in-
duced by the consistency of the underlying heuristics. We
study the structure of the minimum vertex cover of GMX
for this case by partitioning the state space into equivalence
classes based on hF and hB values. We describe a general-
ization of MT for this setting, which requires a unique thresh-
old for each equivalence class. As in fMM, the thresholds in
MT are not known a priori. But we prove that there exists
a function of special characteristics on the 2-dimensional
Euclidean space defined by hF and hB , that defines the
thresholds of the minimum vertex cover for each equiva-
lence class.

2 Background
Let d(x, y) denote the shortest distance between x and y,
so d(start, goal) = C∗. The forward heuristic, hF , is for-
ward admissible iff hF (u) ≤ d(u, goal) for all u in G and
is forward consistent iff hF (u) ≤ d(u, u′) + hF (u

′) for all
u and u′ in G. The backward heuristic, hB , is backward
admissible iff hB(v) ≤ d(start, v) for all v in G and is
backward consistent iff hB(v) ≤ d(v′, v) + hB(v

′) for all v
and v′ in G. Front-to-end algorithms use these two heuristic
functions. Front-to-front bidirectional search algorithms use
heuristics between pairs of states on opposite frontiers. See
Holte et al. (2017) for a survey of such algorithms.

2.1 Necessary Expansions in Bidirectional Search
With an admissible heuristic, any admissible unidirectional
algorithm must expand all states with f(n) < C∗ in order to
prove the optimal solution (Dechter and Pearl 1985).

Eckerle et al. (2017) generalized this to bidirectional
search, showing that necessary expansions are defined on
pairs of states u and v in the forward and backward fron-
tiers, respectively. Here we need to reason whether there can
be an optimal path that goes from start to u to v to the goal,
as depicted in Figure 1. Three conditions are required to rea-
son about potential paths between u and v:
1. fF (u) < C∗

2. fB(v) < C∗

3. gF (u) + gB(v) < C∗

If all conditions are met, the search must explore to see if
there is a shorter path between u and v.

Definition 1. For each pair of states (u, v) let
lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v)}

In bidirectional search, a pair of states (u, v) is called a
must-expand pair if lb(u, v) < C∗. Unlike unidirectional

search, in a must-expand pair only one of u or v must be ex-
panded, not both. An algorithm that does not expand either
u or v when lb(u, v) < C∗ cannot be admissible because it
may not find an optimal solution.

2.2 The Must-Expand Graph (GMX)
The unique property of the must-expand condition is that it
contains an or, also a feature of the vertex cover problem.
Thus, the conditions for necessary expansions can be repre-
sented as the problem of finding a vertex cover on the must
expand graph denoted by GMX (Chen et al. 2017).

Definition 2. The Must-Expand Graph GMX on a problem
instance is an undirected, unweighed bipartite graph. For
each state u ∈ G, there are two vertices in GMX, the left
vertex uF and the right vertex uB . For each pair of states
u, v ∈ G, there is an edge in GMX between uF and vB if
and only if lb(uF , vB) < C∗. Thus, there is an edge in GMX
between uF and vB if and only if the pair (u, v) is a must-
expand pair. GMXF

denotes the forward nodes in GMX and
GMXB

denotes the backward nodes in GMX.

It follows that the minimum number of node expansions
required to solve a problem using a bidirectional heuristic
search algorithm is determined by the size of the minimum
vertex cover ofGMX (denoted hereafter as MVC). Naturally,
the exact set of vertices in GMX depends on the heuristic
used in the problem instance. Therefore, MVC is heuristic
dependent as well.

Figure 2(a) shows a GMX graph for a sample 20-pancake
problem with C∗ = 13 and the GAP\2 heuristic (Holte et
al. 2017). This heuristic counts all gaps (cases where adja-
cent pancakes are not consecutive numbers) but ignores any
gaps between the 2 smallest pancakes, i.e., does not count
the gaps involving pancakes 0 or 1. Each node is labeled
internally with its g-cost. The left vertices are sorted by in-
creasing gF -costs, while right vertices are sorted by decreas-
ing gB-cost. Additionally, nodes with the same gF or gB
are merged into a single node, and the weight of that node,
the total number of merged nodes, is written adjacent to the
node.1 In this ordering, each horizontal pair of states u and
v have gF (u) + gB(v) = C∗, which, in Figure 2(a), is 13.
Figure 2(b) simplifiesGMX by only drawing a full edge from
a left node n to a right node if n has no edges to right nodes
with larger gB . Prefixes of the other edges are also shown.
Similar edges are shown for right nodes.

NBS (Chen et al. 2017) is a non-parameterized algorithm
that efficiently finds a near-optimal vertex cover of GMX .
NBS always expands at most twice the number MVC.

2.3 The Minimum Vertex-Cover (MVC) of GMX

The MVC of GMX has the following properties (Shaham
et al. 2017). First, MVC is contiguous in each direction.
That is, if a node n with gF (n) = k is in MVC, then
all nodes with gF (n) ≤ k in GMX must also be in MVC
and similarly for gB . Second, there exist thresholds t∗F , t

∗
B

1Per the definition of GMX, only nodes with fF < C∗ or with
fB < C∗ may be included in a must expand pair. Thus, only such
nodes are counted here.

82

01

119

2342

36,155

478,497

5367,637

6574,862

7400,861

8174,008

954,427

1013,050

112,284

12259

0 1

1 19

2 342

3 5,539

4 45,422

5 165,269

6 268,465

7 206,387

8 92,354

9 28,520

10 6,260

11 980

12 93

gF gB

819,651

819,559

818,598

812,680

790,315

776,458

937,708

1,244,105

1,479,697

1,608,283

1,657,171

1,669,879

1,672,144

1,672,402

01

119

2342

36,155

478,497

5367,637

6574,862

7400,861

8174,008

954,427

1013,050

112,284

12259

0 1

1 19

2 342

3 5,539

4 45,422

5 165,269

6 268,465

7 206,387

8 92,354

9 28,520

10 6,260

11 980

12 93

gF gB

819,651

818,579

812,338

784,160

697,961

570,071

669,243

1,078,836

1,434,275

1,602,744

1,656,829

1,669,860

1,672,143

01

119

2342

36,155

478,497

5367,637

6574,862

7400,861

8174,008

954,427

1013,050

112,284

12259

0 1

1 19

2 342

3 5,539

4 45,422

5 165,269

6 268,465

7 206,387

8 92,354

9 28,520

10 6,260

11 980

12 93

gF gB

Figure 2: (a) Left: Full GMX (b) Middle: Simplified GMX (c) Right: Simplified GMX for IADε/ICONε

such that (1) t∗F + t∗B = C∗ and (2) a forward node u from
GMX is included in MVC iff gF (u) < t∗F , and a backwards
node v from GMX is included in MVC iff gB(v) < t∗B =
C∗ − t∗F . In Section 4 we will generalize the proof to Case
1 (IADε/ICONε).

To demonstrate this, consider all pairs of values of tF and
tB where tF + tB = C∗.2 There is a family of contiguous
vertex covers for all such pairs (tF , tB), where all nodes with
gF < tF inGMX are included in the forward direction of this
vertex cover, and all nodes with gB < tB are included in the
backward direction of this vertex cover. One such (tF , tB)
partition is the MVC and is denoted by (t∗F , t

∗
B). The cost

(in node expansions) of each (tF , tB) vertex-cover partitions
is determined by summing up the weights of the nodes with
gF < tF and with gB < tB . In Figure 2, nodes that cor-
respond to each (tF , tB) pair are aligned horizontally. The
cost of the the relevant partition is shown between the re-
spective values of tF and tB . For example, in Figure 2(b)
the (3, 10) partition requires 812,680 nodes. The MVC par-
tition for this example with (t∗F , t

∗
B) = (5, 8) only requires

776,458 node expansions. Nodes that are included in MVC
are colored blue, i.e., nodes with gF ≤ 4 and with gB ≤ 7.

2.4 Fractional MM
MM is a bidirectional search algorithm that is guaranteed to
meet in the middle (Holte et al. 2017). That is, MM will never
expand a state whose g-value exceeds C∗/2. Fractional MM
(fMM) is a generalization of MM that can meet at any fraction
of the optimal solution cost (Shaham et al. 2017). fMM(p)

2To exclude meaningless pairs, such as those with negative
numbers, we require one of tF or tB to be equal to the g-value
of some node in GMX.

uses the following priority functions on paths in the open
lists, where 0 < p < 1:

prF (u) = max(gF (u) + hF (u), gF (u)/p)
prB(v) = max(gB(v) + hB(v), gB(v)/(1− p))

fMM(p) expands a state with minimum priority in either
direction. fMM(p)’s forward and backward searches meet at
(p ·C∗, (1− p) ·C∗) by similar reasoning for why MM meets
in the middle. That is, fMM(p) will never forward expand
a state whose gF -value exceeds p · C∗ and never backward
expand a state whose gB-value exceeds (1 − p) · C∗. This
attribute is called restrained with respect to p. As a result, a
restrained algorithm will always return the optimal solution
because it can only meet at the meeting point along the op-
timal path, along the same reasoning proved for MM (Holte
et al. 2017). MM is a special case of fMM(p) for p = 1/2.
Forward A* and reverse A* (searching from goal to start)
are also special cases corresponding to p = 1 and p = 0
respectively (although division by zero must be avoided).

For every problem instance, there exists a fraction 0 ≤
p∗ ≤ 1 such that fMM(p∗) is optimally effective and will
expand the minimal number of necessary nodes—those in
MVC. In practice, however, the exact value for p∗ is not
known a priori, as it depends on C∗ and GMX . But, given
C∗ and GMX it is possible to find p∗ in time linear in the
number of distinct g-values. Finding p∗ and then running
fMM(p∗) can serve for research purposes as an oracle—any
algorithm can now be compared to the theoretical optimum.

3 Meet at the Threshold
In this section we describe the meet at the threshold algo-
rithm (MT). MT is similar to fMM in the sense that it can meet
at any meeting point, but the meeting point is described as a

83

constant threshold and not as a fraction of C∗.
Given a threshold t, MT is restrained with respect to t, or

equivalently, MT meets at (t, C∗ − t). That is, MT will never
forward expand a state whose gF -value exceeds t and never
backward expand a state whose gB-value exceeds C∗ − t.
MT(t) uses the following priority functions:

prF (u) =

{
gF (u) + hF (u) if gF (u) < t

∞ if gF (u) ≥ t
prB(v) = max(gB(v) + hB(v), gB(v) + t)

We now show that MT meets at (t, C∗ − t). We do this
along the same line of proof given for MM (Holte et al. 2017)
which uses the fact that there is always a node in OpenF or
in OpenB on the optimal path with priority ≤ C∗.
Lemma 1. Let u be a forward node. If gF (u) > t then u
will never be forward expanded.
Proof: By definition, prF (u) =∞.
Lemma 2. Let v be a backward node. If gB(v) > C∗ − t
then prB(v) > C∗.
Proof: prB(v) ≥ gB(v) + t > C∗ − t+ t = C∗.

For t = 0, MT(t) is identical to backward A*. Similarly,
for t ≥ C∗, MT(t) is identical to forward A*. It is easy to
see that MT(t) will expand the same set of nodes in GMX as
fMM(p) when t = p · C∗ (not necessarily in the same or-
der). For example, MM is identical to MT(t) for t = C∗/2.
Therefore, for any value of t, MT will return the optimal so-
lution but with the correct value for t (t∗ = p∗ · C∗), MT(t)
is optimally effective as well.

Similarly to fMM, the best value for t is not known in ad-
vance. The usage of p (a relative threshold) to describe fMM
and to define vertex covers of GMX rather than t (a constant
threshold) resulted from the attempt to generalize existing
algorithms, such as MM and A*. However, our proofs be-
low (and in fact, those of fMM too) use a constant threshold.
Therefore, it is more natural to use MT in this context.

In the next sections we studyGMX and its MVC, and gen-
eralize MT (and fMM) to the cases where the algorithm can
assume more knowledge in the graph and on h.

4 Case 1: Knowing ε (IADε/ICONε)
In many cases, the problem instance is coupled with a lower
bound (ε) on the edge costs. For example, in unit edge-cost
domains ε = 1. In other domains, one might iterate over all
actions costs and take their minimum. This bound provides
an admissible front-to-front heuristic of ε between any two
distinct nodes. We now study the case where algorithms are
allowed to assume the existence of ε but as done in previous
work still can only assume an admissible heuristic. Simi-
larly, we assume that they are evaluated in instances where
the heuristic is consistent. In our notation, this case is labeled
by IADε/ICONε. For this case we adapt the conditions for
must-expand pairs in domains with front-to-front heuristics
as defined by Eckerle et al. (2017) with ε as the front-to-front
heuristic. In such cases two nodes u, v are a must-expand
pair if the following conditions are met:
1. fF (u) < C∗

2. fB(v) < C∗

3. gF (u) + gB(v) + ε < C∗

The third condition is more informative than the front-
to-end version of the base case due to the addition of ε (in
Figure 1, ε is a lower bound on the cost of the path from
u to v). Therefore, some edges that exist in the old GMX
no longer exist in the new GMX. The simplified GMX of the
same pancake instance for the IADε/ICONε case is shown
in Figure 2(c). In the pancake puzzle, ε = 1 and thus for
each node there is one less edge. For example, the forward
node with gF = 4 was connected to all backward nodes
with gB ≤ 8 for the base case (Figure 2(b)) but it is now
only connected to nodes with gB ≤ 7.

The former characteristics of MVC for the base case
(IAD/ICON) were effectively proven with ε = 0. We will
next prove a few characteristics of MVC and provide an op-
timally effective algorithm for the IADε/ICONε case. The
proofs here are simpler and valid for any non-negative value
of ε (including ε = 0 in the base case). Part of this simplifi-
cation is the usage of MT. The following lemmas and proofs
are for the forward direction; the lemmas and proofs for the
backward direction are analogous.
Lemma 3. Let u be a forward node such that u ∈ MVC.
There exists a backward node v such that (u, v) is a must-
expand pair and v /∈ MVC.
Proof: Assume to the contrary that all nodes v′ such that
(u, v′) is a must-expand pair, are in MVC. We could then
remove u from MVC as all its neighbors are in MVC. This
contradicts the minimality of MVC.
Lemma 4. Let u, u′ ∈ GMX be two forward nodes such
that u ∈ MVC and u′ /∈ MVC. Then, gF (u′) > gF (u).
Proof: From Lemma 3 we know that there exists a back-
ward node v such that (u, v) is a must-expand pair but
v /∈ MVC. The pair (u′, v) cannot be a must-expand pair
because both u′ and v are not in MVC. Therefore, it must
hold that gF (u′) + gB(v) + ε ≥ C∗ > gF (u) + gB(v) + ε,
yielding gF (u′) > gF (u).
Corollary 5. There exists a threshold t∗F for which MVC
contains exactly all forward nodes in GMX where gF < t∗F .
This is a direct result of Lemma 4. If all forward nodes in
MVC have gF -values smaller than those not in MVC such
a threshold t∗F must exist.

With similar proofs for the backward directions we now
know that MVC can be defined using a pair of thresholds
(t∗F , t∗B). Next, we prove that t∗F + t∗B + ε = C∗ and show
that such thresholds exist by constructing such a pair.

If MVC only contains forward nodes then t∗F = C∗ −
ε, t∗B = 0. Similarly if it only contains backward nodes, then
t∗F = 0, t∗B = C∗ − ε. Below we will assume the non-trivial
case where nodes from both directions are inside MVC.

Definition 3.
gF I = maxu∈(GMXF

∩MVC){gF (u)}
gF O = minu∈(GMXF

\MVC){gF (u)}
gBI = maxv∈(GMXB

∩MVC){gB(v)}
gBO = minv∈(GMXB

\MVC){gB(v)}

gF I is the gF value of the last forward node inside MVC,
gF O is the gF value of the first forward node outside MVC.

84

Similarly, gBI is the last backward node inside MVC, gBO

is the first backward node outside MVC. Now we define the
thresholds:

t∗F =
max {gF I , C∗ − ε− gBO}+min {gF O , C∗ − ε− gBI}

2

t∗B =
max {gBI , C∗ − ε− gF O}+min {gBO , C∗ − ε− gF I}

2

With simple arithmetic it is easy to see that t∗F + t∗B+ ε =
C∗. Since t∗F and t∗B are entirely symmetric in their defini-
tion we prove the following Lemmas for the forward direc-
tion only. The proofs for the backward directions are sym-
metric. The inequalities in the following lemma treat each
of the four ways to pair a term from the left (max) and right
(min) sides of the definition of t∗F .
Lemma 6. (helping inequalities)

1. gF I < t∗F ≤ gF O

2. gF I < t∗F < C∗ − ε− gBI

3. C∗ − ε− gBO ≤ t∗F ≤ gF O

4. C∗ − ε− gBO ≤ t∗F < C∗ − ε− gBI

Proof: Since t∗F is defined as the mean of the maximum of
the left terms and the minimum of the right terms, it is suffi-
cient to prove each inequality only between the left and the
right terms.

1. gF I < gF O

Proof: Follows directly from Lemma 4.
2. gF I < C∗ − ε− gBI

Proof: From Definition 3 there must exist a forward
node u ∈ MVC and a backward node v ∈ MVC such
that gF (u) = gF I and gB(v) = gBI . According to
Lemma 3 we know that there exists a backward node
v′ /∈ MVC such that (u, v′) is a must-expand pair and
gF (u) + gB(v

′) + ε < C∗. From Lemma 4 we know that
gB(v) < gB(v

′). Therefore, gF I + gBI + ε = gF (u) +
gB(v) + ε < gF (u) + gB(v

′) + ε < C∗.
3. C∗ − ε− gBO ≤ gF O .

Proof: We need to show that gF O + gBO + ε ≥ C∗. From
Definition 3 there must exist a forward node u /∈ MVC
and a backward node v /∈ MVC such that gF (u) = gF O

and gB(v) = gBO . Since both nodes are not in MVC
we know that (u, v) is not a must-expand pair, therefore
gF O + gBO + ε ≥ C∗.

4. C∗ − ε− gBO < C∗ − ε− gBI .
Proof: This is direct result of the fact that gBI < gBO

(Lemma 4).
Lemma 7. For a forward node u, u ∈ MVC iff gF (u) < t∗F .
Proof: If u ∈ MVC, then directly from Definition 3 we
know that gF (u) ≤ gF I and from Lemma 6 gF (u) < t∗F .
If u /∈ MVC then directly from Definition 3 we know that
gF (u) ≥ gF O and from Lemma 6 gF (u) ≥ t∗F .

This completes the proof that the two thresholds t∗F and
t∗B , as defined above, describe MVC. For Figure 2(c) we
have t∗F = 5 and t∗B = 7 (as opposed to the base case which
had t∗B = 8). The nodes included in MVC for this case are

colored blue and the number of nodes in that partition is
highlighted. It is now only 570,071 compared to 776,458 for
the base case. This is because the node with gF = 7 which
had a count of 206,387 is no longer included in MVC.

4.1 Meet at the Threshold ε (MTε)
Lemma 7 implies a simple algorithm for finding MVC
given that GMX and C∗ are both known. We iterate over
all possible thresholds that satisfy tF + tB + ε = C∗ and
sum up the costs of the forward nodes u ∈ GMX for which
gF (u) < tF as well as the costs of the backward nodes
v ∈ GMX for which gB(v) < tB . This algorithm runs with
complexity linear in the number of distinct g-values of states
in GMX . It is similar to the Calc-VC() algorithm provided
by Shaham et al. (2017) which iterated on all thresholds that
hold tF + tB = C∗. The priority function of MT can easily
be adapted to create a new algorithm MTε:

prF (u) =

{
gF (u) + hF (u) if gF (u) < tF
∞ if gF (u) ≥ tF

prB(u) = max(gB(u) + hB(u), gB(u) + tF + ε)

Similar to MT(t) in the base case, for any given problem
instance I in ICONε there exists t∗F such that MTε(t) is op-
timally effective—it expands the minimal number of nodes
in GMX of I . The proof for this is nearly identical to the
respective proof on fMM so it is not repeated here.3

5 Case 2: Consistency (ICON/ICON)
A heuristic on an undirected graph4 is forward consistent if
for every two nodes u, v |hF (u)− hF (v)| ≤ d(u, v). Back-
ward consistency is defined analogously.

As explained above, the analysis of bidirectional search
by (Eckerle et al. 2017) and subsequent papers (Chen et al.
2017; Shaham et al. 2017) assumed admissible algorithms,
i.e., algorithms only know that the heuristic is admissible
(IAD). However, they all analyzed the case where such al-
gorithms are executed on instances from ICON (but the al-
gorithms do not know that and cannot exploit that fact). As-
suming that execution is on instances from ICON simpli-
fies the analysis, by guaranteeing that no nodes will be re-
expanded. However, such a setting is limited. We next inves-
tigate the case where the algorithms know that the heuristics
are consistent (i.e., they know that the instances are from
ICON) and they are allowed to exploit that knowledge. We
label this case ICON/ICON .

Given consistent heuristics, the difference |hF (u) −
hF (v)| is, in fact, a lower bound on the distance between
u and v, so |hF (u)− hF (v)| can be used as a front-to-front
heuristic between u and v. Similarly, |hB(u)−hB(v)| can be
used as a heuristic as well. This was called the Add method
by Kaindl and Kainz (1997).

3The priority function of fMM could be adapted to create a new
algorithm fMMε in a similar manner to MMε (Holte et al. 2017).
For fMMε: prF (u) = max(fF (u), gF (u)/p + ε) and prB(v) =
max(fB(v), gB(v)/(1− p) + ε).

4For simplicity we assume that the graph is undirected; the the-
ory below can be modified to also work for directed graphs.

85

Definition 4. (Front-to-front heuristic) For each pair of
nodes (a, b) define the following admissible heuristic:

hC(a, b) = max{|hF (a)− hF (b)|, |hB(a)− hB(b)|}

This heuristic results from the combination of assuming
both forward and backward consistency (hence hC).

We next prove a form of the Triangle Inequality for hC ,
as it will be used below in many circumstances.
Lemma 8. (Triangle Inequality of hC) For any three
states a, b, c, hC(a, c) + hC(c, b) ≥ hC(a, b)
Proof: For the first part of the proof we show
hC(a, c) + hC(c, b)
= max{|hF (a)− hF (c)|, |hB(a)− hB(c)|}
+max{|hF (c)− hF (b)|, |hB(c)− hB(b)|}
≥ |hF (a)− hF (c)|+ |hF (c)− hF (b)|
≥ |hF (a)− hF (b)| (from the regular triangle inequality).
In a similar way we can show that hC(a, c) + hC(c, b) ≥
|hB(a) − hB(b)|; thus we can conclude that hC(a, c) +
hC(c, b) ≥ max{|hF (a) − hF (b)|, |hB(a) − hB(b)|} =
hC(a, b).

5.1 Necessary Node Expansions
Using the conditions for must-expand pairs (Eckerle et al.
2017) in problems with hC as a front-to-front heuristic re-
sults in the following claim: two nodes u, v are a must-
expand pair if the following conditions are met:
1. fF (u) < C∗

2. fB(v) < C∗

3. gF (u) + gB(v) + hC(u, v) < C∗

Any pair of nodes u, v that satisfy these conditions is a
must-expand pair and therefore there is an edge inGMX be-
tween u and v. The third condition is more informative than
the front-to-end version due to the addition of hC . There-
fore, some edges that exist in the old GMX no longer exist
in the new GMX . We analyze GMX in this case based on the
notion of equivalence classes defined next.

5.2 Equivalence Classes
In the IAD/ICON case hC(u, v) did not exist. To imitate this
in the ICON/ICON case, we partitionGMX into equivalence
classes, such that the nodes in each class have a front-to-
front heuristic of 0 to each other.
Definition 5. (heuristic equivalence) Two nodes u, v are
heuristically equivalent (or h-equivalent) iff hC(u, v) = 0.

Directly from the definition, two nodes u, v are h-
equivalent (belong to the same h-equivalence class) iff
hF (u) = hF (v) and hB(u) = hB(v). In other words, each
equivalence class is defined by the pair of heuristic values
(hF , hB) of the nodes within.

The following lemmas will prove that the intersection of
MVC with each equivalence class has similar properties to
the base case which effectively only had a single class. That
is, MVC is contiguous and restrained with respect to tF
and tB . The proofs are similar to the former two cases, with
changes necessary to handle nodes in one equivalence class
that have neighbors in other classes, which could not happen
when there was only a single class.

Lemma 9. Let u, u′ ∈ GMX be two h-equivalent forward
nodes. If u ∈ MVC and u′ /∈ MVC. Then, gF (u′) > gF (u).
Proof: From Lemma 3 we know there exists a backward
node v such that (u, v) is a must-expand pair but v /∈ MVC.
The pair (u′, v) cannot be a must-expand pair because both
u′ and v are not in MVC. Therefore, it must hold that
gF (u

′) + gB(v) + hC(u
′, v) ≥ C∗. Since u and u′ are

h-equivalent, hC(u, v) = hC(u
′, v) yielding that gF (u′) +

gB(v) + hC(u, v) ≥ C∗ > gF (u) + gB(v) + hC(u, v). As
a result, gF (u′) > gF (u).
Corollary 10. For every h-equivalence class Q there exists
a threshold t∗FQ such that MVC contains exactly all forward
nodes in Q where gF < t∗FQ.
This is a direct result of Lemma 9. If all forward nodes in
MVC have gF -values lower than those not in MVC the de-
scribed threshold t∗FQ must exist. The proof for the back-
ward direction is identical.
Intermediate Summary: So far we have shown that in
each equivalence class Q, there exists a pair of thresholds
(t∗FQ, t

∗
BQ) that impose which nodes from Q are contained

in MVC. To show the restrained property, we will have to
prove that for every h-equivalence classQ there exists a pair
of such thresholds (t∗FQ, t

∗
BQ), that satisfy t∗FQ+ t∗BQ = C∗

(as hC(u, v) = 0 for every forward node u and backward
node v in this class). We will prove this by showing that for
any two forward and backward nodes u, v ∈ Q:

1. If u, v /∈ MVC then gF (u) + gB(v) ≥ C∗. (Lemma 11)
2. if u, v ∈ MVC then gF (u) + gB(v) < C∗. (Lemma 12)

Lemma 11. Let u, v ∈ GMX be a forward node and a back-
ward node respectively such that u and v are h-equivalent.
If u /∈ MVC and v /∈ MVC then gF (u) + gB(v) ≥ C∗.
Proof: Neither of the nodes u, v are in MVC therefore the
must-expand condition is false, so it must hold that gF (u)+
gB(v) + hC(u, v) = gF (u) + gB(v) ≥ C∗.
Lemma 12. Let u, v ∈ GMX be a forward node and a back-
ward node respectively such that u and v are h-equivalent.
If u ∈ MVC and v ∈ MVC then gF (u) + gB(v) < C∗.
Proof: According to Lemma 3 there exists a backward node
v′ ∈ GMX such that (u, v′) is a must-expand pair and v′ /∈
MVC. Similarly there exists a forward node u′ ∈ GMX

such that (u′, v) is a must-expand pair and v′ /∈ MVC.
We know that gF (u) + gB(v

′) + hC(u, v
′) < C∗ and

gF (u
′) + gB(v) + hC(u

′, v) < C∗. We also know that
gF (u

′) + gB(v
′) + hC(u

′, v′) ≥ C∗ since u′, v′ /∈ MVC.
Recall that u and v have identical h-values so together with
the triangle inequality hC(u, v′) + hC(u

′, v) ≥ hC(u
′, v′).

Now gF (u)+gB(v) < C∗−gB(v′)−hC(u, v′)+gB(v) <
2C∗ − gB(v′)− hC(u, v′)− gF (u′)− hC(u′, v) ≤ 2C∗ −
gB(v

′)− gF (u′)− hC(u′, v′) ≤ C∗.
Lemma 13. (Restrained with respect to t∗FQ) For every h-
equivalence classQ there exist thresholds t∗FQ +t∗BQ = C∗

such that MVC ∩ Q contains exactly the forward nodes in
Q for which gF < t∗FQ. and exactly all backward nodes for
which gB < t∗BQ.
Proof: This is the result of Corollary 10, Lemma 11 and
Lemma 12.

86

Case IAD/ICON IADε/ICONε ICON/ICON

MVC Restrained ε-Restrained b ∈ B
Optimal Alg. fMM / MT MTε / fMMε MTCON

Clusters |G| |G| |G| × |H|2
Complexity O(|G|) O(|G|) O(|G|2 × |H|4)

Table 1: A summarizing table. |G| and |H| are the numbers
of distinct g- and h-values respectively.

5.3 From Equivalence Classes to Functions
The existence of a threshold for every equivalence class
implies that there exists a function that maps equivalence
classes into thresholds. Recall that each class is uniquely de-
fined by its hF - and hB-values, so this function can also be
expanded to include every pair of values (hF , hB) to two
thresholds as long as any pair (hF , hB) which has members
in GMX will get the respective thresholds. For a pair of val-
ues with no members in GMX any threshold will be valid.
Therefore, the function can be expanded to all R+ × R+.

Corollary 14. There exists a function b : R+ × R+ →
R+ such that a forward node u is in MVC iff gF (u) ≤
b(hF (u), hB(u)) and a backward node v is in MVC iff
gB(u) ≤ C∗ − b(hF (u), hB(u)).

Below we use b(u) as shorthand for b(hF (u), hB(u)).
Given the function b as just defined, we can now adapt MT
to work in the ICON/ICON case. We define the algorithm
MTCON (b) with the following priorities:

prF (u) =

{
gF (u) + hF (u) if gF (u) < b(u)

∞ if gF (u) ≥ b(u)
prB(u) = max(gB(u) + hB(u), gB(u) + b(u))

5.4 Attributes of b
As discussed above, given any threshold tF ∈ R+, MT and
MTε (and similarly, fMM and fMMε) will always return an
optimal path, although they might do more work than the
minimal number of necessary expansions (as achieved by
t∗F). MTCON , however, is not guaranteed to return an optimal
path for any b : R+ × R+ → R+.

Fortunately this issue can be solved by constraining b to
be a member of the following set of functions B:

B = {b : R+ × R+ → R+ | ∀hF ′, hB ′, hF ′′, hB ′′ ∈ R+

|b(hF ′, hB ′)− b(hF ′′, hB ′′)|
≤ max{|hF ′ − hF ′′| , |hB ′ − hB ′′|}

This is a stronger version of the global 1-Lipschitz at-
tribute on the continuity of functions. In the appendix we
prove two theorems:

1. Given a function b ∈ B, MTCON (b) will return an optimal
path on any problem instance in ICON . (Theorem 17)

2. Given a problem instance in ICON there exists b∗ ∈ B
such that MTCON (b) will expand the minimal number of
necessary expansions on that instance. (Theorem 22)

From these theorems we can deduce that MTCON is opti-
mally effective in the ICON/ICON case, provided that only
functions b ∈ B are allowed as the argument.

6 Summary and Conclusions
We have shown the nature of MVC for GMX for cases with
different assumptions on the knowledge of the algorithm
about the heuristics used and on the nature of the underlying
graph. This enriches the theory on GMX to more cases. We
have also developed MT, which is equivalent to fMM but is
simpler for our purposes.

Table 1 summarizes our findings. Each column represents
a different case. For each case we provide the following in-
formation. The first row presents the structure of MVC. It
is restrained for the IAD/ICON case and the IADε/ICONε
case. For the ICON/ICON case, it is restrained for each
equivalence class with a threshold given by a function b ∈
B. The next row gives the number of clusters of indistin-
guishable nodes in GMX. For the IAD/ICON case and the
IADε/ICONε case there is one cluster for each possible g-
value. For the ICON/ICON case, we multiply this number
by the number of equivalence classes which is |H|2 where
H is the set of different h-values. The complexity column
gives the best-known algorithm that calculates MVC given
that GMX and C∗ are known. While an algorithm for the
IAD/ICON case and the IADε/ICONε case were provided,
for the ICON/ICON case one should resort to the known
algorithm for finding minimal vertex covers in a bipartite
graph (Papadimitriou and Steiglitz 1982).

Future work can further expand this theory to more cases
such as the case where we add ε to the ICON/ICON case. In
addition, an important line will be to develop such a theory
to the case where we have a full front-to-front heuristic.

A Proofs for the Function b
We will first prove the first theorem that given a function
b ∈ B, MTCON (b) will return an optimal path on any prob-
lem instance in ICON . For that it is sufficient to show that
there are always nodes from an optimal path in the open list
with priority smaller or equal to C∗. We will prove this by
showing that the priorities are non-decreasing along an op-
timal path and that any state on the optimal path has either a
forward or a backward priority of C∗ or less.

Lemma 15. Let u, u′ be two forward nodes on an optimal
path such that u′ is a direct descendant of u. Let b : R+ ×
R+ → R+ be a function. If b ∈ B then prF (u) ≤ prF (u′).
Proof: If gF (u′) ≥ (

¯
u′) then prF (u

′) = ∞ and we
are done. Otherwise, gF (u) ≤ gF (u

′) − hC(u, u
′) ≤

(
¯
u′) − hC(u, u′) ≤ (

¯
u) where the last inequality is directly

from the definition of B. Now from consistency, prF (u) =
gF (u) + hF (u) ≤ gF (u′) + hF (u

′) = prF (u
′).

Lemma 16. Let v, v′ be two backward nodes on an optimal
path such that v′ is a direct descendant of v. Let b : R+ ×
R+ → R+ be a function. If b ∈ B then prB(v) ≤ prB(v′).
Proof: It is enough to show that both terms in the max are
non-decreasing. For the left term, from consistency gB(u)+
hB(u) ≤ gB(u

′) + hB(u
′). As for the right term, gB(v) +

b(v) ≤ gB(v
′)− hC(v, v′) + b(v) ≤ gB(v

′) + b(v′) where
the last inequality is directly from the definition of B.

87

Theorem 17. Let b : R+ × R+ → R+ be a function. If
b ∈ B then MTCON (b) will return an optimal path on any
problem instance in ICON .

Proof: Let s be a state on the optimal path. If gF (s) < b(s)
then prF (s) = fF (s) ≤ C∗. Otherwise, gB(s) + b(s) =
C∗ − gF (s) + b(s) ≤ C∗ and we know that fB(s) ≤ C∗,
therefore prB(s) ≤ C∗. Together with Lemmas 15 and 16
this means that there will always be on either open list a state
from the optimal path with priority of C∗or less.

Next we will prove the second theorem, given a problem
instance in ICON we will construct a function b∗ such that
b∗ ∈ B and MTCON (b∗) will expand the minimal number of
necessary expansions on that instance.

If MVC only contains forward nodes then b∗ = C∗. Sim-
ilarly if it only contains backward nodes, then b∗ = 0. Below
we will assume the non trivial case where nodes from both
directions are inside MVC. We use hC(u, hF ′, hB ′) as short
for max{|hF ′ − hF (u)|, |hB ′ − hB(u)|}
Definition 6.

gF I (hF
′, hB

′) = max
u∈(GMXF

∩MVC)
{gF (u)− hC(u, hF ′, hB ′)}

gF O (hF
′, hB

′) = min
u∈(GMXF

\MVC)
{gF (u) + hC(u, hF

′, hB
′)}

gBI (hF
′, hB

′) = max
v∈(GMXB

∩MVC)
{gB(v)− hC(u, hF ′, hB ′)}

gBO (hF
′, hB

′) = min
v∈(GMXB

\MVC)
{gB(v) + hC(u, hF

′, hB
′)}

Let b∗ : R+×R+ → R+ be a function such that for every
heuristics pair hF ′, hB ′,

b∗(hF
′, hB

′) =
max {gF I (hF

′, hB
′), C∗ − gBO (hF

′, hB
′)}

2

+
min {gF O (hF

′, hB
′), C∗ − gBI (hF

′, hB
′)}

2

Lemma 18. (helping inequalities)
Let hF

′, hB
′ ∈ R+ be a pair of heuristic values.

1. gF I(hF
′, hB

′) < b∗(hF
′, hB

′) ≤ gF O(hF
′, hB

′)

2. gF I(hF
′, hB

′) < b∗(hF
′, hB

′) < C∗ − gBI(hF
′, hB

′)

3. C∗ − gBO(hF
′, hB

′) ≤ b∗(hF ′, hB ′) ≤ gF O(hF
′, hB

′)

4. C∗ − gBO(hF
′, hB

′) ≤ b∗(hF
′, hB

′) < C∗ −
gBI(hF

′, hB
′)

Proof: Since t∗F is defined as the mean of the maximum of
the left terms and the minimum of the right terms, it is suffi-
cient to prove each inequality only between the left and the
right terms.

1. gF I(hF
′, hB

′) < gF O(hF
′, hB

′)

Proof: From Definition 6 there must exist two for-
ward nodes u ∈ MVC and u′ /∈ MVC such
that gF (u) − hC(u, hF

′, hB
′) = gF I(hF

′, hB
′) and

gF (u
′) + hC(u

′, hF
′, hB

′) = gF O(hF
′, hB

′). According
to Lemma 3 there exists a backward node v /∈ MVC such
that gF (u) + gB(v) + hC(u, v) < C∗. We know that the
pair (u′, v) is not a must-expand pair since both are not in
MVC, therefore gF (u′)+ gB(v)+hC(u′, v) ≥ C∗. Now

we have gF I(hF
′, hB

′) = gF (u) − hC(u, hF
′, hB

′) <
C∗ − hC(u, v) − gB(v) − hC(u, hF ′, hB ′) ≤ gF (u

′) +
hC(u

′, v) − hC(u, v) − hC(u, hF
′, hB

′) ≤ gF (u
′) +

hC(u
′, hF

′, hB
′) = gF O(hF

′, hB
′) where the last in-

equality is Lemma 8 used multiple times.

2. gF I(hF
′, hB

′) < C∗ − gBI(hF
′, hB

′)
Proof: From Definition 6 there must exist a forward
node u ∈ MVC and a backward node v ∈ MVC
such that gF (u) − hC(u, hF ′, hB ′) = gF I(hF

′, hB
′) and

gB(v) − hC(v, hF
′, hB

′) = gBI(hF
′, hB

′). According
to Lemma 3 there exists a backward node v′ /∈ MVC
such that gF (u) + gB(v

′) + hC(u, v
′) < C∗. Simi-

larly there exists a forward node u′ /∈ MVC such that
gF (u

′)+gB(v)+hC(u
′, v) < C∗. We know that the pair

(u′, v′) is not a must-expand pair since both are not in
MVC, therefore gF (u′)+gB(v′)+hC(u′, v′) ≥ C∗. Now
we have gF I(hF

′, hB
′) = gF (u) − hC(u, hF

′, hB
′) <

C∗ − hC(u, v′)− gB(v′)− hC(u, hF ′, hB ′) ≤ gF (u′) +
hC(u

′, v′)−hC(u, v′)−hC(u, hF ′, hB ′) < C∗−gB(v)−
hC(u

′, v) + hC(u
′, v′)− hC(u, v′)− hC(u, hF ′, hB ′) ≤

C∗ − gB(v) + hC(v, hF
′, hB

′) = C∗ − gBI(hF
′, hB

′)
where the last inequality is Lemma 8 used multiple
times.

3. C∗ − gBO(hF
′, hB

′) ≤ gF O(hF
′, hB

′)

Proof: From Definition 6 there must exist a forward node
u /∈ MVC and a backward node v /∈ MVC such that
gF (u) + hC(u, hF

′, hB
′) = gF O(hF

′, hB
′) and gB(v) +

hC(v, hF
′, hB

′) = gBO(hF
′, hB

′). We know that (u, v) is
not a must-expand pair since both are not in MVC, there-
fore gF (u) + gB(v) + hC(u, v) ≥ C∗. Now we have
C∗− gBO(hF

′, hB
′) = C∗− gB(v)−hC(v, hF ′, hB ′) ≤

gF (u) + hC(u, v) − hC(v, hF
′, hB

′) ≤ gF (u) +
hC(u, hF

′, hB
′) = gF I(hF

′, hB
′) where the last inequal-

ity is Lemma 8.

4. C∗ − gBO(hF
′, hB

′) < C∗ − gBI(hF
′, hB

′)
Proof: This is equivalent to proving that gBI(hF

′, hB
′) <

gBO(hF
′, hB

′) which is identical to inequality (1) except
for the direction, so the proof is similar as well.

Lemma 19. For a forward node u, u ∈ MVC iff gF (u) <
b∗(hF (u), hB(u)).

Proof: If u ∈ MVC, then directly from Definition 6 we
know that gF (u) ≤ gF I and from Lemma 18 gF (u) < t∗F .
If u /∈ MVC then directly from Definition 6 we know that
gF (u) ≥ gF O and from Lemma 18 gF (u) ≥ t∗F .

Lemma 20. Let b1, b2 : R+ × R+ → R+ be two functions.
If b1, b2 ∈ B then bmax = max{b1, b2} ∈ B and bmin =
min{b1, b2} ∈ B.

Proof: Let x1, y1, x2, y2 ∈ R+, we want
to show that |bmax(x1, y1)− bmax(x2, y2)| ≤
max{|x1 − x2| , |y1 − y2|}. If bmax(x1, y1) = b1(x1, y1)
and bmax(x2, y2) = b1(x2, y1) then we are done. Oth-
erwise, assume w.l.o.g that bmax(x1, y1) = b1(x1, y1),
bmax(x2, y2) = b2(x2, y2) (otherwise we can switch be-
tween b1 and b2) and that bmax(x1, y1) ≥ bmax(x2, y2) (oth-
erwise we can switch between (x1, y1) and (x2, y2)). Now
from our assumptions, |bmax(x1, y1)− bmax(x2, y2)| =

88

b1(x1, y1) − b2(x2, y2) ≤ b1(x1, y1) − b1(x2, y2) ≤
max{|x1 − x2| , |y1 − y2|}. The proof for bmin is simi-
lar.

Lemma 21. Let b1, b2 : R+ × R+ → R+ be two functions.
If b1, b2 ∈ B then bmean = b1

2 + b2
2 ∈ B.

Proof: Let x1, y1, x2, y2 ∈ R+, we want to
show that |bmean(x1, y1)− bmean(x2, y2)| ≤
max{|x1 − x2| , |y1 − y2|}. Using the triangle
inequality, |bmean(x1, y1)− bmean(x2, y2)| =∣∣∣ b1(x1,y1)

2 + b2(x1,y1)
2 − b1(x2,y2)

2 − b2(x2,y2)
2

∣∣∣ ≤∣∣∣ b1(x1,y1)−b1(x2,y2)
2

∣∣∣ +
∣∣∣ b2(x1,y1)−b2(x2,y2)

2

∣∣∣ ≤
2 × 1

2 max{|x1 − x2| , |y1 − y2|} =
max{|x1 − x2| , |y1 − y2|}

Given a forward node u, it is trivial that gF (u) ±
hC(u, hF

′, hB
′) ∈ B and similarly for backward nodes.

Therefore, b∗ is constructed from functions in B using only
three operators: max, min and mean. According to Lem-
mas 20 and 21, B is closed under these operators, therefore
b∗ ∈ B.

Theorem 22. Given a problem instance in ICON there ex-
ists b ∈ B such that MTCON (b) will expand the minimal
number of necessary expansions on that instance.

Proof: According to Lemmas 20 and 21, b∗ as defined above
is in B. According to Lemma 19, MTCON (b∗) will only ex-
pand the nodes in MVC hence it will expand the minimal
number of necessary expansions on that instance.

B Acknowledgments
The work was partially supported by the Israel Science
Foundation (ISF) under grant #844/17 to Ariel Felner. This
research has also been partially supported by the HUJI Cy-
ber Security Research Center in conjunction with the Israel
National Cyber Directorate (INCD) in the Prime Minister’s
Office.

References
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R. 2017.
Front-to-end bidirectional heuristic search with near-optimal
node expansions. In Proceedings of IJCAI.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. J. ACM 32(3):505–536.
Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient conditions for node expansion in
bidirectional heuristic search. In ICAPS.
Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and
Chen, J. 2017. Bidirectional search that is guaranteed to
meet in the middle. Artificial Intelligence Journal (AIJ), In
press.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. J. Artif. Intell. Res. 7:283–317.
Papadimitriou, C. H., and Steiglitz, K. 1982. Combinatorial
optimization: algorithms and complexity. Courier Corpora-
tion.

Shaham, E.; Felner, A.; Chen, J.; and Sturtevant, N. R. 2017.
The minimal set of states that must be expanded in a front-
to-end bidirectional search. In SoCS, 82–90.

89

