
The Minimal Set of States That Must be Expanded
in a Front-to-End Bidirectional Search

Eshed Shaham
School of Engineering and CS

Hebrew University of Jerusalem
Jerusalem, Israel

eshed.shaham@mail.huji.ac.il

Ariel Felner
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel
felner@bgu.ac.il

Jingwei Chen
Computer Science Department

University of Denver USA
chenjingwei1991@gmail.com

Nathan R. Sturtevant
Computer Science Department

University of Denver USA
sturtevant@cs.du.edu

Abstract

A* is optimal among admissible unidirectional algorithms
when searching with a consistent heuristic. Recently, simi-
lar optimality bounds have been established for bidirectional
search but, no practical algorithm is guaranteed to always
achieve this bound. In this paper we study the nature of the
number of nodes that must be expanded in any front-to-end
bidirectional search. We present an efficient algorithm for
computing that number and show that a theoretical param-
eterized generalization of MM, with the correct parameter, is
the optimal front-to-end bidirectional search. We then exper-
imentally compare various algorithms and show how far they
are from optimal.

1 Introduction and Overview

What is the best possible algorithm that one could use to
solve a heuristic search problem? A* running on a problem
instance with a consistent heuristic is known as optimally
effective in terms of necessary node expansions (those with
f < C∗) for unidirectional search algorithms.

Recent theoretical work describes which states must be
expanded by an admissible front-to-end bidirectional heuris-
tic search algorithm with a consistent heuristic (Eckerle et
al. 2017). In bidirectional search the conditions for expan-
sions apply to pairs of states, and for every eligible pair,
only one of the two states must be expanded. Chen et al.
(2017) show that the minimal set of nodes that must be ex-
panded corresponds to the minimal vertex cover of a Must-
Expand Graph (GMX), a bipartite graph whose edges cor-
respond to states pairs. The minimum vertex cover of GMX ,
denoted hereafter by VC, establishes the minimum num-
ber of node expansions necessary to prove the optimal solu-
tion by any search algorithm, unidirectional or bidirectional.
The recently introduced Near Optimal Bidirectional Search
(NBS) (Chen et al. 2017) expands at most 2·VC nodes. Fur-
thermore, no algorithm can do better than NBS in the worst
case.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we introduce an efficient algorithm for com-
puting VC. We also introduce a new bidirectional search al-
gorithm called Fractional MM (fMM) which is a generaliza-
tion of MM (Holte et al. 2016). MM is a bidirectional search
algorithm which guarantees that the search frontiers meet in
the middle. fMM has a parameter 0 ≤ p ≤ 1 that allows
a more flexible meeting point. We prove that there exists a
fraction p∗ such that fMM(p∗) is optimally effective. This
algorithm is primarily of theoretical interest, since p∗ is not
known a priori. But, we use fMM to study the optimal meet-
ing point in different benchmark domains and to compare
the suboptimality of NBS, A*, and MM.

2 Terminology and Notation

A problem instance is a pair (start, goal) of states in a state-
space G with non-negative edge weights. The aim of search
is to find a least-cost path from start to goal. d(u, v) is the
distance (cost of a least-cost path) from state u to state v.
C∗ = d(start, goal) is the cost of an optimal solution.

Front-to-end bidirectional search algorithms interleave
two separate searches, a search forward from the start state,
and a search backward from the goal state. We use fF , gF
and hF to indicate costs of the forward search and fB , gB
and hB to indicate costs in the backward search. Likewise,
OpenF and OpenB store states generated in the forward and
backward directions, respectively.

Front-to-end algorithms use two heuristic functions. The
forward heuristic, hF , is forward admissible iff hF (u) ≤
d(u, goal) for all u in G and is forward consistent iff
hF (u) ≤ d(u, u′) + hF (u

′) for all u and u′ in G. The back-
ward heuristic, hB , is backward admissible iff hB(v) ≤
d(start, v) for all v in G and is backward consistent iff
hB(v) ≤ d(v′, v) + hB(v

′) for all v and v′ in G.1

A problem instance is solvable if there is a forward path

1Front-to-front algorithms use a heuristic h(u, v) defined on
any two states (u, v) ∈ G and may perform heuristic lookup be-
tween any two states that belong to opposite frontiers. The theory
here does not apply to front-to-front algorithms.

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

82

from start to goal. IAD is the set of solvable problem in-
stances in which hF is forward admissible and hB is back-
ward admissible. ICON is the subset of IAD in which hF is
forward consistent and hB is backward consistent. A search
algorithm is admissible iff it is guaranteed to return an opti-
mal solution for any problem instance in IAD.

We assume that search algorithms only have black-box
access to the expand, heuristic, and cost functions. This fol-
lows the assumptions of Dechter and Pearl (1985) formal-
ized in the description of Deterministic, Expansion-based
Black-box (DXBB) algorithms (Eckerle et al. 2017). DXBB
algorithms have no a priori information about the instance(s)
they are going to solve, nor do they have any knowledge of
the heuristic besides that it is admissible.

3 Background

Next we cover recent bidirectional algorithms and the theory
that forms the basis of the contributions of this paper.

3.1 The Meet in the Middle algorithm (MM)

MM (Holte et al. 2016) is the first bidirectional heuristic
search algorithm guaranteed to “meet in the middle”. That
is, MM will never expand a state whose g-value exceeds
C∗/2. Assuming that the gray ovals of Figure 2 (middle)
represent the states expanded by MM, these ovals are guar-
anteed to stay inside the enclosing circles. As a result, the
frontiers must meet at the midpoint of the optimal solution.

This is achieved by MM’s novel priority functions. For the
forward direction prF (u) = max(fF (u), 2gF (u)) and for
the backward direction prB(u) = max(fB(u), 2gB(u)).
MM chooses to expand a node with minimum priority from

either direction (labeled C). The 2gF (u)/2gB(u) terms in
the priority function are used to ensure that the searches
meet in the middle (property P1 in (Holte et al. 2016)).
MM keeps track of L, the cheapest path from start to goal

seen so far, using immediate solution detection (Sturtevant
and Chen 2016) to check for a solution when new states are
generated. MM can terminate with the optimal solution when
L ≤ max(C, fminF , fminB , gminF+gminB+ε), where
fmin and gmin are the minimal f - and g-values on the
respective open lists and ε is the cost of the cheapest edge in
the state-space if it is known. Therefore, MM can safely stop
if L is smaller than or equal to any of the lower-bound terms
inside the max.

3.2 Sufficient Conditions for Node Expansion

In a unidirectional search, all states with fF (s) < C∗ are
necessarily expanded by any admissible algorithm running
on ICON (Dechter and Pearl 1985). Thus, A* is optimally
effective in terms of state expansions. In bidirectional search
this property does not hold.

Recent theoretical work (Eckerle et al. 2017) generalized
this theory to bidirectional search. In bidirectional search,
necessary expansions are defined in terms of pairs of states,
one in the forward direction and one in the backward direc-
tion. A state pair (u, v) has been expanded if either u has
been expanded in the forward direction or v has been ex-
panded in the backward direction (we do not require both).

Similarly, the pair (u, v) is a must-expand pair if (u, v) must
be expanded (i.e., either u in the forward direction or v in
the backward direction) by an algorithm that is guaranteed
to return an optimal solution.

Eckerle et al. (2017) showed that any admissible bidirec-
tional search algorithm searching with a consistent heuristic
must expand the state pair (u, v) if the following three con-
ditions are met: (1) fF (u) < C∗, (2) fB(v) < C∗, and (3)
gF (u) + gB(v) < C∗. The pair (u, v) is then called a must-
expand pair. If neither u nor v is expanded there might be a
path shorter than C∗ that connects u and v. A more formal
statement and proof of the theorem (which is proven using
path pairs instead of state pairs) is found in Theorem 1 of
Eckerle et al. (2017).

3.3 The Must-Expand Graph GMX

The conditions for state-pair expansion define a bipartite
graph called the Must-Expand Graph (GMX(I)) (Chen et
al. 2017).
Definition 1. For each pair of states (u, v) define

lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v)}
When hF is forward admissible and hB is backward ad-

missible, lb(u, v) is a lower bound on the cost of a path from
start through u, connecting to v, and then to goal.
Definition 2. The Must-Expand Graph GMX(I) of problem
instance I ∈ ICON is an undirected, unweighed bipartite
graph defined as follows. For each state u ∈ G, there are two
vertices in GMX(I), the left vertex uF and right vertex uB .
For each pair of states u, v ∈ G, there is an edge in GMX(I)
between uF and vB if and only if lb(uF , vB) < C∗. Thus,
there is an edge in GMX(I) between uF and vB if and only
if the pair (u, v) is a must-expand pair.

It follows (see Chen et al. (2017)) that any algorithm that
finds an optimal solution must expand nodes that belong to
a vertex cover of GMX(I). Figure 1 (top) shows a problem
instance I = (G, hF , hB) ∈ ICON . In this example a is the
start state, f is the goal, and C∗ = 3. Figure 1 (bottom),
duplicated from Chen et al. (2017), shows GMX(I), where
d refers to the cost of the shortest path to each state and f
refers to the f -cost of that path. By construction, the edges
in GMX(I) exactly correspond to the state pairs that must be
expanded, and therefore any vertex cover for GMX(I) will,
by definition, represent a set of expansions that covers all the
required state pairs. For example, one possible vertex cover
includes exactly the vertices in the left side with at least one
edge: {aF , cF , dF , eF }. This represents expanding all the
required state pairs in the forward direction. This requires
four expansions and is not optimal because the required state
pairs can be covered with just three expansions: a and c
in the forward direction and f in the backward direction.
This corresponds to a minimum vertex cover of GMX(I):
{aF , cF , fB}.

Throughout this paper VC is used to denote the mini-
mal vertex cover of GMX(I). |VC| is a lower bound on the
number of states that must be expanded. Chen et al. (2017)
showed that for every DXBB algorithm there exists a worst-
case graph where it will expand twice as many nodes as are

83

hF = 0
hB = 2

hF = 0
hB = 1

hF = 0
hB = 0

hF = 1
hB = 0

hF = 2
hB = 0

hF = 4
hB = 1

a

c

f

e

d

b
2

2 2

1
11

start goal

aF

bF

cF

dF

eF

fF

fB

eB

dB

cB

bB

aB

d:0, f:2

left right

d:2, f:6

d:1, f:2

d:2, f:2

d:2, f:2

d:3, f:3

d:0, f:2

d:1, f:2

d:2, f:2

d:2, f:2

d:5, f:6

d:3, f:3

Figure 1: A sample graph (top) and GMX (bottom)

in VC. Therefore, unlike unidirectional search, no DXBB
bidirectional search algorithm can be guaranteed to be opti-
mal in terms of state expansions.

3.4 NBS
Chen et al. (2017) introduced the Near-optimal Bidirectional
Search algorithm (NBS), which efficiently finds a near-
optimal vertex cover of GMX(I) and thus is near-optimal
in terms of necessary node expansions. NBS chooses a pair
of states (u, v) from GMX(I) with minimal lb(u, v). While
only one of these states must be included in VC, NBS ex-
pands both of them. This approach results in NBS expanding
at most 2|VC| states.

In the next sections we study the structure of VC, provid-
ing an algorithm that can find VC in time linear in |GMX |.
This will enable us to measure how many extra nodes are
expanded by various algorithms such as A*, MM and NBS
when compared to |VC|. We will also define a parameter-
ized algorithm, Fractional MM(p) (fMM(p)) and show that
there exists p∗ such that fMM(p∗) expands exactly the nodes
in VC. However, fMM(p) is not a DXBB algorithm because
the exact value for p∗ is not known in advance.

4 Assumptions

The classic claim by Dechter and Pearl (1985) that all the
nodes with f < C∗ must be expanded is for any admis-
sible unidirectional algorithm. That is, the algorithm must
be able to solve any instance in IAD and may not assume

that the heuristic is consistent. But, the claim only describes
performance on problem instances with consistent heuris-
tics (ICON). In addition, nodes with f = C∗ are not in-
cluded in the theory; algorithms might expand many or few
such nodes depending on the problem instance and the tie-
breaking rule. The bidirectional theory (Eckerle et al. 2017;
Chen et al. 2017) has similar assumptions that also apply to
our work. We list them here.
Assumption 1: Our proof of optimality below is only with
respect to state pairs that must be expanded, i.e., we only
consider states or pair of states with a lower bound that
is strictly smaller than C∗. Nevertheless, in practice, de-
pending on the tie breaking rule, NBS, MM, A* and any
other algorithm may expand extra states or state pairs with
lb(U, V) = C∗, but such states are not must-expand states.
In the best case, there is only one such state – the goal
state (in a non-pathological instance, see (Dechter and Pearl
1985)).
Assumption 2: We assume that our front-to-end algorithms
are only coupled with forward and backward admissible
heuristics but that no other information on the graph or on
the heuristic is known to these algorithms. Therefore, these
algorithms cannot assume that their heuristic is consistent
and cannot use any form of front-to-front heuristics. Using
such front-to-front heuristics is a subject of future work.

5 Fractional Meet in the Middle

Meeting in the middle, as achieved by MM, is not so much
about where the meeting point is (C∗/2 for MM). A more im-
portant attribute is the guarantee that the forward/backwards
searches will not venture beyond their respective distances
from the start/goal to the meeting point. Previous bidirec-
tional heuristic search algorithms did not have this guaran-
tee. Their searches could expand many nodes beyond the
meeting point as shown in the dotted shapes of Figure 2
(middle).

Definition 3. Assume start and goal states for which
d(start, goal) = C∗. Let SF be a connected set of states
which includes start and let SB be a connected set of states
which includes goal. We say that the pair of sets (SF , SB)
is restrained if there exists a fraction 0 ≤ p ≤ 1 such that
SF only includes states u with gF (u) ≤ pC∗ and SB only
includes states v with gB(v) ≤ (1− p)C∗.

A bidirectional search algorithm is restrained if the
states it expands are in a restrained pair of sets (SF , SB).
(pC∗, (1 − p)C∗) is the meeting point of such an algo-
rithm. MM is a special case of a restrained algorithm where
p = 1/2. Similarly, A* and reverse A* (from the goal to
start) are special cases where p = 1 and p = 0, respectively.

We now propose a generalization of MM called Fractional
MM (fMM) which is restrained, but its meeting point can be
any fraction p of C∗. fMM uses the same stopping condition
of MM (described above) but it generalizes MM by using the
following priority functions on paths in the open lists:

prF (u) = max(fF (u), gF (u)/p)
prB(v) = max(fB(v), gB(v)/(1− p)).

where 0 ≤ p ≤ 1. We call this algorithm fMM(p).

84

Figure 2: Left: A* vs. unidirectional/bidirectional brute-force search. Middle: bidirectional heuristic search and MM. Right: fMM.

fMM’s forward and backward searches meet at (pC∗, (1−
p)C∗). That is, fMM(p) is restrained with respect to p. Nei-
ther the forward/backward search will expand states farther
from the start/goal than the meeting point, as shown in Fig-
ure 2 (right). This claim is a generalization of property P1
from Holte et al. (2016), which claims that MM meets at
C∗/2. However, fMM has flexibility of selecting where that
meeting point will be. We will prove this claim for fMM with
a slightly stronger condition in the next section.

The performance of fMM depends on the choice of p. In
the best case the sum of the two search trees will be as small
as possible. In some cases we can analyze the best choice of
p. For example, let bF and bB be uniform and fixed branch-
ing factors of the forward and backward directions. It can be
shown that if we set p = log(bF)

log(bF)+log(bB) then the two search
trees will meet at (pC∗, (1 − p)C∗) with equal size search
trees. In general, however, we don’t have a general way to a
priori choose p, but we will prove below that there exists a
fraction p∗ such that fMM(p∗) is optimally effective.

5.1 Fractional MM with Tie-Breaking

We next define a stronger version of restrained called
strongly restrained and then a tie-breaking rule for fMM that
which causes it to be strongly restrained. Below, we will
prove that this new variant of fMM is optimally effective.

Definition 4. The pair of sets (SF , SB) is strongly re-
strained if there exists a fraction 0 ≤ p ≤ 1 such that SF

only includes states u with gF (u) < pC∗ and SB only in-
cludes states v with gB(v) < (1− p)C∗. As above, this can
also describe bidirectional search algorithms.

Observation: States u with gF (u) = pC∗ are allowed for
restrained sets but not allowed for strongly restrained sets.

Next, we define a tie-breaking rule (TB1) for fMM and
hereafter assume that TB1 is always applied for fMM.
TB1: if two nodes x and y (either on the same search direc-
tion or in opposite directions) have pr(x) = pr(y) where
pr(x) = prF (x) = gF (x)/p or pr(x) = prB(x) =
gB(x)/(1− p) but pr(y) = prF (y) �= gF (x)/p or pr(y) =
prB(y) �= gB(x)/(1− p) then choose to expand y.

This rule means that we prefer to expand nodes whose
priority was solely determined by their f -values over
nodes whose priority was determined by gF (x)/p or by
gB(x)/(1− p) (either solely or with a tie to the f -value).

Theorem 1. fMM with TB1 is strongly restrained. (Corre-
sponding to P1 for MM.)

Proof for the forward side: Let x be a state with gF (x) =
pC∗. We want to show that fMM(p) will never expand x. If
hF (x) > (1 − p)C∗ then prF (x) = gF (x) + hF (x) >
C∗ and x will never be expanded. If hF (x) ≤ (1 − p)C∗
then fF (x) ≤ C∗ but prF (x) = gF (x)/p = C∗ (the tie
breaking rule will prefer to expand other nodes before x).
Now, assume that we reach a stage where we are expanding
states with pr = C∗. Let y be a state on the optimal path. If
prF (y) < C∗ then y was already expanded. If prF (y) = C∗
and gF (y) < pC∗ then y will be expanded before x due to
the tie breaking rule. If prF (y) = C∗ and gF (y) = pC∗ then
due to the tie breaking rule, all states on the optimal path
with gF < pC∗ were forward expanded and y is in OpenF .
Likewise, all states on the optimal path with gB < (1−p)C∗
were backward expanded and y is in OpenB as well. Thus,
an optimal solution via y is found and the search halts before
expanding x.

This implies a version of MM which is strongly restrained.
Holte et al. (2016) identified an area in the state space called
NN (Near-Near). Any state x in NN has gF (x) = gB(x) =
C∗/2. While MM may expand nodes in NN, MM with TB1
will never expand nodes in NN.

6 The Optimal Front-to-End algorithm

In this section we study the nature of the optimally effective
front-to-end algorithm which expands no more nodes with
f < C∗ than what must be expanded. To do this, we first
show how to find the minimal vertex cover of GMX (VC)
and prove that it will be strongly restrained with respect to
some 0 ≤ p∗ ≤ 1. Then, we describe an algorithm that
will efficiently find p∗ and compute the size of VC given C∗
and the g-costs of vertices in GMX . Finally, we will show
that fMM(p∗) is optimally effective, i.e., that it only expands
nodes with f < C∗ that belong to VC.

This study is theoretical in nature because GMX and C∗
are not known a priori and thus VC, and as a consequence
p∗, cannot be known a priori. Thus, fMM(p∗) is not a DXBB
algorithm. This aligns with the claim that no DXBB algo-
rithm is optimal (Chen et al. 2017). But VC and fMM(p∗)
can be used post priori for theoretical studies such as com-
paring the nodes expanded by an algorithm to the number of
nodes that must be expanded.

85

6.1 Finding VC

How do we find VC? In general, minimal vertex cover is
NP-complete, but GMX is a bipartite graph for which there
exists a polynomial algorithm that finds its minimal vertex
cover with complexity O(E

√
V) (Hopcroft and Karp 1973).

Note that GMX may not be sparse, even if the state space
from which it was derived is sparse. Furthermore, GMX may
grow exponentially with the problem input size. Thus, even
generating GMX may exceed our computational resources,
let alone finding its minimal vertex cover with this approach.

Below we show that states in GMX can be clustered to-
gether into groups based on their g-values, and that the prob-
lem now becomes to find the minimal vertex cover of a graph
Ĝ (see definition 6 below) that is based on these groups.
Then, we show that, given knowledge of C∗, the minimal
vertex cover of Ĝ is strongly restrained. Following that we
provide an algorithm that finds the optimal value for p∗

that defined the minimal vertex cover of Ĝ in time linear in
the number of unique g-costs. Based on that, we show that
fMM(p∗) is optimally effective.

6.2 The Abstract Graph (Ĝ)

Assume that both C∗ and GMX are given as input. We clus-
ter together states with equal g-value on either side of GMX

as follows.
Definition 5. GF (i) is the set of all states x ∈ GMX such
that gF (x) = i. Likewise, GB(j) is defined by gB(x) = j.

Note that all states in GF (i) have fF< C∗ and all states
in GB(j) have fB< C∗ because this is a requirement for be-
ing included in GMX (see definition 2). Therefore, any pair
of states (u, v) (u ∈ GF (i), v ∈GB(j)) is a must-expand
pair if the third condition of definition 1, gF (u) + gB(v) <
C∗, also applies. This will be true if i+j < C∗. We therefore
define (GF (i), GB(j)) to be a must-expand group pair (de-
noted MEGP) if i+ j < C∗. We denote the number of states
in GF (i) by N(GF (i)) and the number of states in GB(j)
by N(GB(j)). Observe that if (GF (i),GB(j)) is a MEGP
then there are N(GF (i))×N(GB(j)) distinct must-expand
pairs in these groups (= number of corresponding edges in
GMX).

Definition 6. Let Ĝ, the must-expand groups graph,
be a bipartite graph which abstracts GMX as follows.
Ĝ = ((VF , VB), E). VF includes a node for each
nonempty GF (i) group. Similarly, VB includes a node
for each nonempty GB(j) group. Every pair of groups
(GF (i),GB(j)) that are MEGP (for which i + j < C∗) in-
duce an edge in Ĝ. An edge (GF (i), GB(j)) represents the
fact that each pair of states u ∈ GF (i) and v ∈ GB(j) is a
must-expand pair.

Figure 3 shows Ĝ for a unit-cost state space with C∗ = 4.

6.3 Theoretical Analysis

We next prove a number of lemmas about Ĝ that identify
VC for GMX . For simplicity of terminology, when referring
to Ĝ, we will talk about groups GF (i) and GB(j) in Ĝ as
shorthand for the nodes in Ĝ representing GF (i) and GB(j).

GF (i) groups GB(j) groups

0

1

2

3

0

1

2

3

Figure 3: The graph Ĝ assuming C∗ = 4 and unit edge costs.
Numbers inside the nodes are the i or the j g-values.

Lemma 1: In Ĝ, group GF (i) is connected to all groups
GB(j) for j < C∗ − i, but GF (i) is not connected to nodes
representing groups GB(j) for j ≥ C∗ − i.
Proof: Only groups GB(j) for which j < C∗ − i form a
MEGP with GF (i) as i + j < C∗ (from definition 6). For
example, as can be seen in Figure 3 group GF (1) is con-
nected to groups GB(0), GB(1) and GB(2), but not to group
GB(3).

Lemma 2: In GMX , if u ∈ GF (i) belongs to VC then all
other states in GF (i) must also belong to VC. Similarly, if
v ∈ GB(j) belongs to VC then all other states in GB(j)
must also belong to VC.
Proof: Assume the contrary, that u ∈ GF (i) is in VC but
there exists u′ ∈ GF (i) such that u′ /∈ VC. Since u ∈ VC,
it is connected in GMX to some state v ∈ GB(j) for some j.
But, since all states in GB(j) have g-values equal to gB(v)
then u is connected to all states in GB(j). Similarly, u′ is
also connected to all states in GB(j). But, since u′ /∈ VC it
means that all states in GB(j) must be in VC. This is true for
all groups GB(j) connected to GF (i). So, u may be deleted
from VC as all its neighbors are in VC, contradicting the
assumption that VC is a minimum cover.

Lemma 3: Considering GF (i) in GMX , either all states v ∈
GF (i) are in VC or none of them are in VC.
Proof: This is a direct result of lemma 2.

We now further extend Ĝ by adding weights to the nodes.
In Ĝ the weight of node GF (i) is N(GF (i)) and the weight
of node GB(j) is N(GB(j)). On such graphs a minimal
weighted vertex cover is defined as follows.

Definition 7. The minimal weighted vertex cover of a graph
G = (V,E,w) where vertices (not edges) have weights (i.e.,
w : V ⇒ R

+) is a set of nodes C ⊆ V such that every
edge of G has at least one endpoint in C while the total
accumulated weights of vertices in C is minimized.

Recall that VC denotes the minimal vertex cover of
GMX . We hereafter use WVC to denote the minimal
weighted vertex cover of Ĝ.

Lemma 4: (WVC= VC) Let S be the set of nodes that form
a WVC in Ĝ. The states in GMX that make up the groups
in S are exactly those that form VC.

86

Proof: This is a direct result of the way Ĝ is built and
our previous lemmas. In particular, VC only includes en-
tire groups (Lemma 3) and it must cover all the edges of Ĝ
as each such edges connect a MEGP.

6.4 Attributes of WVC

Our next lemmas prove more attributes of WVC that will
then show that VC is strongly restrained.
Lemma 5: In Ĝ for any i′ > i, any group GB(j) that is
connected to GF (i

′), is also connected to GF (i).
Proof: By the way Ĝ is built. Since i′ > i then if i′ + j <
C∗ it must be that i + j < C∗. For example, in Figure 3,
group GB(1) is connected to GF (2) and to all the groups
with smaller gF -values, i.e., to GF (1) and to GF (0).

Lemma 6: In Ĝ, let i be the minimal gF -value for which
GF (i) /∈ WV C. For every i > i, GF (i) /∈ WV C.
Proof: Since GF (i) /∈ WVC, all the groups GB(j) that are
connected to GF (i) must be in WVC. But, by lemma 5, all
groups that are connected to GF (i) must also be connected
to GF (i) (as i > i) and thus all these groups must be in
WVC. Thus, GF (i) /∈ WV C.
Lemma 7: (no gaps) WVC contains a series of consecutive
groups (with no gaps in the middle). There exists a gF -value
i ≥ 0 such that WVC consists of all groups GF (i) for which
i < i. Likewise, there exists a gB-value j such that WVC
consists of all groups GB(j) for which j < j.
Proof: A direct result of lemma 6.2
Middle summary: Lemma 7 has shown that WVC is a se-
ries of consecutive groups with gF -values smaller than i in
the forward side and a series of consecutive groups with
gB-values smaller than j in the backward side. Two issues
remain to complete the identification of WVC. First, in lem-
mas 8–9 we will show that there exists a relation between i
and j. That is, if i is known, j can be seen as a function of i
called dual(i). Second, we will show how to find the exact
pair (i, j) that will minimize WVC among all possible pairs.

Lemma 8: Let i be the minimal gF -value for which GF (i) /∈
WV C. Let j be the minimal gB-value for which i+j ≥ C∗.
Then, i is also the minimal gF -value for which i+ j ≥ C∗.
Proof: By negation, assume the contrary that there exists
i < i such that i + j ≥ C∗. From the minimality of j we
know that ∀j<ji+ j < i+ j < C∗, hence GF (i) and GB(j)

are a MEGP but also GF (i) and GB(j) are a MEGP. From
the assumption on i we know that ∀j≥ji + j > i + j >

i + j ≥ C∗, hence GF (i) and GB(j) are not a MEGP and
also GF (i) and GB(j) are not a MEGP. We have shown
that GF (i) and GF (i) have the exact same neighbors in Ĝ
(∀j < j, GB(j) is their neighbor but ∀j ≥ j, GB(j) is not
their neighbor) so in WVC they will either both be included

2Pedagogically, we may wish to define a gF -value i such that all
groups GF (i

′) for which i′ ≤ i are in WVC; likewise, a gB-value
j. However, such a g-value may not exist. For example, in an A*
search, only nodes from the forward side are expanded with f <
C∗ but no nodes from the backward side are expanded all. In this
case j = 0, i.e., 0 is the first g-value not in WVC. Thus, we cannot
talk about the maximal gF -value in WVC.

Algorithm 1: Calculate WVC

1 CalculateWVC(Ĝ, C∗)
2 Run A* and find all N(GF (i)) and N(GB(j))
3 i = 0 j = dual(i)
4 WV C =

∑
y<j N(GBy)

5 minWV C = WV C
6 while (i < C∗) do
7 WV C = WV C +N(GF (i))
8 i = nextgF (i)
9 oldj = j

10 j = dual(i)
11 for (j′ = j; j′ < oldj; j′ = nextgB(j

′)) do
12 WV C = WV C −N(GB(j

′))
13 end
14 if (WV C < minWV C) then
15 minWV C = WV C
16 end

17 end
18 return (minWVC)
19 end

or both be excluded. However, from the minimality of i and
from Lemma 7 we know that GF (i) /∈ WV C and GF (i) ∈
WV C. Contradiction.
Lemma 9: (relation between the two sides) Let i be the
minimal gF -value for which GF (i) /∈ WV C. Let j be the
minimal gB-value for which i+ j ≥ C∗. Then, j is also the
minimal gB-value for which GB(j) /∈ WV C.
Proof: From the minimality of j we know that ∀j<j i+ j <

C∗ so GF (i) and GB(j) are a MEGP and since GF (i) /∈
WVC it must be that GB(j) ∈ WV C. From Lemma 8 we
know that i is the minimal gF -value for which i + j ≥ C∗.
This is equivalent to the claim that i + j < C∗ iff i < i.
Recall that GF (i) and GB(j) are a MEGP (neighbors in Ĝ)
iff i + j < C∗ and that GF (i) ∈ WV C iff i < i (since i is
minimal). We can conclude that all neighbors of GB(j) are
included in WVC and therefore GB(j) /∈ WV C.

Definition 8. For any given gF -value i, dual(i) denotes the
minimal gB-value j, for which i+ j ≥ C∗.

Let i be the minimal gF -value for which GF (i) /∈ WV C,
and let j be the minimal gB-value for which GB(j) /∈
WV C. Lemma 9 defines their relation by proving that j =
dual(i). For example, assume that in Figure 3 we have that
i = 2 (i.e., that GF (0) and GF (1) are in WVC but not
GF (2)). The minimal gB-value j that satisfies 2 + j ≥ 4
is j = 2. Thus, j = dual(i) = 2 (i.e., GB(0) and GB(1) are
in WVC but not Gb(2)).

6.5 Finding the Best Partitioning

It is important to note that C∗ as well as the gF -value i and
gB-value j = dual(i) are not known a priori. In order to
find the exact minimal number of states that must be ex-
panded one must first find i and calculate j = dual(i). The
following algorithm, CalculateWVC(), will achieve this.

87

(a) P-16(GAP-1) (b) P-16(GAP-2) (c) TOH4 (10+4 PDB) (d) Mazes

Figure 4: Distribution of p∗ in different domains

To begin, it runs forward A* and counts the number of
states in each of the GF (i) groups. Next, it runs backward
A* and counts the number of states in each of the GB(j)

groups. Then, since A* was executed and C∗ is known, Ĝ
can be built. Next, for each possible pair (i, dual(i)) accu-
mulate the weights of the following groups:

Nodes(i, dual(i)) =
∑

x<i

N(GF (x)) +
∑

y<j

N(GB(y))

This can be done iteratively. For example, start with
nodes(0, C∗) and sum up all groups GB(j) for 0 ≤ j < C∗
and no group GF (i). This is equivalent to Reverse A*.
Then, add the next GF (i) group but delete the corresponding
GB(j) groups. This process is linear in the number of unique
g-costs. The pair (i, j = dual(i)) whose Nodes(i, j) is
minimal, forms the WVC and identifies i and j. The pseu-
docode for CalculateWVC() is given in Algorithm 1. The
functions nextgF and nextgB give the next gF -value and
the next gB-value. Line 7 adds the new GF (i) group while
Lines 11–12 delete the corresponding GB(j) groups.

Of course, determining the exact values of i and j =
dual(i) for the optimal partition can only be done post pri-
ori, after C∗ is known and after Ĝ was built. But this is much
simpler than building GMX and storing all the individual
states and edges.

7 From WVC to the Optimal Algorithm

CalculateWVC() calculates WVC post-priori after the
groups in Ĝ are known. We now aim to find a full bidirec-
tional search algorithm that is optimally effective.
Lemma 10: (dual is strongly restrained). Let (i, j =

dual(i)) be a pair of gF -value and gB-value in Ĝ. Let SF

the states from GMX that belong to all GF (i
′) with i′ < i

and let SB the states from GMX that belong to all GB(j
′)

with j′ < j. The pair of sets (SF , SB) is strongly restrained
for p = i/C∗.3
Proof: By definition, SF only includes states u for which
gF (u) < i = pC∗. In addition, SB only includes states v for
which gB(v) < j. Note that (1−p)C∗ = C∗−pC∗ = C∗−i
and that from definition 8 (of j = dual(i)) j is the minimal
gB-value for which ı + j ≥ C∗ so it’s also the minimal

3A similar lemma can be proved for j. In fact, there is a range
of possible values for p. But, it is enough to show one of them.

gB-value for which j ≥ C∗ − i = (1− p)C∗. We conclude
that SB only includes states v with gB(v) < j ≥ C∗ − i =
(1− p)C∗.

Since this is true for every pair of g-values (i, j =
dual(i)) it is also true for (i, j = dual(i)) – the pair of
g-values that define WVC. Therefore, there exists a fraction
0 ≤ p∗ ≤ 1 such that WVC is strongly restrained for p∗.

7.1 fMM that is Optimally Effective

Theorem 2. fMM(p∗) is optimally effective for p∗ = i/C∗

Proof: We need to show that the set of states with f < C∗
expanded by fMM(p∗) is exactly the set of states in VC.
First, recall from Theorem 2 that for 0 ≤ p ≤ 1, fMM(p) is
strongly restrained for all nodes it expands (including those
for which f = C∗). So, since the nodes with f < C∗
are a subset of these, it must be also strongly restrained for
nodes with f < C∗. Now, in Lemma 10 we have shown that
WVC is strongly restrained with p∗ = i/C∗. So, choosing
p∗ = i/C∗ for fMM makes it strongly restrained and there-
fore also strongly restrained for nodes with f < C∗. Since
choosing p∗ = i/C∗ gives WVC, it follows that fMM(i/C∗)
is optimally effective.

8 Experimental Results

In this section we study the impact of possible meeting
points of fMM in a variety of domains and with a variety
of heuristics. We will also compare the node expansions by
various algorithms to the optimal number of nodes required.
These results also provide experimental evidence around
questions raised by Barker and Korf (2015) and Holte et al.
(2016) as to where is the best meeting point.

We experimented on the following benchmarks with stan-
dard heuristics of different strength. (1) Grid-based pathfind-
ing: 50 maze instances and instances from the ‘brc’ maps
of Dragon Age Origins (DAO) (Sturtevant 2012). The oc-
tile heuristic is used which is relatively weak for mazes,
but relatively strong on DAO maps. (2) 4-peg Towers of
Hanoi (TOH4) problems with 14 disks (with random start
states and the canonical goal state). The heuristics were ad-
ditive pattern databases (Felner, Korf, and Hanan 2004) with
(12+2) and (10+4) disks. (3) Random pancake puzzles (with
the canonical goal state). The GAP heuristic (Helmert 2010)
is used, which is very strong. To get a range of heuristic
strengths we weakened GAP and used the GAP-x variants

88

(a) P-16(GAP-1) (b) P-16(GAP-2) (c) TOH4 (10+4 PDB) (d) Mazes

Figure 5: Ratio for individual instances (top) and for the average (bottom).

Domain h A* Rev-A* MM NBS

P-16 GAP 1.39 1.36 2.11 1.92
P-16 GAP-1 1.43 1.26 1.39 1.62
P-16 GAP-2 2.45 2.08 1.28 1.63

15 puzzle MD 1.55 1.15 1.44 1.43
TOH4 12+2 PDB 1.92 1.00 2.34 1.90
TOH4 10+4 PDB 3.75 1.09 2.28 1.29
Mazes Octile 1.79 1.82 1.91 1.22

DAO Octile 1.23 1.19 1.67 1.54

Table 1: Ratio of necessary nodes expanded and |VC|

where the x smallest items are left out of the heuristic com-
putation. (4) The standard 15 puzzle instances (Korf 1985)
with the Manhattan distance heuristic.

Table 1 presents the sum of node expansions over all
instances of states with f < C∗ divided by the size
of the minimal VC of GMX which was calculated using
CalculateWVC() (Algorithm 1). That is, it reports the ra-
tio of the expansions of the algorithms vs. the minimal re-
quired. We report results for A*, Reverse A* (RevA*), MM
and NBS. We note that the algorithms may continue to ex-
pand states with f = C∗ until a solution is found. But, as ex-
plained above, these are not regarded as must-expand states.
In fact, we found that in most of these domains such extra
nodes (with f = C∗) were never more than a few percent of
the total expansions.

For each domain the best ratio is in bold. As expected,
NBS is always less than 2×|VC|, but is usually not the best.
All the other algorithms had variance and for some domains
they were more than 2 × |VC|. Thus, NBS can be seen as
insurance that you will never expand more than twice the
necessary nodes. RevA* outperformed regular A* in many
domains because the branching factor at the fixed standard
goal is the minimal possible and is smaller than the branch-
ing factor for an average state in these domains.

We then calculated the number of must-expand nodes for

each possible p value across all instances of all domains.
This corresponds to running fMM with all possible values
of p. Figure 4 presents the distributions of p∗ for some of
these domains which illustrate the diversity of optimal meet-
ing points. In all the frames (in this and the next figure), the
x-axis corresponds to all possible meeting points (=all pos-
sible values of p). We note that the leftmost point is for the
meeting point at start which corresponds to RevA*. Like-
wise, the rightmost point is for regular A*.

With GAP-1 meeting in the middle is rarely optimal,
while the exact opposite holds in GAP-2. In TOH4 RevA*
dominates forward A*. On mazes, the optimal fractions fol-
low a bimodal distribution with the peaks near 0.2 and 0.8.

Figure 5 gives the ratio of the number of must-expanded
nodes for fMM(p) for each possible value of p vs. the min-
imal required. Individual instances are shown in the top
frames and averages are in the bottom frames. The dotted
line corresponds to NBS. Each individual curve must touch
the bottom line at least once; this corresponds to p∗ for this
instance. Figure 5(a) illustrates the 50 pancake puzzle in-
stances with the GAP-1 heuristic. Here (bottom) the exact
location of p has very little effect on the average number
of nodes expanded. Most instances expand relatively few
nodes over the minimum, regardless of p (top). With the
GAP-2 heuristic (Figure 5(b)), the best meeting point is in
the middle (bottom), and it is slightly better to search back-
wards than forward. Most instances follow this trend (top).
In the TOH4 (10+4 PDB) instances (Figure 5(c)), backwards
search is best since the branching factor at the canonical goal
is smaller. This is evident in both the individual instances
(top) and the average performance (bottom). Figure 5(d)
shows the results for 50 maze instances. Unlike the other
domains, here (bottom) neither forward search, backward
search or meeting in the middle is optimal. The instances
(top) show the two main concentrations of optimal meeting
points. It is interesting to observe that the performance NBS
improves while going from left to right in Figure 5 (bottom).

Looking over all these results we see a few trends. If we

89

know the optimal value p∗, that would always give us the
best performance. But, p∗ depends on the problem instances,
and is not known ahead of time. What’s most important is
that NBS is a powerful insurance policy for situations where
the correct value of p∗ is not known a priori.

9 Summary and Conclusions
This paper studies the post priori problem of minimizing
node expansions in front-to-end bidirectional search, pre-
senting an algorithm that can efficiently compute the min-
imum number of nodes expansions required to solve a sin-
gle problem instance. This algorithm returns a fraction, p,
which makes fMM(p), a parameterized front-to-front bidi-
rectional search algorithm, optimally effective. The bidirec-
tional frontiers of fMM meet at fraction p along the optimal
solution path. A*, Reverse A* and MM are all special cases
of fMM. This work allows us to study the nature of bidirec-
tional search algorithms and problem instances more deeply
and allows us to measure the suboptimality of NBS in prac-
tice.

Future work will study ways to predict optimal values of p
for different domains and problem instances using machine
learning and meta-reasoning. It will also be important to
study how our results change with front-to-front heuristics
and how algorithms can exploit heuristics that are known to
be consistent.

10 Acknowledgements
This research was supported by Israel Science Foundation
(ISF) grant #417/13 and by the National Science Foundation
under Grant No. 1551406.

References
Barker, J. K., and Korf, R. E. 2015. Limitations of front-
to-end bidirectional heuristic search. In Proc. 29th AAAI
Conference on Artificial Intelligence, 1086–1092.
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R. 2017.
Front-to-end bidirectional heuristic search with near-optimal
node expansions. In Proceedings of IJCAI. Also avaialble at
http://arxiv.org/abs/1703.03868.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. J. ACM 32(3):505–536.
Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient conditions for node expansion in
bidirectional heuristic search. In ICAPS.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pattern
database heuristics. JAIR 22:279–318.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Proc. 3rd Annual Symposium on Combinatorial
Search, (SoCS).
Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R.
2016. Bidirectional search that is guaranteed to meet in the
middle. In Proceedings of the AAAI Conference on Artificial
Intelligence.

Hopcroft, J. E., and Karp, R. M. 1973. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM J. Comput.
2(4):225–231.

Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Sturtevant, N., and Chen, J. 2016. External memory bidi-
rectional search. International Joint Conference on Artificial
Intelligence (IJCAI) 676–682.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games.

90

