
Extended Abstract: An Improved Priority
Function for Bidirectional Heuristic Search

Guni Sharon
Computer Science

University of Texas at Austin
Austin, Texas, U.S.A

(gunisharon@gmail.com)

Robert C. Holte
Computing Science Dept.

University of Alberta
Edmonton, Canada T6G 2E8

(rholte@ualberta.ca)

Ariel Felner
Information Systems Engineering

Ben-Gurion University
Beer-sheva, Israel
(felner@bgu.ac.il)

Nathan R. Sturtevant
Computer science

University of Denver
Denver, Colorado, USA
(sturtevant@cs.du.edu)

1 Introduction

Bidirectional search algorithms interleave a search forward
from the start state (start) and a search backward (i.e. using
reverse operators) from the goal state (goal). We say that the
two searches “meet in the middle” if neither search expands
a node whose g-value (in the given direction) exceeds C∗/2,
where C∗ is the cost of an optimal solution. The only bidirec-
tional heuristic search algorithm that is guaranteed to meet in
the middle under all circumstances is the recently introduced
MM algorithm (Holte et al. 2016). The feature of MM that pro-
vides this guarantee is its unique priority functions for nodes
on its open lists.

In this short note we present MMε, which enhances MM’s
priority function and is expected to expand fewer nodes than
MM under most circumstances. We sketch a proof of MMε’s
correctness, describe conditions under which MMε will expand
fewer nodes than MM and vice versa, and experimentally
compare MM and MMε on the 10-Pancake problem.

2 The MM Algorithm

MM runs an A*-like search in both directions, so we use
the usual notation—g, h, f, Open, etc.—but have separate
copies of these variables for the two search directions, with a
subscript (F or B) indicating the direction:

Forward search: fF , gF , hF , OpenF , ClosedF , etc.
Backward search: fB , gB , hB , OpenB , ClosedB , etc.

Node Priority: MM chooses to expand a node n from either
OpenF or OpenB with minimum “priority”, which is de-
fined for OpenF (and analogously for prB(n)) as:

prF (n) = max(fF (n), 2gF (n)) (1)

Stopping condition: MM keeps track of the cheapest path
from start to goal that it has seen so far, recording its cost
in the variable U (U = ∞ initially). MM detects that a new
path from start to goal has been found by checking if a
node generated in one search direction is present in the open
list of the other search direction, and updates U if necessary.
MM terminates as soon as U ≤ C, where C is the smallest
priority of any node on either open list.1

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1MM has additional stopping conditions so that it can terminate
sooner, but this stopping condition suffices for the proofs below.

MM has three important properties:

(P1) MM’s forward and backward searches meet in the mid-
dle, i.e. neither search expands a state whose distance from
the search’s origin (start for forward search, goal for
backward search) is larger than C∗/2.

(P2) MM never expands a node whose f -value exceeds C∗.

(P3) If there exists a path from start to goal MM returns C∗.

We wish to show that MMε has these properties as well. To
do that, we will first review the proof for MM and then show
that the same proof applies to MMε. The proof for MM is based
on the following three lemmas.
L1: Let d(x, y) be the cost of a least-cost path from state x
to state y. If d(start, s) > C∗/2, then prF (s) > C∗, and if
d(s, goal) > C∗/2, then prB(s) > C∗.
Proof (for the forward direction): prF (s) ≥ 2gF (s) ≥
2d(start, s). If d(start, s) > C∗/2 then prF (s) > C∗.

We say that a path from start to goal has been “found”
if one or more nodes on the path have been opened in both
directions.
L2: If P is an optimal path that has not been found, there will
exist a node n ∈ P such that n ∈ OpenF with prF (n) ≤ C∗
or n ∈ OpenB with prB(n) ≤ C∗.
Proof: Throughout MM’s execution there will be a node, nF ,
from P in OpenF with gF (nF) = d(start, nF), and a node,
nB , from P in OpenB with gB(nB) = d(nB , goal). Since
P has not yet been found there must exist a gap between nF

and nB , i.e. one or more edges from P that connect nF to
nB that MM has not traversed. This situation is depicted in
Figure 1 (left), where the dashed line between nF and nB

is the gap consisting of one or more edges. In this situation,
either gF (nF) ≤ cost(P)/2 or gB(nB) ≤ cost(P)/2 (or
both), where cost(P) = C∗ is the sum of the costs on P ’s
edges. Therefore prF (nF) ≤ cost(P) = C∗ or prB(nB) ≤
cost(P) = C∗ (or both).
L3: U > C∗ until the first optimal path from start to goal is
found, at which point U = C∗. This is a direct consequence
of the process by which U is updated.

We now sketch the proof that MM has properties P1–P3.
L2 and L3 together ensure that MM will not terminate before
an optimal path is found (L2 implies that C ≤ C∗ until all
optimal paths have been found and L3 says U > C∗ until

Proceedings of the Ninth International
Symposium on Combinatorial Search (SoCS 2016)

139

Figure 1: Left: The gap on an optimal path. Center: MMε expands fewer nodes. Right: MM expands fewer nodes.

the first optimal path is found). P3 follows because U = C∗
once an optimal path is found (L3).

L2 and L1 together ensure that MM will find an optimal
path before it expands any node in the forward direction with
prF (n) > C∗ or any node in the backward direction with
prB(n) > C∗. Together with L3 this implies that MM will
terminate before it expands any node in the forward direction
with fF (n) > C∗ or d(start, s) > C∗/2, or any node in
backward direction with fB(n) > C∗ or d(s, goal) > C∗/2,
thus proving P1 and P2.

3 MMε
εF (n) (εB(n)) is the cost of the cheapest forward (reverse)
operator applicable to n. MMε is identical to MM except for a
small change in how an open node’s priority is defined. In
MMε the priority of n ∈ OpenF is

prεF (n) = max(fF (n), 2gF (n) + εF (n)) (2)

prεB(n) is defined analogously. We now prove that MMε has
properties P1–P3 by showing that facts L1–L3 hold for MMε.

L1 is still true since prεF (s) ≥ prF (s) and prεB(s) ≥
prB(s). L3 is still true because it is not affected by the defini-
tion of a state’s priority. To see that L2 is still true, note that
d(nF , nB) is the cost of the gap illustrated in Figure 1 (left),
i.e. C∗ = gF (nF) + d(nF , nB) + gB(nB). Hence, at least
one of gF (nF) and gB(nB) must be less than or equal to
(C∗ − d(nF , nB))/2. The exact value of d(nF , nB) is not
known, but it always holds that εF (nF) ≤ d(nF , nB). Simi-
larly, εB(nB) ≤ d(nF , nB). Therefore, either gF (nF) ≤
(C∗ − εF (nF))/2 or gB(nB) ≤ (C∗ − εB(nB))/2. If
gF (nF) ≤ (C∗−εF (nF))/2 then 2gF (nF)+εF (nF) ≤ C∗.
Similar reasoning applies for gB(nB). L2 follows because at
least one of these must hold.
MM vs. MMε. εF (n) ≥ 0, prεF (n) ≥ prF (n), therefore MMε
is expected to outperform MM for the same reason that A*’s
performance is expected to improve with a better heuristic
function. But just as a better heuristic may cause A* to expand
more nodes (Holte 2010), so too MMε may expand more nodes
than MM.

Figure 1 (center) illustrates why MMε will often expand
fewer nodes than MM. Here gF (X) = 2, hF (X) = 1 and
εF (X) = 2. Therefore, prF (X) = 4 while prεF (X) =
4 + εF (X) = 6. After MM expands start, OpenF includes
three nodes, X , A, and goal with priorities 4, 7, and 10, re-
spectively. At this point U = 5. Now MM expands goal in
the backward direction (prB(goal) = 3). At this point X is
the only open node with priority less than U = 5 so it is ex-
panded and MM halts. MMε also expands start in the forward
direction and goal in the backward direction, but it can halt at
that point, without expanding X , because prεF (X) = 6 > U .

h ≡ 0 GAP-3 GAP-2 GAP-1 GAP
A* 2,801,751 302,363 80,239 12,629 318
MM 9,449 37,403 29,925 8,883 478
MMε 9,449 8,681 8,297 3,751 342

Table 1: 10-pancake: nodes expanded for C∗ = 11.

Figure 1 (right) is an example where MMε expands more
nodes than MM when both use all of MM’s stopping condi-
tions (Holte et al. 2016). Both algorithms begin by expanding
start (forward) and goal (backward). Node A will not be ex-
panded in the forward direction by either algorithm because
gF (A) = 8 > 6 = C∗/2 and both algorithms will halt as
soon as A is expanded in the backward direction (when that
happens U = 12 ≤ gminF + gminB + ε = 18 (gminX

is the minimum g-value in OpenX (X ∈ {B,F}) and ε is
the smallest edge cost in the space). For both algorithms
prF (X) = fF (X) = 9. For MM, prB(A) = 8 so MM will
expand it before X and then halt. For MMε, prB(A) = 12 so
MM will expand X before A.

4 Experimental results

Table 1 shows the average number of nodes expanded over 30
instances, all with C∗ = 11, on the 10-pancake problem. The
constant time per node was very similar for all algorithms
and thus time is not reported. To examine the effect of the
heuristic’s accuracy on the relative performance of the al-
gorithms, we used heuristics of varying accuracy. We used
the GAP heuristic (Helmert 2010) and created less accurate
heuristics from it, referred to as GAP-X, by not counting the
gaps involving any of the X smallest pancakes. For example,
GAP-2 does not count the gaps involving pancakes 0 or 1.

A* is the best algorithm for the very accurate GAP heuris-
tic. As explained by Holte et al. (2016), for weaker heuristics
MM and MMε outperform A*. MMε is always better than MM, by
a factor of up to 4. Holte et al. (2016) describe an “anomaly”
that MM without a heuristic (first column) can outperform MM
with weak heuristics. This can be seen for MM with GAP-2
and GAP-3. Although this anomaly is theoretically possible
for MMε, it does not occur in this experiment.

References
Helmert, M. 2010. Landmark heuristics for the pancake problem.
In Proc. 3rd Annual Symposium on Combinatorial Search, (SoCS).
Holte, R.; Felner, A.; Sharon, G.; and Sturtevant, N. 2016. Bidirec-
tional search that is guaranteed to meet in the middle. In AAAI.
Holte, R. C. 2010. Common misconceptions concerning heuristic
search. In SoCS.

140

