A Randomized Mirror Descent Algorithm for
Large Scale Multiple Kernel Learning

Arash Afkanpour
Andras Gyorgy

Csaba Szepesvari
Michael Bowling

AFKANPOUQUALBERTA.CA
GYORGYQUALBERTA.CA
SZEPESVAQUALBERTA.CA
BOWLING@CS.UALBERTA.CA

Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8 Canada

Abstract

We consider the problem of simultaneously
learning to linearly combine a very large
number of kernels and learn a good predictor
based on the learnt kernel. When the number
of kernels d to be combined is very large,
multiple kernel learning methods whose
computational cost scales linearly in d are
intractable. We propose a randomized version
of the mirror descent algorithm to overcome
this issue, under the objective of minimizing
the group p-norm penalized empirical risk.
The key to achieve the required exponential
speed-up is the computationally efficient
construction of low-variance estimates of the
gradient. We propose importance sampling
based estimates, and find that the ideal
distribution samples a coordinate with a
probability proportional to the magnitude of
the corresponding gradient. We show that in
the case of learning the coeflicients of a poly-
nomial kernel, the combinatorial structure of
the base kernels to be combined allows sam-
pling from this distribution in O(log(d)) time,
making the total computational cost of the
method to achieve an e-optimal solution to be
O(log(d)/€?), thereby allowing our method to
operate for very large values of d. Experiments
with simulated and real data confirm that
the new algorithm is computationally more
efficient than its state-of-the-art alternatives.

1. Introduction

We look into the computational challenge of finding a
good predictor in a multiple kernel learning (MKL) set-

Proceedings of the 30™ International Conference on
Machine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

ting where the number of kernels is very large. In partic-
ular, we are interested in cases where the base kernels
come from a space with combinatorial structure and
thus their number d could be exponentially large. Just
like some previous works (e.g. Rakotomamonjy et al.,
2008; Xu et al., 2008; Nath et al., 2009) we start with
the approach that views the MKL problem as a nested,
large scale convex optimization problem, where the first
layer optimizes the weights of the kernels to be com-
bined. More specifically, as the objective we minimize
the group p-norm penalized empirical risk. However,
as opposed to these works whose underlying iterative
methods have a complexity of 2(d) for just any one iter-
ation, following (Nesterov, 2010; 2012; Shalev-Shwartz
and Tewari, 2011; Richtdrik and Takag¢, 2011) we use
a randomized coordinate descent method, which was
effectively used in these works to decrease the per iter-
ation complexity to O(1). The role of randomization in
our method is to use it to build an unbiased estimate
of the gradient at the most recent iteration. The issue
then is how the variance (and so the number of itera-
tions required) scales with d. As opposed to the above
mentioned works, in this paper we propose to make the
distribution over the updated coordinate dependent on
the history. We will argue that sampling from a distri-
bution that is proportional to the magnitude of the gra-
dient vector is desirable to keep the variance (actually,
second moment) low and in fact we will show that there
are interesting cases of MKL (in particular, the case of
combining kernels coming from a polynomial family of
kernels) when efficient sampling (i.e., sampling at a cost
of O(log d)) is feasible from this distribution. Then, the
variance is controlled by the a priori weights put on the
kernels, making it potentially independent of d. Under
these favorable conditions (and in particular, for the
polynomial kernel set with some specific prior weights),
the complexity of the method as a function of d becomes
logarithmic, which makes our MKL algorithm feasible
even for large scale problems. This is to be contrasted

A Randomized Mirror Descent Algorithm for Large Scale MKL

to the approach of Nesterov (2010; 2012) where a fixed
distribution is used and where the a priori bounds on
the method’s convergence rate, and, hence, its compu-
tational cost to achieve a prescribed precision, will de-
pend linearly on d (note that we are comparing upper
bounds here, so the actual complexity could be smaller).
Our algorithm is based on the mirror descent (or mir-
ror descent) algorithm (similar to the work of Richtarik
and Tak&¢ (2011) who uses uniform distributions).

It is important to mention that there are algorithms
designed to handle the case of infinitely many kernels,
for example, the algorithms by Argyriou et al. (2005;
2006); Gehler and Nowozin (2008). However, these
methods lack convergence rate guarantees, and, for
example, the consistency for the method of Gehler and
Nowozin (2008) works only for “small” d. The algo-
rithm of Bach (2008), though practically very efficient,
suffers from the same deficiency. A very interesting
proposal by Cortes et al. (2009) considers learning to
combine a large number of kernels and comes with
guarantees, though their algorithm restricts the family
of kernels in a specific way.

The rest of the paper is organized as follows. The
problem is defined formally in Section 2. Our new
algorithm is presented and analyzed in Section 3, while
its specialized version for learning polynomial kernels
is given in Section 4. Finally, experiments are provided
in Section 5.

2. Preliminaries

In this section we give the formal definition of our
problem. Let Z denote a finite index set, indexing the
predictors (features) to be combined, and define the set
of predictors considered over the input space X as F =
{fu: X 2R : fulr) =Yz (i, ¢i(2)), =€ X}

Here W, is a Hilbert space over the reals, ¢; : X — W;
is a feature-map, (z,y) is the inner product
over the Hilbert space that z,y belong to and
w = (w;)iez € W = X;ezW; (as an example, W; may
just be a finite dimensional Euclidean space). The prob-
lem we consider is to solve the optimization problem

minimize L, (f,)+Pen(f,) subjecttow e W, (1)

where Pen(f,,) is a penalty that will be specified later,
and Ly, (f,) = 237, £(fuw(2:))is the empirical risk
of predictor f,,, defined in terms of the convex losses
6;:R—-R(1<t<n)andinputsz; € X (1 <t < n).
The solution w* of the above penalized empirical risk
minimization problem is known to have favorable gener-
alization properties under various conditions, see, e.g.,
Hastie et al. (2009). In supervised learning problems
li(y) = £(yt,y) for some loss function £ : R x R — R,

such as the squared-loss, ((y;,y) = 3(y — y)? or
the hinge-loss, ¢;(y;,y) = max(l — yy;,0), where
in the former case y; € R, while in the latter case
yr € {—1,41}. We note in passing that for the sake
of simplicity, we shall sometimes abuse notation and
write L,(w) for L,(f,) and even drop the index n
when the sample-size is unimportant.

As mentioned above, in this paper we consider the spe-
cial case in (1) when the penalty is a so-called group
p-norm penalty with 1 < p < 2, a case considered ear-
lier, e.g., by Kloft et al. (2011). Thus our goal is to solve

2
1 p
. . . - p . p
minimize Ly (w) + (Z o ||w1||2> , (2
i€L
where the scaling factors p; > 0,7 € Z, are assumed to
be given. We introduce the notation v = (u;) € RT to
denote the column vector obtained from the values u;.

The rationale of using the squared weighted p-norm is
that for 1 < p < 2 it is expected to encourage sparsity
at the group level which should allow one to handle
cases when 7 is very large (and the case p = 2 comes
for free from the same analysis). The actual form,
however, is also chosen for reasons of computational
convenience. In fact, the reason to use the 2-norm of
the weights is to allow the algorithm to work even with
infinite-dimensional feature vectors (and thus weights)
by resorting to the kernel trick. To see how this works,
just notice that the penalty in (2) can also be written as

% 2 2
N BETR DA i N
(pz||w’t||2> ln{ 0. 0 2—p ’

i€T i€T v

where for v > 1, A, = {0 € [0,1] : ||, < 1} is the
positive quadrant of the |Z|-dimensional ¢”-ball (see,
e.g., Micchelli and Pontil, 2005, Lemma 26). Hence,
defining
1 PEllwill3
J =1L = !
(w0) = L(w) + 5 Y 2
i€L
for any w € W, 0 € [0, 1]"], an equivalent form of (2) is
minimize J(w,#)
weEW,0EA,,
wherev = p/(2—p) € [1, 00) and we define 0/0 = 0 and
u/0 = oo for u > 0, which implies that w; = 0 if §; = 0.
That this minimization problem is indeed equivalent

to our original task (2) for the chosen value of v follows
from the fact that J(w, 6) is jointly convex in (w, 8).

Let k; : X x X — R be the reproducing kernel under-
lying ¢;: ki(z,2') = (¢s(x), ¢i(z")) (z,2' € X) and let
‘H; = H,, the corresponding reproducing kernel Hilbert
space (RKHS). Then, for any given fixed value of 6,
the above problem becomes an instance of a standard

A Randomized Mirror Descent Algorithm for Large Scale MKL

penalized learning problem in the RKHS Hy underlying
the kernel kg = Ziez Gip;2/<;i. In particular, by the
theorem on page 353 in Aronszajn (1950), the problem
of finding w € W for fixed 0 can be seen to be equivalent
to minimize ey, L(f)+35]fl3,,and thus (2) isseen to
be equivalent to minimizefey, oea, L(f) + 3/ f1I3, -
Thus, we see that the method can be thought of as
finding the weights of a kernel kg and a predictor
minimizing the Hy-norm penalized empirical risk. This
shows that our problem is an instance of multiple kernel
learning (for an exhaustive survey of MKL, see, e.g.,
Gonen and Alpaydin, 2011 and the references therein).

3. The new approach

When 7 is small, or moderate in size, the joint-
convexity of J allows one to use off-the-shelf solvers to
find the joint minimum of J. However, when 7 is large,
off-the-shelf solvers might be slow or they may run out
of memory. Targeting this situation we propose the
following approach: Exploiting again that J(w,) is
jointly convex in (w,), find the optimal weights by
finding the minimizer of

J(0) = iIul)f J(w,),

or, alternatively, J(0) = J(w*(#),0), where
w*(f) = argmin, J(w,) (here we have slightly
abused notation by reusing the symbol J). Note

that J(0) is convex by the joint convexity of J(w,@).
Also, note that w*(0) exists and is well-defined as the
minimizer of J(-,) is unique for any 8 € A, (see also
Proposition 3.2 below). Again, exploiting the joint
convexity of J(w,#), we find that if * is the minimizer
of J(#), then w*(6*) will be an optimal solution to the
original problem (2). To optimize J(#) we propose to
use stochastic gradient descent with artificially injected
randomness to avoid the need to fully evaluate the
gradient of J. More precisely, our proposed algorithm
is an instance of a randomized version of the mirror
descent algorithm (Rockafellar, 1976; Martinet, 1978;
Nemirovski and Yudin, 1998), where in each time step
only one coordinate of the gradient is sampled.

3.1. A randomized mirror descent algorithm

Before giving the algorithm, we need a few definitions.
Let d = |Z|], A € R? be nonempty with a convex
interior A°. We call the function ¥ : A — R a Legendre
(or barrier) potential if it is strictly convex, its partial
derivatives exist and are continuous, and for every
sequence {xy} C A approaching the boundary of A,
limg 00 [[V¥(z)|| = co. Here V is the gradient oper-
ator: VU(z) = (2 ¥(z))" is the gradient of ¥. When

V is applied to a non-smooth convex function J'(6)
(J may be such without additional assumptions) then

Algorithm 1 Randomized mirror descent algorithm

1: Input: A, K C R? where K is closed and convex
with K N A # (), ¥ : A — R Legendre, step sizes
{mk}, a subroutine, GradSampler, to sample the
gradient of J at an arbitrary vector § > 0

2: Initialization: 0(0) = argming. x4 ¥(6).

3: fork=1,2,...do

4: Obtain g, = GradSampler(6*~1)

5. 0% =arg minge 4 {Uk—l@k, 0y + Dy (6, G(k_l))}.
7: end for

VJ'(0) is defined as any subgradient of J’ at §. The
corresponding Bregman-divergence Dy : A x A° — R
isdefined as Dy (6,0") = ¥ (0)—T(6")— (VT (0'),0-0").
The Bregman projection Ily i : A° — K correspond-
ing to the Legendre potential ¥ and a closed convex set
K C R%such that K N A # () is defined, for all § € A°
as Iy x (0) = argming ¢ g4 Dy (6, 0).

Algorithm 1 shows a randomized version of the stan-
dard mirror descent method with an unbiased gradient
estimate. By assumption, 7 > 0 is deterministic.
Note that step 1 of the algorithm is well-defined since
0() € A° by the assumption that |V¥(z)| tends to
infinity as « approaches the boundary of A. The perfor-
mance of Algorithm 1 is bounded in the next theorem.
The analysis follows the standard proof technique of
analyzing the mirror descent algorithm (see, e.g., Beck
and Teboulle, 2003), however, in a slightly more general
form than what we have found in the literature. In par-
ticular, compared to (Nemirovski et al., 2009; Nesterov,
2010; 2012; Shalev-Shwartz and Tewari, 2011; Richtarik
and Takag, 2011), our analysis allows for the conditional
distribution of the noise in the gradient estimate to be
history dependent. The proof is omitted due to space
limitations and is given in (Afkanpour et al., 2013).

Theorem 3.1. Assume that ¥ is a-strongly convex
with respect to some norm || - || (with dual norm || - ||«)
for some a > 0, that is, for any 0 € A°, 6 € A
W) — W(8) > (VU(0),0' — 0) + 38 —]2

Suppose, furthermore, that Algorithm 1 is run for
T time steps. For 0 < k < T — 1 let Fi de-
note the o-algebra generated by 01,...,0,. Assume
that, for all 1 < k < T, gp € R% 4s an unbi-
ased estimate of VJ(O¥FV) given Fp_1, that is,
E[g| Fe_1] = VJ(OF=D). Further, assume that there
exists a deterministic constant B > 0 such that for
all1 < k < T, E[||gull?| Fe-1] £ B a.s. Finally,
assume that § = supgcna (') — U(0©) is finite.

Then, if np_1 = \/%QT‘S for allk > 1, it holds that

T
1 285
- (k—1) — i < /=2
J(T;e >] ganl O <\

E

A Randomized Mirror Descent Algorithm for Large Scale MKL

Furthermore, if ||gx||2 < B’ a.s. for some determinis-
tic constant B' andn,_1 = % forallk > 1 then, for

any 0 < e < 1, it holds with probability at least 1 — e that

1 T
J(TZW—U)— inf J(

0eEKNA
k=1

The convergence rate in the above theorem can be
improved if stronger assumptions are made on J, for
example if J is assumed to be strongly convex, see, for
example, (Hazan et al., 2007; Hazan and Kale, 2011).

Efficient implementation of Algorithm 1 depends
on efficient implementations of steps 1-1, namely,
computing an estimate of the gradient, solving the
minimization for #%), and projecting it into K. The
first problem is related to the choice of gradient esti-
mate we use, which, in turn, depends on the structure
of the feature space, while the last two problems
depend on the choice of the Legendre function. In the
next subsections we examine how these choices can be
made to get a practical variant of the algorithm.

3.2. Application to multiple kernel learning

It remains to define the gradient estimates g in Algo-
rithm 1. We start by considering importance sampling
based estimates. First, however, let us first verify
whether the gradient exist. Along the way, we will also
derive some explicit expressions which will help us later.

Closed-form expressions for the gradient. Let
us first consider how w*(#) can be calculated for a
fixed value of 6. As it will turn out, this calculation
will be useful not only when the procedure is stopped
(to construct the predictor f,«(g) but also during the
iterations when we will need to calculate the derivative
of J with respect to ;. The following proposition
summarizes how w*(6) can be obtained. Note that this
type of result is standard (see, e.g., Shawe-Taylor and
Cristianini, 2004; Schélkopf and Smola, 2002), thus we
include it only for the sake of completeness.

Proposition 3.2. For 1 < t < n, let
Zf + R — R denote the convexr conjugate of f;:
;(v) = sup,ep{vr —4(7)}, v € R. Fori € I,
recall that rki(xz,2') = (¢i(x),di(z))), and let
Ki = (ki(®,s))1<t.s<n be the n x n kernel ma-
trix underlying k; and let Ky = ZZGI o “IC; be the
% k;. Then, for

€L P;
any fized 0, the minimizer w*(0) of J(-,0) satisfies

55 ai0)

Ztl

kernel matriz underlying ko = Y,

¢zxt iEIu

[2B’§ [B'§log *
< <.
0) < aT 4 aoT

where
o*(0) = argming cpn {30 Koo+ L 30 6 (—noy)} .

Based on this proposition, we can compute the predictor
fuw= (o) using the kernels {r;};cz and the dual variables
(i (O))1<i<n: furo)(®) = Xiez (Wi (0), ¢i(x)) =
Dt 07 (0)ke (e,) .

Let us now consider the differentiability of J = J(0)
and how to compute its derivatives. Under proper
conditions with standard calculations (e.g., Rakotoma-
monjy et al., 2008) we find that J is differentiable over
A and its derivative can be written as

0 a*(0)TK;a*(0)
o9 207" = (P})ieI . ®)

Importance sampling based estimates. Let
d = |Z| and let e;, i € T denote the i*" unit vector of
the standard basis of R?, that is, the i*" coordinate of
e; is 1 while the others are 0. Introduce

gi = (VIO) ei), i€l

to denote the i*" component of the gradient of J in
iteration k (that is, gx ; can be computed based on (3)).
Let sx_1 € [0, 1]% be a distribution over Z, computed in
some way based on the information available up to the
end of iteration k — 1 of the algorithm (formally, s;_1
is Fi_1-measurable). Define the importance sampling
based gradient estimate to be

Iy .

Jk,i = =i} k1., €I, where I, ~ sp_1.. (4)
Sk—1,I}

That is, the gradient estimate is obtained by first

sampling an index from si_;. and then setting the
gradient estimate to be zero at all indices i € 7
except when ¢ = I in which case its value is set to
be the ratio Skgfif’;k It is easy to see that as long as

Sg—1,; > 0 holds whenever g, ; # 0, then it holds that
E (g Fe1] = VJI(OF D) as.

Let us now derive the conditions under which the sec-
ond moment of the gradient estimate stays bounded.
Define Cj,_; = HVJ(G(k_l))Hl. Given the expres-
sion for the gradient of J shown in (3), we see that
supys; Cr—1 < oo will always hold provided that a*(9)
is continuous since (*~1));>; is guaranteed to belong
to a compact set (the continuity of o is discussed in
Afkanpour et al., 2013).

Define the probability distribution gr_1,. as follows:
k-1, = Ck{l lgkil » ¢ € Z. Then it holds that

2 q 2
g lenl? = B2 G e

lgull2 =

P a—
Sk—1,1 Sk—

A Randomized Mirror Descent Algorithm for Large Scale MKL

Algorithm 2 Projected stochastic gradient algorithm.

1: Initialization: W¥(z) = |z[|3, 950) = 0 for all
i € T, step sizes {ny}.

:fork=1,2,...do

Sample a gradient estimate §p of g(A*~1)

randomly according to (4).

%) =TIy A, (0FD — mp_10).

5: end for

w N

r'%

Therefore, it also holds that E [[|gxl|2| Fr-1] =
dk—1,i

2
2 drk—1,i
Ck*l Z’LEI Sk—1,i Sk—1,i
This shows that supjs; E[[|gel2| Fee1] < oo will
hold as long as sup,s; max;er Loli < o0 and

eill?.

el|2 < CF_ maxer

Sk—1,i

supy>; Cr—1 < oco. Note that when sx_1 = qr_1, the
gradi%nt estimate becomes g, ; = Ck,lﬂ{jt:i}. That is,
in this case we see that in order to be able to calculate
Jk,i» we need to be able to calculate Cj_; efficiently.

Choosing the potential ¥. The efficient sampling
of the gradient is not the only practical issue, since
the choice of the Legendre function and the convex set
K may also cause some complications. For example,
if U(zr) = > crzi(lnz; — 1), then the resulting
algorithm is exponential weighting, and one needs to
store and update |Z| weights, which is clearly infeasible
if |Z| is very large (or infinite). On the other hand, if
¥(z) = i||z||3 and we project to K = A,, the positive
quadrant of the ¢2-ball (with A = [0, 00)%), we obtain a
stochastic projected gradient method, shown in Algo-
rithm 2. This is in fact the algorithm that we use in the
experiments. Note that in (2) this corresponds to using
p = 4/3. The reason we made this choice is because in
this case projection is a simple scaling operation. Had
we chosen K = Ay, the £2-projection would very often
cancel many of the nonzero components, resulting in an
overall slow progress. Based on the above calculations
and Theorem 3.1 we obtain the following performance
bound for our algorithm.

Corollary 3.3. Assume that a*(6) is continuous on
As. Then there exists a C > 0 such that ||%J(9)||1 <C
for all 0 € Ay, Let B = %CQ MaX;eT 1<k<T g’;jz
If Algorithm 2 is run for T steps with ng_1 = n =
1/V/BT,k=1,...,T, then, for all § € Ay,

1) 1 B
J(T;N)>]—J(9)§ =

Note that to implement Algorithm 2 efficiently, one has
to be able to sample from s . and compute the impor-
tance sampling ratio g ;/sk,; efficiently for any k and i.

E

4. Example: Polynomial kernels

In this section we show how our method can be applied
in the context of multiple kernel learning. We provide

an example when the kernels in Z are tensor products
of a set of base kernels (this we shall call learning
polynomial kernels). The importance of this example
follows from the observation of Gonen and Alpaydin
(2011) that the non-linear kernel learning methods
of Cortes et al. (2009), which can be viewed as a
restricted form of learning polynomial kernels, are far
the best MKL methods in practice and can significantly
outperform state-of-the-art SVM with a single kernel
or with the uniform combination of kernels.

Assume that we are given a set of base kernels
{K1,...,k}. In this section we consider the set
Kp of product kernels of degree at most D: Choose
Z = {(r1,...,mq) : 0<d<D,1<r;<r} and the
multi-index r1.4 = (r1,...,74) € Z defines the kernel
Koy, (@, 2') = H?zl Kr; (z,2'). For d = 0 we define
Kryo(2,2") = 1. Note that indices that are the permu-
tations of each other define the same kernel. On the
language of statistical modeling, &,,,, models interac-
tions of order d between the features underlying the base
kernels k1, . . ., k. Also note that |Z| = ©(rP), that is,
the cardinality of Z grows exponentially fast in D.

We assume that p,,, depends only on d, the order
of interactions in k., ,. By abusing notation, we will
write pg in the rest of this section to emphasize this.!
Our proposed algorithm to sample from g1 . is shown
in Algorithm 3. The algorithm is written to return a
multi-index (z1,. .., zq) that is drawn from g;_1,.. The
key idea underlying the algorithm is to exploit that
(i1 ki) = X, ez Frq- The correctness of the
algorithm is shown in Section 4.1. In the description of
the algorithm ® denotes the matrix entrywise product
(a.k.a. Schur, or Hadamard product) and A®* denotes
A®...® A, and we set the priority of ® to be higher
—_——

S
than that of the ordinary matrix product (by definition,
all the entries of A®° are 1).

Let us now discuss the complexity of Algorithm 3.
For this, first note that computing all the Hadamard
products S©4 @' = 0,...,D requires O(Dn?) com-
putations. Multiplication with Mjy_; can be done
in O(n?) steps. Finally, note that each iteration of
the for loop takes O(rn?) steps, which results in the
overall worst-case complexity of O(rn?D) if a*(0x_1)
is readily available. The computational complexity
of determining a*(fx_;) depends on the exact form
of /;, and can be done efficiently in many situations:
if, for example, /; is the squared loss, then a* can be

!Using importance sampling, more general weights can
also be accommodated, too without effecting the results as
long as the range of weights (py,.,) is kept under control for
all d.

A Randomized Mirror Descent Algorithm for Large Scale MKL

Algorithm 3 Polynomial kernel sampling.
1: Input: o € R™, the solution to the dual problem;
kernel matrices {1, ..., K, }; the degree D of the
polynomial kernel, the weights (p3, ..., p%).

2: S Y0 Kj, M+ aa’
3. 8(d') « p3? <M, s@d/>, de{0,...,D}
4: Sample d from 6(-)/ S0 _, 6(d)
5: for i = lto%ds%m oK
tr - j .
6: W(])%W,]6{17,7’}
7: Sample z; from 7 ()
& M+ Mok,
9: end for
10: return (z1,...,2q)

computed in O(n3) time. An obvious improvement
to the approach described here, however, would be
to subsample the empirical loss L,,, which can bring
further computational improvements. However, the
exploration of this is left for future work.

Finally, note that despite the exponential cardinality of
|Z|, due to the strong algebraic structure of the space of
kernels, Cj_1 can be calculated efficiently. In fact, it is
not hard to see that with the notation of the algorithm,
Cro1 = 25)/:0 d(d’). This also shows that if pg decays
“fast enough”, Cx_1 can be bounded independently of
the cardinality of Z.

4.1. Correctness of the sampling procedure
In this section we prove the correctness of Algorithm 3.

As said earlier, we assume that p,, , depends only on d,
the order of interactions in &,,,, and, by abusing nota-
tion, we will write pg to emphasize this. Let us now con-
sider how one can sample from g, _1,.. The implementa-
tion relies on the fact that (Z;Zl k)4 = Y orget Frna-
Remember that we denoted the kernel matrix un-
derlying some kernel k by Kj, and recall that Kk
is an n X n matrix. For brevity, in the rest of this
section for kK = k,,,, we will write K,, , instead of
IC,.@TM. Define My, _1 = a*(0x_1)a*(0x_1)". Thanks
to (3) and the rotation property of trace, we have
hryg = —p;2tr(Mk,1 K+,.,) - The plan to sample from
Q-1 = |9k,-1/ 220, sex |9kr1.q| 15 as follows: We first
draw the order of interactions, 0 < d < D. Given d= d,
we restrict the draw of the random multi-index Ry.4 to
the set {r1.q € Z}. A multi-index will be sampled in
a cZ—step process: in each step we will randomly choose
an index from the indices of base kernels according to
the following distributions. Let S = Ky + ... + K, let

Py 2tr(My_1.S)
Y=o Py tr(M—159%)

P (cZ - d|f,H) -

and, with a slight abuse of notation, for any 1 <1 < d
define

P (Ri = 7| Fr1,d=d, Rij1 = 7”1:i—1>

tr (My—1 © (©i,K,,) @ 52@=D)
STt (Vi © (013K,,) 0 Ky © 550-7)

where we used the sequence notation (namely, si.p
denotes the sequence (s1,...,sp)). We have, by the
linearity of trace and the definition of S that

ZT: tr (Mk—l ® (0ZIK,) 0Ky © 5®<d7i>)

=1
= tr (Mk—l © (Oj51K,) © S@(d‘i“))
Thus, by telescoping,
P (cz =d,Ri.q = Tl;d|fk—1)
pg (M1 Ky © ... 0Ky, ©Kry)
Yo Py’ tr(My15°%)

as desired. An optimized implementation of drawing
these random variables is shown as Algorithm 3. The
algorithm is written to return the multi-index Ry.4.

5. Experiments

In this section we apply our method to the problem
of multiple kernel learning in regression with the
squared loss: L(w) = 137 (fu(zy) —)2, where
(z¢,y:) € R" x R are the input-output pairs in the data.
In these experiments our aim is to learn polynomial
kernels (cf. Section 4).

We compare our method against several kernel learning
algorithms from the literature on synthetic and real
data. In all experiments we report mean squared error
over test sets. A constant feature is added to act as
offset, and the inputs and output are normalized to
have zero mean and unit variance. Each experiment is
performed with 10 runs in which we randomly choose
training, validation, and test sets. The results are
averaged over these runs.

5.1. Convergence speed

In this experiment we examine the speed of convergence
of our method and compare it against one of the fastest
standard multiple kernel learning algorithms, that is,
the p-norm multiple kernel learning algorithm of Kloft

et al. (2011) with p = 2,2 and the uniform coordinate

*Note that p = 2 in Kloft et al. (2011) notation corre-
sponds to p = 4/3 or v = 2 in our notation, which gives the
same objective function that we minimize with Algorithm 2.

A Randomized Mirror Descent Algorithm for Large Scale MKL

descent algorithm that updates one coordinate per
iteration uniformly at random (Nesterov, 2010; 2012;
Shalev-Shwartz and Tewari, 2011; Richtdrik and Takac,
2011). We aim to learn polynomial kernels of up to de-
gree 3 with all algorithms. Our method uses Algorithm
3 for sampling with D = 3. The set of provided base
kernels is the linear kernels built from input variables,
that is, k() (z,2") = x(i)x’(i), where x(;) denotes the ith
input variable. For the other two algorithms the kernel
set consists of product kernels from monomial terms
for D € {0,1,2,3} built from r base kernels, where r is
the number of input variables. The number of distinct
product kernels is (r‘ED) In this experiment for all al-
gorithms we use ridge regression with its regularization
parameter set to 107°. Experiments with other values
of the regularization parameter achieved similar results.

We compare these methods in four datasets from the
UCI machine learning repository (Frank and Asuncion,
2010) and the Delve datasets®. We run all algorithms
for a fixed amount of time and measure the value of the
objective function (1), that is, the sum of the empirical
loss and the regularization term. Figure 1 shows the
performance of these algorithms. In this figure STOCH
represents our algorithms, KLOFT represents the
algorithm of Kloft et al. (2011), and UCD represents
the uniform coordinate descent algorithm.

The results show that our method consistently out-
performs the other algorithms in convergence speed.
Note that our stochastic method updates one kernel
coefficient per iteration, while KLOFT updates (TBD)
kernel coefficients per iteration. The difference between
the two methods is analogous to the difference between
stochastic gradient vs. full gradient algorithms. While
UCD also updates one kernel coefficient per iteration its
naive method of selecting coordinates results in a slower
overall convergence compared to our algorithm. In the
next section we compare our algorithm against several
representative methods from the MKL literature.

5.2. Synthetic data

In this experiment we examine the effect of the
size of the kernel space on prediction accuracy and
training time of MKL algorithms on synthetic data.
Experiments with real datasets also give promising
results. Due to the lack of space these results are
presented in (Afkanpour et al., 2013). We generated
data for a regression problem. Let r denote the number
of dimensions of the input space. The inputs are
chosen uniformly at random from [—1, 1]". The output
of each instance is the uniform combination of 10
monomial terms of degree 3 or less. These terms are

3 www.cs.toronto.edu/~delve/data/datasets.html

chosen uniformly at random among all possible terms.
The outputs are noise free. We generated data for
r € {5,10,20,...,100}, with 500 training and 1000
test points. The regularization parameter of the ridge
regression algorithm was tuned from {107%,... 10%}
using a separate validation set with 1000 data points.

We compare our method (STOCH) against the algorithm
of Kloft et al. (2011) (KLOFT), the nonlinear kernel
learning method of Cortes et al. (2009) (CORTES),
and the hierarchical kernel learning algorithm of Bach
(2008) (BAcH).* The set of base kernels consists of r
linear kernels built from the input variables. Recall
that the method of Cortes et al. (2009) only considers
kernels of the form rg = (3.;_, 0;k;)”, where D is
a predetermined integer that specifies the degree of
nonlinear kernel. Note that adding a constant feature
is equivalent to adding polynomial kernels of degree
less than D to the combination too. We provide all
possible product kernels of degree 0 to D to the kernel
learning method of Kloft et al. (2011). For our method
and the method of Bach (2008) we set the maximum
kernel degree to D = 3.

The results are shown in Figure 2, the mean squared
errors are on the left plot, while the training times are
on the right plot. In the training-time plot the num-
bers inside brackets indicate the total number of dis-
tinct product kernels for each value of r. This is the
number of kernels fed to the KLOFT algorithm. Since
this method deals with a large number of kernels, it was
possible to precompute and keep the kernels in memory
(8GB) for r < 25. Therefore, we ran this algorithm for
r < 25. For r > 25, we could use on-the-fly implemen-
tation of this algorithm, however that further increases
the training time. Note that the computational cost of
this method depends linearly on the number of kernels,
which in this experiment, is cubic in the number of in-
put variables since D = 3. While the standard MKL
algorithms, such as KLOFT, cannot handle such large
kernel spaces, in terms of time and space complexity, the

“While several fast MKL algorithms are available in

the literature, such as those of Sonnenburg et al. (2006);
Rakotomamonjy et al. (2008); Xu et al. (2010); Orabona
and Luo (2011); Kloft et al. (2011), a comparison of the
reported experimental results shows that from among these
algorithms the method of Kloft et al. (2011) has the best
performance overall. Hence, we decided to compare against
only this algorithm. Also note that the memory and com-
putational cost of all these methods still scale linearly with
the number of kernels, making them unsuitable for the case
we are most interested in. Furthermore, to keep the focus of
the paper we compare our algorithm to methods with sound
theoretical guarantees. As such, it remains for future work
to compare with other methods, such as the infinite kernel
learning of Gehler and Nowozin (2008), which lack such
guarantees but exhibit promising performance in practice.

www.cs.toronto.edu/~delve/data/datasets.html

A Randomized Mirror Descent Algorithm for Large Scale MKL

10% german 10° ionosphere 10° ringnorm 10° waveform
- 6 -Kloft *o,
—=— Stoch (3 .
-o- UCD 10* N 10"
S
é 105 ’, 2 \"Q 2
g 4 10 3 10
=}
3 b3 ¥,
E t b
g ?‘{t 10’ ?‘o 10°
g10 ‘90900.'~° f‘ Qb. ”'Q’
'l-....:“ 107 : oo kS 107
2000000000000
107 10 107
0 50 100 150 0 5 10 15 20 0 100 200 300 400 0 100 200 300
time (sec.) time (sec.) time (sec.) time (sec.)
Figure 1. Convergence comparison of our method and other algorithms.
1 250
—t Kloft
09 _l-"'-' —s— Stoch
% —
0.8 R 200 Cortes
—e— Bach
07 — = == - Uniform
g
0.6} 2150
w (0]
Q05 £
= ()]
0.4t £ 100
g
0.3¢ -
0.2r 50

20 40 60 80
number of dimensions of input space

100

20 40 60 80 100
[1,771 [12,341] [39,711] [01,881] [176,851]

Figure 2. Comparison of kernel learning methods in terms of test error (left) and training time (right).

other three algorithms can efficiently learn kernel com-
binations. However their predictive accuracies are quite
different. Note that the performance of the method of
Cortes et al. (2009) starts to degrade as r increases.
This is due to the restricted family of kernels that this
method considers. The method of Bach (2008), which is
well-suited to learn sparse combination of product ker-
nels, performs better than Cortes et al. (2009) for higher
input dimensions. Among all methods, our method per-
forms best in predictive accuracy while its computa-
tional cost is close to that of the other two competitors.

6. Conclusion

We introduced a new method for learning a predictor
by combining exponentially many linear predictors
using a randomized mirror descent algorithm. We
derived finite-time performance bounds that show that
the method efficiently optimizes our proposed criterion.
Our proposed method is a variant of a randomized
stochastic coordinate descent algorithm, where the
main trick is the careful construction of an unbiased
randomized estimate of the gradient vector that keeps
the variance of the method under control, and can
be computed efficiently when the base kernels have a

certain special combinatorial structure. The efficiency
of our method was demonstrated for the practically
important problem of learning polynomial kernels on
a variety of synthetic and real datasets comparing to a
representative set of algorithms from the literature. For
this case, our method is able to compute an optimal so-
lution in polynomial time as a function of the logarithm
of the number of base kernels. To our knowledge, ours is
the first method for learning kernel combinations that
achieve such an exponential reduction in complexity
while satisfying strong performance guarantees, thus
opening up the way to apply it to extremely large
number of kernels. Furthermore, we believe that
our method is applicable beyond the case studied in
detail in our paper. For example, the method seems
extendible to the case when infinitely many kernels are
combined, such as the case of learning a combination
of Gaussian kernels. However, the investigation of this
important problem remains subject to future work.

Acknowledgements

This work was supported by Alberta Innovates
Technology Futures and NSERC.

A Randomized Mirror Descent Algorithm for Large Scale MKL

References

Afkanpour, A., Gyorgy, A., Szepesvari, C., and Bowling,
M. H. (2013). A randomized mirror descent algo-
rithm for large scale multiple kernel learning. CoRR,
abs/1205.0288.

Argyriou, A., Hauser, R., Micchelli, C., and Pontil, M.
(2006). A DC-programming algorithm for kernel selec-
tion. In Proceedings of the 23rd International Conference
on Machine Learning, pages 41-48.

Argyriou, A., Micchelli, C., and Pontil, M. (2005). Learning
convex combinations of continuously parameterized basic
kernels. In Proceedings of the 18th Annual Conference
on Learning Theory, pages 338-352.

Aronszajn, N. (1950). Theory of reproducing kernels.
Transactions of the American Mathematical Society,
68(3):337-404.

Bach, F. (2008). Exploring large feature spaces with hierar-
chical multiple kernel learning. In Advances in Neural In-
formation Processing Systems, volume 21, pages 105-112.

Beck, A. and Teboulle, M. (2003). Mirror descent and
nonlinear projected subgradient methods for convex op-
timization. Operations Research Letters, 31(3):167-175.

Cortes, C., Mohri, M., and Rostamizadeh, A. (2009). Learn-
ing non-linear combinations of kernels. In Advances
in Neural Information Processing Systems, volume 22,
pages 396-404.

Frank, A. and Asuncion, A. (2010). UCI machine learning
repository.

Gehler, P. and Nowozin, S. (2008). Infinite kernel learn-
ing. Technical Report 178, Max Planck Institute For
Biological Cybernetics.

Gonen, M. and Alpaydin, E. (2011). Multiple kernel learn-
ing algorithms. Journal of Machine Learning Research,
12:2211-2268.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The El-
ements of Statistical Learning: Data Mining, Inference,
Prediction. Springer, 2nd edition.

Hazan, E., Agarwal, A., and Kale, S. (2007). Logarith-
mic regret algorithms for online convex optimization.
Machine Learning Journal, 69(2-3):169-192.

Hazan, E. and Kale, S. (2011). Beyond the regret minimiza-
tion barrier: an optimal algorithm for stochastic strongly-
convex optimization. In Proceedings of the 24th Annual
Conference on Learning Theory, volume 19 of JMLR
Workshop and Conference Proceedings, pages 421-436.

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. (2011).
lp-norm multiple kernel learning. Journal of Machine
Learning Research, 12:953-997.

Martinet, B. (1978).
d’optimisation. Applications.
Numérique, 12:153-171.

Micchelli, C. and Pontil, M. (2005). Learning the kernel
function via regularization. Journal of Machine Learning
Research, 6:1099-1125.

Perturbation des méthodes
RAIRO Analyse

Nath, J., Dinesh, G., Raman, S., Bhattacharyya, C.,
Ben-Tal, A., and Ramakrishnan, K. (2009). On the algo-
rithmics and applications of a mixed-norm based kernel
learning formulation. In Advances in Neural Information
Processing Systems, volume 22, pages 844-852.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.

(2009). Robust stochastic approximation approach
to stochastic programming. SIAM J. Optimization,
4:1574-1609.

Nemirovski, A. and Yudin, D. (1998). Problem Complezity
and Method Efficiency in Optimization. Wiley.

Nesterov, Y. (2010).
methods on huge-scale optimization problems.
Discussion paper, (2010/2).

Efficiency of coordinate descent
CORE

Nesterov, Y. (2012). Subgradient methods for huge-scale op-
timization problems. COREFE Discussion paper, (2012/2).

Orabona, F. and Luo, J. (2011). Ultra-fast optimization
algorithm for sparse multi kernel learning. In Proceed-
ings of the 28th International Conference on Machine
Learning, pages 249-256.

Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet,
Y. (2008). SimpleMKL. Journal of Machine Learning
Research, 9:2491-2521.

Richtérik, P. and Takdé¢, M. (2011). Iteration complexity
of randomized block-coordinate descent methods for
minimizing a composite function. (revised July 4, 2011)
submitted to Mathematical Programming.

Rockafellar, R. (1976). Monotone operators and the
proximal point algorithm. STAM Journal on Control and
Optimization, 14(1):877-898.

Scholkopf, B. and Smola, A. (2002). Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond. MIT Press, Cambridge, MA, USA.

Shalev-Shwartz, S. and Tewari, A. (2011). Stochastic
methods for [;-regularized loss minimization. Journal of
Machine Learning Research, 12:1865-1892.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel
Methods for Pattern Analysis. Cambridge Univ Press.

Sonnenburg, S., Ratsch, G., Schafer, C., and Scholkopf, B.
(2006). Large scale multiple kernel learning. The Journal
of Machine Learning Research, 7:1531-1565.

Xu, Z., Jin, R., King, I., and Lyu, M. (2008). An extended
level method for efficient multiple kernel learning. In
Advances in Neural Information Processing Systems,
volume 21, pages 1825-1832.

Xu, Z., Jin, R., Yang, H., King, I., and Lyu, M. R. (2010).
Simple and efficient multiple kernel learning by group
lasso. In Proceedings of the 27th International Conference
on Machine Learning, pages 1175-1182.

