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Abstract
Dyna is an architecture for reinforcement learning
agents that interleaves planning, acting, and learn-
ing in an online setting. Dyna aims to make fuller
use of limited experience to achieve better perfor-
mance with fewer environmental interactions. In
Dyna, the environment model is typically used to
generate one-step transitions from selected start
states. We applied one-step Dyna to several games
from the Arcade Learning Environment and found
that the model-based updates offered little benefit,
even with a perfect model. However, when the
model was used to generate longer trajectories
of simulated experience, performance improved
dramatically. This observation also holds when
using a model that is learned from experience;
even though the learned model is flawed, it can
still be used to accelerate learning.

1. Introduction
Reinforcement learning (RL) has seen much recent success
on a variety of complex problems with high-dimensional
state spaces due to its integration with deep-neural networks
— a field of research known as deep RL. An important
testbed for deep RL algorithms is the Arcade Learning En-
vironment (ALE; Bellemare, Naddaf, et al., 2013), where
agents learn to play games from the Atari 2600 system with
raw images as input. A multitude of methods exist for play-
ing games from the ALE (e.g., Mnih et al., 2015; Mnih et
al., 2016; Hessel et al., 2018), and the majority of these
approaches can be considered model-free, in that they learn
and improve a policy without using a predictive model of
the environment. Model-based methods make use of an
explicit environment model to perform planning, which in
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this sense is any process that takes a model and uses it to
produce or improve a policy. Although they are generally
more complex than model-free methods, model-based meth-
ods have been shown to learn a good policy with fewer
environmental interactions, making better use of limited ex-
perience (e.g., Sutton, 1990; Moore & Atkeson, 1993). This
is especially important for domains where interacting with
the environment and collecting real experience is expensive.

Although most demonstrations of the benefits of model-
based methods have been on simple problems, there
have been several recent approaches applied to higher-
dimensional problems (Tamar et al., 2016; Oh et al., 2017;
Weber et al., 2017). However, all of these approaches use
the learned model solely to provide additional input when
selecting actions. Part of the allure of model-based RL is
that a model could also be used as a substitute for gathering
more experience in the real world.

Dyna is an architecture for RL agents that combines aspects
of both model-free and model-based RL in a flexible way.
The model is used to generate simulated experience along-
side the real experience observed from the environment.
The real and simulated experience are both used in the same
way — to update the agent’s value function and/or policy.

To investigate Dyna in a domain with a high-dimensional
state space we evaluated its performance on several games
from the ALE. Surprisingly, we found that Dyna-style plan-
ning provides almost no benefit over simply doing more up-
dates with the real data already collected by the algorithm.
It is only when the model is used to produce multi-step
rollouts — sequences of more than one state — does the
additional computation required for planning become bene-
ficial. Our empirical results show that rollout length is a key
factor in the effectiveness of Dyna-style planning.

2. Dyna and The Ineffectiveness of One-step
Planning

One of the first instantiations of the Dyna architecture was
Dyna-Q (Sutton, 1990). Dyna-Q combines one-step tabular
Q-learning (Watkins, 1989; Watkins & Dayan, 1992), with
a model that, from a given start state, can predict the next
state and reward. After taking a step in the environment and
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updating the value function with the conventional model-
free Q-learning update, the following planning procedure
is repeated n times: sample a start state, S, uniformly at
random from the set of previously seen states; sample an
action, A, uniformly from the the set of actions previously
chosen in S; use the model to predict the next state, S′ and
reward, R; and update the value function using S, A, S′,
and R with the same Q-learning update. To explore the
effectiveness of Dyna in problems with high-dimensional
state spaces, we extend DQN to incorporate Dyna-style
planning. We then evaluate it in several Atari games.

2.1. Deep Q-networks and Dyna-DQN

Deep Q-networks (DQN) (Mnih et al., 2015) is a model-
free deep RL method, based on Q-learning, that uses a
deep convolutional neural network to approximate the value
function. Unlike Q-learning, DQN does not update the
value function after every step using a single transition;
instead, DQN uses experience replay (Lin, 1992), and places
each observed transition into an experience replay buffer.
Then, for a single training step, the algorithm selects a mini-
batch of transitions from the experience buffer uniformly
at random to update the parameters. Training steps are
performed after every f observed transitions.

It is straightforward to extend DQN to use the Dyna architec-
ture. After every step taken in the environment, simulated
experiences are generated starting from a state sampled
from a planning buffer containing the agent’s recent real
experience. Keeping a separate buffer ensures that start
states are always from the agent’s actual experience. The
simulated experiences are placed into the experience replay
buffer alongside the transitions observed from the real en-
vironment, and training continues to happen after every f
observed transitions — real or simulated. As a result, mini-
batches sampled at training time will contain a mix of real
and simulated experience.

In the following experiments we explore idealized perfor-
mance of Dyna-DQN by assuming a perfect model is avail-
able. This isolates the effects of planning from the accuracy
of the model and provides an estimate of the maximum
benefit that the model can provide in Dyna-DQN.

2.2. Experiments

We ran experiments on six games from the ALE and chose
to study the games from the original training set outlined
by Bellemare, Naddaf, et al. (2013), supplemented with two
additional games, Q-BERT and MS. PAC-MAN, that Oh et
al. (2015) used to evaluate their model learning approach,
which we employ in Section 4. We have omitted results in
FREEWAY since our implementations of DQN and Dyna-
DQN almost always score zero points at the number of
training frames we used.
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Figure 1. The results of running Dyna-DQN and Rollout-Dyna-
DQN on six games from the ALE compared to the DQN baselines.
Dyna-DQN provides almost no benefit over simply doing more
updates with the same amount of data from the environment. The
performance of Rollout-Dyna-DQN tends to increase as the rollout
length increases across all the games.

In these experiments, Dyna-DQN made use of an environ-
ment model that was a perfect copy of the emulator. Start
states for planning were selected from the planning buffer
containing the 10,000 most recent real states observed by
the agent, which for all games was multiple episodes of ex-
perience. For each real step, Dyna-DQN did 100 iterations
of planning. Dyna-DQN was trained for 100k real frames,
or equivalently 10M combined model and real frames. After
training, the mean score in 100 evaluation episodes was
recorded. This training and evaluation procedure was re-
peated for ten independent runs. The mean scores and stan-
dard errors for the six games are shown in Figure 1 (bright
green bars are Dyna-DQN)1. To better understand the benefit
of model-based updates, we also compared to the following

1Additional details for all the algorithms and experiments
described in this paper are available in a longer version
(https://arxiv.org/abs/1806.01825).
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model-free DQN baselines.

DQN 100k: DQN trained for 100k real frames (yellow
lines). This allows us to compare DQN and Dyna-DQN
with an equivalent amount of real experience. As one might
expect, Dyna-DQN outperformed DQN 100k; it uses the
model to generate more experience and does more updates.

DQN Extra Updates: DQN trained for 100k real frames,
but with the same number of updates to the value function as
Dyna-DQN (red lines). For each time DQN would normally
perform a single training step, DQN Extra Updates performs
100 training steps. This way DQN Extra Updates is like
Dyna-DQN, but it uses only experience gathered from the
environment, while Dyna-DQN also generates experience
from the model. DQN Extra Updates allows us to evaluate
the advantage of using the model to generate new experi-
ence compared to simply doing more updates with the real
experience. Surprisingly, Dyna-DQN provided little benefit
over DQN Extra Updates, even with a perfect model.

DQN 10M: DQN trained for 10M frames (cyan lines). This
allows us to compare DQN and Dyna-DQN with an equiva-
lent amount of total experience. We might hope the experi-
ence generated by a perfect model would allow Dyna-DQN
to perform comparably to this baseline; however, in most
games the performance did not approach that of DQN 10M.

Overall, we find that the extra computation required by
Dyna-DQN to utilize the model does not appear to be worth
the effort. A possible explanation for these results is that
planning in this way – taking a single step from a previously
visited state – does not provide data that is much different
than what is already contained in the replay buffer. If true, a
strategy is needed to make the data generated by the model
different from what was already experienced.

3. Planning with Longer Rollouts
One possible strategy to generate more diverse experience is
to roll out more than a single step from the start state during
planning like Gu et al. (2016) and Kalweit and Boedecker
(2017). Since the current policy will be used for the rollout,
the model may generate a different trajectory than what was
originally observed.

It is straightforward to modify each planning iteration of
Dyna-DQN so that instead of rolling out a single step, the
model is used to rollout k steps from the start state, produc-
ing a sequence of k states and rewards. Let this algorithm be
called Rollout-Dyna-DQN. When k = 1 we recover exactly
Dyna-DQN described in Section 2.1.

Given a budget of planning time in terms of a fixed number
of model prediction steps, planning could take on a variety
of shapes. Let the planning shape be described by the no-
tation n×k, where n is the number of planning iterations.

For example: 100 rollouts of 1 step (100×1); 10 rollouts of
10 steps (10×10); or 1 rollout of 100 steps (1×100), each
require the same amount of computation from the model,
but the way that the resulting predictions are distributed in
the state space are different. In the next section we inves-
tigate the effects of planning shape on the performance of
Rollout-Dyna-DQN compared to the DQN baselines.

3.1. Experiments

Our experimental setup is the same as in Section 2.2, but
now the planning shape for Dyna-DQN is varied. As dis-
cussed above, the bright green bars in Figure 1 correspond
to planning shape 100×1. The dark green bars in Figure 1
show the performance for planning shapes 33×3, 10×10,
2×50, and 1×100. Note that the ratio of real transitions to
simulated transitions remains the same in each case.

In each game there was a longer rollout length that resulted
in a dramatic improvement over 100×1 planning, signifi-
cantly outperforming DQN Extra Updates. Further, in every
game, there was a planning shape that approached the per-
formance of DQN 10M.

Our results suggest that with the Dyna architecture it is crit-
ical for the model to generate sufficiently novel experience,
and using multi-step rollouts appears to be an effective strat-
egy. Doing longer rollouts during planning makes using the
model worth the effort whereas the 100×1 planning is no
better than doing extra updates with only real experience.

4. Planning with an Imperfect Model
In the previous sections we have drawn conclusions from
an ideal setting, but if agent has an imperfect model do the
same conclusions hold? To investigate this question we
replaced the perfect copy of the emulator with a learned
model pre-trained on data from expert play.

4.1. Experiments

For this section, the experimental setup is the same as in Sec-
tions 2.2 and 3.1, but the perfect model has been replaced
with an imperfect model. For the imperfect model, we made
use of the deep-neural network architecture introduced by
Oh et al. (2015). This model was shown to make visually
accurate predictions for hundreds of steps on video input
from Atari games conditioned on actions. In its original
formulation the model predicts only the next state, but an
environment model for reinforcement learning needs to pre-
dict both the next state and the next reward. Therefore, we
extended the model to make reward predictions similarly to
Leibfried, Kushman, and Hofmann (2017).

We trained and evaluated three different models with
Rollout-Dyna-DQN to ensure that any trends that were ob-
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Figure 2. The results of running Rollout-Dyna-DQN with the per-
fect and imperfect models on six games from the ALE. Like the
perfect model, using an imperfect model with a rollout length
greater than one provides the most benefit. The horizontal lines
show the baseline scores described in Section 2.2.

served were not specific to a particular model. Note that
because each model is the result of a single training run on
a single dataset, our results cannot be used to draw reliable
conclusions about the comparative effectiveness of the dif-
ferent model training regimes. Our aim in this experiment
is only to study the impact of model error on Rollout-Dyna-
DQN. As such, we refer to the models merely as Models A,
B, and C. The results of applying Rollout-Dyna-DQN with
the three imperfect models are shown in Figure 2. The per-
fect model results and baselines are the same as in Figure 1.

As with the perfect model, rollouts longer than one step pro-
vided the most benefit. For every game, except for SPACE
INVADERS, there was a model and planning shape that per-
formed better than DQN Extra Updates, which demonstrates
that even when the model has flaws, planning with rollouts
can provide some benefit.

Now that the model is imperfect, it is interesting to ob-
serve that in most game and model combinations the best-

performance was achieved at medium rollout length. There
is a limit on how far the model can roll out before small
errors compound and make the predictions unreliable (e.g.
Talvitie, 2014). Thus, there is a trade-off between improved
planning and increased model error as rollout length is in-
creased. For example, in ASTERIX using Model C, the
performance peaked at 10×10 planning and dropped off as
rollouts became shorter or longer.

5. Discussion
Despite the introduction of increasingly effective ap-
proaches for learning predictive models in Atari Games
(Bellemare, Veness, & Bowling, 2013; Bellemare, Veness,
& Talvitie, 2014; Oh et al., 2015), to our knowledge this
is the first time that a learned dynamics model has been
successfully used for planning in this challenging domain.
Our results show that, combined with deep RL methods,
Dyna is a promising approach for model-based RL in high-
dimensional state spaces and that planning shape is a critical
consideration in extracting the most benefit from the model.
In every game from the ALE we tested, there was a plan-
ning shape with a rollout length greater than one that outper-
formed DQN Extra Updates, and 100×1 planning. Longer
planning rollouts appears to be an effective strategy for gen-
erating novel experience, which seems to be necessary to
use the model to its full potential.

Our findings suggest multiple next steps. In our experiments
we pre-trained the models; clearly it would be interesting
to study Rollout-Dyna-DQN in the case where the model is
learned online alongside the value function. This would nec-
essarily involve careful consideration of how to best use the
model early in training, while its predictions may be highly
unreliable. Finally, though we found longer rollouts to be
an effective way to use the model to generate experience,
there are other promising approaches. For instance Pan et
al. (2018) and Goyal et al. (2018) use inverse dynamics
models to effectively propagate value updates backwards in
a manner similar to prioritized sweeping (Moore & Atke-
son, 1993; Peng & Williams, 1993). It may be possible to
combine these insights, exploiting a forward model’s ability
to reveal novel states and a backward model’s ability to
efficiently improve the value function.
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