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Background

Myoelectrically controlled prostheses use electromyo-
graphic (EMG) signals generated by muscle activation 
and detected by surface electrodes.1 In traditional direct 
control, one pair of electrodes over each muscle site is 
used to drive electromechanical actuators that move 
each prosthetic joint. In this manner, each pair of antag-
onistic muscle sites directly controls one motion of the 
prosthesis, and various methods of switching can be 
used as needed to control additional motions of the 
prosthesis.1–4 

State-of-the-art myoelectric hands have over a dozen 
possible grip patterns that can be manually selected by the 
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user. A prosthetic arm with many available joint movement 
and grasp options can present a problem, since there exist 
more degrees of freedom than the available number of 
control signals from the human user.1,5–7 One technique to 
address this problem is for the user to switch between all 
available joints or grip patterns in a predesigned, opti-
mized order. As another option, the prosthetist may selec-
tively reduce the number of available control options, such 
that the user only has access to a small subset of the 
device’s available functions. Both these options require 
trade-offs between switching effort and device 
functionality.

While switching between functions is used in clinical 
settings to extend prosthesis functionality, it can be labori-
ous.1 Switched or gated control is slow and non-intuitive, 
requiring additional time and sustained cognitive effort by 
the user.1,5 Non-intuitive control represents one of the main 
reasons amputees stop using their myoelectric prosthe-
ses.1–3 These limitations have been a driving force for the 
development of more advanced control paradigms such as 
pattern recognition, which increase the number of degrees 
of freedom that can be intuitively controlled, but are typi-
cally still limited to sequential control.1,3,8 However, as 
device functionality increases and control becomes more 
challenging,7 an alternate solution may be for prostheses to 
begin to assume more autonomy in interpreting and exe-
cuting a user’s intended movements.8 This could reduce 
the burden on the user to consciously and independently 
control every individual joint motion of the prosthesis.

Previous work has examined ways to streamline and 
optimize prosthetic control through the use of more robust 
pattern classification and regression techniques,1,3,8 super-
vised and unsupervised adaptation,9,10 and real-time 
machine intelligence.6,11–13 In particular, prior work on 
increasing the number of accessible prosthetic functions 
demonstrated how predictions about sensorimotor signals 
pertaining to prosthetic joint movements could be learned 
and maintained using a technique from reinforcement 
learning known as general value functions (GVFs).14 
GVFs are temporally extended predictions about signals of 
interest and have been applied to build up real-time antici-
patory knowledge in relation to human–machine interac-
tions.6,11,12 It was shown in experiments that GVFs may 
provide a way to streamline control interfaces with robotic 
arms.6,11–13 In particular, it was demonstrated that the use 
of GVFs to predict which joint of a robotic arm a user will 
actuate next could lead to an adaptive or situation-specific 
switching list, termed adaptive switching.11 A natural 
extension of that work would be to apply predictions to 
actual human interaction with prosthetic limbs with the 
intent of streamlining control. Applying GVF predictions 
to human–machine interaction is consistent with the idea 
that the human brain makes forward motor predictions of 
its own, using knowledge of context and immediate sen-
sory input.15–18

In this article, we extend prior studies to present evi-
dence that adaptive switching does in fact provide benefit 
during the operation of a robotic arm by a prosthetic user. 
This work includes a simple demonstration of the use of 
prediction learning in real time to improve the control of a 
prosthetic device during use by an amputee subject and an 
able-bodied subject. We also include preliminary results 
from three able-bodied subjects performing a second, 
more complex task. In both cases, predictions are learned 
and used in real time by the control system to reduce the 
burden of switching on the user, making it easier and faster 
to switch to the user’s intended next joint or function. The 
goal of this work is to demonstrate that adaptive switching, 
as a core application of machine learning, could have a 
direct effect on reducing the effort of amputee users oper-
ating complex multifunctional prosthetic devices.

Methods

Simple task

In order to implement and assess adaptive switching, a 
transhumeral amputee subject and an able-bodied subject 
were recruited to perform a simple, semi-repetitive task 
using an experimental robotic arm. The amputee subject 
was a body-powered prosthetic user and had no experience 
using myoelectric control or using our experimental 
robotic arm. The able-bodied subject had previous experi-
ence controlling myoelectric devices. In the amputee user, 
electrodes were attached to the skin over the subject’s 
wrist extensor muscle on the intact arm, which provided a 
signal for switching between robotic joints. Separate sets 
of electrodes were attached to the biceps and triceps mus-
cle of the residual limb. Those electrodes became the 
source of control signals for antagonistically moving 
selected joints of the robot arm. In the able-bodied subject, 
one set of electrodes was placed over the wrist extensor 
muscle on one arm, and separate sets of electrodes were 
placed over the wrist flexor and extensor muscles of the 
opposite arm. An eight-channel Bagnoli EMG system 
(Delsys Inc.) was used in the acquisition of EMG control 
signals from the experimental subjects at a frequency of 
1 kHz. The subjects provided written informed consent to 
participate, and the trial was approved by the human 
research ethics board at our institution.

We used a custom-built research platform known as the 
myoelectric training tool (MTT) in our experiments.19 The 
MTT includes an AX-18 smart robotic arm (Crustcrawler 
Inc.) that has 5 degrees of freedom and can be controlled 
via EMG signals by both amputees and able-bodied sub-
jects.19 In addition, it can be used as a training tool for 
amputees preparing to use a myoelectrically controlled 
prosthetic arm, as it was designed to be functionally simi-
lar to commercial prostheses. Figure 1(a) shows the ampu-
tee subject using the MTT to perform a simple task. The 
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MTT operated within a table-top task workspace centered 
on the robot’s axis of humeral rotation.

Each subject was given time to become familiar with 
the operation of the MTT. After familiarization, the sub-
jects were presented with a specific task that involved a 
subset of the available joints (hand open/close, wrist flex-
ion/extension, elbow flexion and extension, and humeral 
internal/external rotation). The task was chosen to be func-
tionally comparable to tasks of daily living such as picking 
up a dish and placing it on a shelf. The instruction given to 
each subject in both the non-adaptive and adaptive trials 
was to manipulate the MTT to repetitively open and close 
the hand (i.e. as if grasping and releasing an imaginary 
object) on one side of the task workspace, perform humeral 
rotation to the opposite side of the workspace, repeatedly 
flex and extend the wrist joint (i.e. as if waving), and then 
perform humeral rotation back to the starting side of the 

workspace. Each trial involved repeating this sequence as 
many times as possible for 3 min.

Two types of trials were performed in order to test the 
predictive capabilities of our proposed control approach: 
trials using our adaptive switching algorithm (“adaptive 
trials”) were compared with conventional non-predictive 
switching methods (“non-adaptive trials”). Three 3-min 
trials were done for each condition of non-adaptive and 
adaptive switching, and in both types of trials, an auditory 
cue was provided to the subject upon switching, naming 
the selected joint.

In non-adaptive trials, the subjects switched their myoe-
lectric control between four joints in a fixed switching 
order: hand, wrist, elbow, and humeral rotation. This non-
adaptive setup was selected to reflect how traditional direct 
myoelectric control is programmed in order to access all 
four joint motions with limited control sites. In contrast, in 

Figure 1.  (a) Amputee participant performing simple tasks with the MTT arm using myoelectric control signals; (b) the Bento Arm, 
controlled by an able-bodied subject performing a modified box-and-blocks task; and (c) a schematic of the Bento arm (without 
outer casing) depicting the different motions available to the user. The MTT also operates as depicted in (c).
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adaptive trials, the joints were continually reordered in the 
switching list in real time, based on their predicted likeli-
hood of being used next. This was accomplished through-
out the course of the task through the use of GVFs. GVFs 
allow the control system’s programming to continually 
learn and adapt with each successive control signal 
received from the user and subsequent joint motion of the 
robot arm—in essence, the system learns to present the 
appropriate switch suggestion via ongoing observations of 
a user’s actions.

The procedure for using GVF predictions during adap-
tive trials was as described by Pilarski et  al.11 Learned 
GVFs are able to represent predictions about a subject’s 
situation-specific use of each joint in a myoelectric switch-
ing list. In this work, and in contrast to prior demonstra-
tions, GVF predictions were learned during real-time 
robotic arm use by the subjects and were continually 
ranked based on their relative magnitudes. The system 
learned to predict the intended joint for the given task in 
advance of the switch signal from the user. When a switch 
signal was received by the system, the highest ranked joint 
in the adaptive switching list became the active joint, with 
the remaining joints filling in the new switching list in 
decreasing order of prediction strength.

To learn real-time predictions of the next active joint, we 
combined sensorimotor data from the robot with EMG data 
from the human user. Each of the AX-18 motors that make 
up the joints of the MTT produced a number of useful sen-
sory signals, including measures of angular position, angu-
lar velocity, load (current), temperature, and voltage. We 
provided joint angular position and angular velocity obser-
vations to the learning system as information about the cur-
rent state. Features based on the current state of the arm 
enabled the system to build up expectations about future 
switching decisions made by the user. The machine learning 
system was re-initialized at the beginning of each trial such 
that GVFs started each trial with no stored knowledge (pre-
dictions) about the user or the task in question.

Modified box-and-blocks task

In order to demonstrate transferability of this approach to 
a functional task commonly used in the clinical setting, we 
conducted a second experiment with three able-bodied 
subjects using a different robotic arm. A more complex 
task was designed to evaluate predictive learning, based on 
a modified box-and-blocks task. The traditional box-and-
blocks task assesses a subject’s manual dexterity by count-
ing the number of blocks a subject can move from one side 
of a divided box to the other in a predetermined amount of 
time.20 Subsequent studies have shown that simplifying 
the task to fewer block movements does not result in a loss 
of valid information on performance.21 For our experi-
ments, we therefore used a modified task that measured 
the amount of time required for a subject to move five rub-
ber balls from one side of a box to the other.19

For this task, each subject controlled an anthropometric 
robotic arm called the Bento Arm (Figure 1(b)). The Bento 
Arm was designed with the MX series of actuators (Robotis 
Inc.), which are more powerful and robust than the AX-18 
actuators.22 The Bento Arm, similar to the AX-18 smart 
robotic arm, can be controlled by switching between its 5 
degrees of freedom: humeral internal/external rotation, 
elbow flexion/extension, wrist rotation, wrist flexion/
extension, and gripper open/close.

Two of the three able-bodied subjects had no previous 
experience controlling a myoelectrically driven robotic 
arm. Myoelectric signals were acquired from each subject 
through an EMG setup identical to the Bagnoli setup used 
on the simple task. The Bento Arm was controlled using 
the Robot Operating System (ROS) in a multi-computer 
configuration, with a central computer handling the direct 
communication with the arm and recording the EMG. A 
second computer recorded data over TCP/IP communica-
tion using ROS’s data logging functionality. Visualization 
and management of EMG and robotic arm parameters was 
managed on a third computer.

After a period of familiarization, subjects were asked to 
control the Bento Arm, alternating between adaptive and 
non-adaptive switching trials (for a total of three adaptive 
and three non-adaptive trials). Each trial consisted of five 
iterations of moving all five balls from one side of the 
divider to the other. Throughout the trials, position and 
velocity signals from each of the motors in addition to 
torque from the gripper motor were used by the GVF 
learning system to build up expectations about future 
switching decisions and to continually rank the Bento 
Arm’s joints in real time (i.e. re-order the switching list 
presented to the user).

Results

Figure 2 compares the number of switches required per 
event for non-adaptive switching (top) with the number of 
switches required during adaptive switching (bottom) for 
the amputee subject. Each switching event began when the 
user triggered a joint switch and ended when the user initi-
ated movement of any of the MTT joints. Therefore, all 
switches made while shifting control to a new joint were 
counted as a single switching event. In adaptive switching 
mode, the system very quickly adjusted to choose the cor-
rect joint for each part of the task with only one exception, 
as compared to the non-adaptive mode which consistently 
required additional switches through the trials.

Figure 3 shows that with the simple task performed by 
both subjects, the average amount of time (measured in 
seconds) dedicated to switching and the total number of 
switches required to complete the task were significantly 
less for the adaptive trials.

Figure 4 compares each iteration of the non-adaptive 
and adaptive switching trials in the modified box-and-
blocks task, averaged over three datasets, where each 
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iteration involved moving all five balls from one side of 
the box to the other. Figure 4(a) illustrates the mean total 
time spent by each subject completing each iteration of 
the task, and Figure 4(b) illustrates the mean total num-
ber of switches required for each subject per iteration of 
the task. The dotted line in Figure 4(b) represents the 
minimum number of switches required to complete one 
iteration of the non-adaptive trial (i.e. the best-case per-
formance that a subject can obtain using the static switch-
ing list for this task); the dashed line depicts the optimal 
number of switches (i.e. the number of switches required 
if the system predicted each joint with 100% accuracy 
and switched perfectly with no errors). To perform a sin-
gle iteration of the box-and-blocks task using the non-
adaptive switching list for this robot, a minimum of 75 
switches would be required. As illustrated by Figure 4(b), 
after the first or second iteration (in which the system is 
still learning), adaptive switching required fewer than 75 
switches to complete each iteration. Furthermore, adap-
tive switching came close to meeting the optimal target 
of 35 switches. For the modified box-and-blocks task, 35 
switches represent the perfect situation where the user 
made no errors and was given the correct joint every time 
they switched, with only one manual prompt per switch-
ing event. For all subjects, both experienced and inexpe-
rienced, in the fifth and final iteration of the modified 
box-and-blocks task, adaptive switching demonstrated 

significant improvements in terms of both the number of 
switches required to complete the task iteration and the 
task completion time.

Figure 5 shows the mean time spent switching and the 
total number of switches per trial for adaptive and non-
adaptive switching during the box-and-blocks task. For the 
experienced myoelectric user (Subject 1), the mean com-
pletion times for the adaptive and non-adaptive trials of the 
box-and-blocks task were 11.9 ± 1.2 and 13.4 ± 0.8 min, 
respectively, whereas the mean times spent switching were 
4.9 ± 0.4 and 6.5 ± 0.1 min, respectively (Figure 5(a)). The 
mean total number of switches for this subject was 337 ± 15 
for the adaptive trials and 463 ± 22 for the non-adaptive 
trials (Figure 5(b)). The non-experienced myoelectric 
users spent 12.6 ± 1.1 and 14.2 ± 1.2 min completing the 
adaptive trials; they spent 13.7 ± 2.1 and 14.3 ± 0.6 min 
completing the non-adaptive trials. They also spent 
9.8 ± 1.2 and 10.5 ± 1.1 min switching during adaptive tri-
als and 11.0 ± 3.2 and 10.5 ± 0.7 min switching during non-
adaptive trials (Figure 5(a)). The mean total numbers of 
switches for adaptive trials were 359 ± 29 and 369 ± 30; for 
non-adaptive trials, the mean numbers of switches required 
were 528 ± 10 and 503 ± 17 (Figure 5(b)).

Discussion

The goal of this work was to directly compare adaptive to 
non-adaptive switching to determine whether there is 
potential utility of adaptive switching in reducing the effort 
and burden of controlling a robotic arm with more degrees 
of freedom available than direct control sites. There was a 
significant difference between non-adaptive switching and 
adaptive switching during the simple task. With adaptive 
switching enabled, after a brief initial period of learning by 
the system (i.e. the first several switching events), typi-
cally only one switch was required by the user to move 
control to the most appropriate joint. Adaptive switching 
also produced a large decrease in time spent switching 
compared with non-adaptive switching. For each 3-min 
trial with the MTT, each subject saved an average of about 
20 s when adaptive switching was enabled (11% of the 
total task time). This could have potential implications on 
prosthetic users performing more complex tasks requiring 
multiple joint modal switching by reducing the total 
amount of time and burden to affect the desired joint con-
trol. If joint switching could be made more intuitive (i.e. if 
the prosthesis reliably selected the correct joint at the right 
time), it might encourage prosthetic users to utilize addi-
tional joint control motions more often, rather than to 
deliberately restrict control options.

Adaptive switching was also able to reduce time and 
switching effort in the more complex task. In comparing the 
decrease in time and number of switches (Figure 4) between 
the first and fifth task iterations, for all subjects there was 
only a minor decrease during non-adaptive switching, which 
is most likely due to improved performance with 

Figure 2.  Number of voluntary switches initiated by the 
amputee subject per switching event over the course of a single 
3-min trial, shown for both non-adaptive (top) and adaptive 
control (bottom) approaches. The figure is also representative 
of switching by the non-amputee subject.
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experience. However, the decrease in time and switches was 
more rapid and greater for the adaptive switching. By the 
final iteration of the task, the average number of switches 
made during adaptive switching decreased to approximately 
half that of non-adaptive switching. Consequently, by the 
final iteration, adaptive switching saved the experienced 
subject more than 30 s, or 20% of the total time.

The potential impact that user training may have on the 
functionality of adaptive switching is suggested by the rela-
tionship between the per-iteration data in Figure 4 and the 
aggregate data in Figure 5. In those datasets, it is clearly 
evident that the use of adaptive switching reduced the num-
ber of switching interactions needed by the user to well 
below the level possible with non-adaptive switching 
(Figures 4(b) and 5(b)). Indeed, by the third iteration of the 
task, experienced and non-experienced users averaged less 
switches per iteration than the 75-switch best-case perfor-
mance of the non-adaptive approach. If the time to perform 
a switch and resume motion was constant for all subjects, 
the switching data would suggest significant time savings 

for both experienced and non-experienced users (as in the 
simple task; Figure 3). However, for non-experienced 
myoelectric users, the difference in the total time spent 
switching between the adaptive and non-adaptive methods 
was less (Figure 5(a); Subjects 2 and 3). Non-experienced 
users were observed to hesitate more following each adap-
tive switching event and before moving the selected pros-
thetic joint, primarily in earlier task iterations (as seen in the 
completion times for earlier iterations as compared to later 
iterations; Figure 4(a)). One subject indicated that during 
adaptive switching he paused slightly after each switch to 
determine the correctness of the choice made by the adap-
tive switching system. Conversely, the experienced myoe-
lectric user reported greater trust in the choice made by the 
adaptive switching system and demonstrated less total time 
and per-iteration time to complete the task (Figures 4(a) and 
5(a); Subject 1). Based on both these quantitative and quali-
tative observations, we believe that with more repetitions 
and greater experience with the adaptive switching, our non-
experienced users would demonstrate time savings similar 

Figure 3.  (a) Average time the amputee subject spent switching per trial when using non-adaptive and adaptive switching (left and 
right, respectively, averaged over three trials), (b) average number of switches made by the amputee subject per trial when using 
non-adaptive and adaptive switching (left and right, respectively, averaged over three trials), (c) average time the able-bodied subject 
spent switching per trial when using non-adaptive and adaptive switching (left and right, respectively, averaged over three trials), and 
(d) average number of switches made by the able-bodied subject per trial when using non-adaptive and adaptive switching (left and 
right, respectively, averaged over three trials).
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to those of the experienced user. More detailed studies are 
needed to determine the roles that trust, experience, and 
training play in the successful use of adaptive switching and 
related control adaption paradigms.

The results from both the simple and more complex 
tasks suggest there are efficiencies with adaptive switching, 

and they agree with our expectations inferred from the sim-
ple task presented to the subject: there were clear regions of 
the task space that corresponded to the use of specific 
joints. For the simple task, it would have been possible to 
hand-code several different switching lists in response to 
the different positions of the shoulder actuator. The 

Figure 4.  Comparison between adaptive and non-adaptive switching averaged over three trials. (a) Total time and (b) number 
of switches of the modified box-and-blocks task are shown by iteration of the task. Dotted line shows the minimum number of 
switches possible using a static switching list. Dashed line shows the best possible switching performance possible on this task with 
no user errors and perfect switching (a single switch) at each switching event.
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simplicity of the task design allowed us to easily verify the 
correctness of the adaptive switching options proposed by 
the learning system. However, a key observation from this 
work is that situation-specific switching orders do not need 
to be hand-coded; our system learns situational delinea-
tions as the robotic arm is being used, and without prior 
information about the user or the task (thus implementing a 
form of adaptation, or ongoing self-calibration, which has 
been pointed out to be of great clinical interest as it removes 
the need for regular recalibration by clinical staff1,9). 
Furthermore, we have observed that as the task changes or 
becomes more complex, as in the case of the modified box-
and-blocks task, the learning system can scale up naturally 
and easily without the need for manual tuning.

It is important to note that while our results closely align 
with expectations from prior work,11,12 the present experi-
ments are single case studies which limit the generalizability 
of the conclusions. In addition, transferability to other tasks 
will need to be explored in order to assess relevance of this 
approach to the multitude of tasks required of prosthetic users 
in daily life. One strength of our proposed approach is that it 
is able to optimize prosthetic control for a repeated pattern of 
prosthetic movements, without that pattern being explicitly 
specified by a user or clinician. The adaptive switching sys-
tem begins with simple deterministic switching, as would be 
familiar to myoelectric prosthesis users, and gradually opti-
mizes control as regularities are observed in the movements 
made by the user. Because of the way that information is pre-
sented to the adaptive switching system (function approxima-
tion, c.f., Pilarski et  al.11), the system is able to leverage 
similarities and generalities in the movements being per-
formed—that is, it is able to form generalizations that are 
applicable to multiple tasks, such as “after reaching forward 
the user usually grabs an object.” While these generalities 

allow some translation of learned patterns to novel tasks, it is 
important to note that the system will still need experience 
with a new class of tasks before being able to form a reason-
able set of adaptive switching suggestions. For daily-life usa-
bility, we suggest that adaptive switching may also need to be 
engaged and disengaged based on the control system’s confi-
dence in its own predictions; in other words, it may be more 
intuitive for users if prosthesis control defaults to simple 
deterministic switching until the system has enough experi-
ence to appropriately adapt the switching list in a given set-
ting. How best to engage and disengage adaptive switching in 
this way, and what function approximation methods will 
allow the best generalization between real-world tasks remain 
open questions. Future work will also need to identify the 
most effective way to communicate the system’s switching 
selections back to the user—auditory (as used here), visual, 
tactile, and vibratory signals are all valid possibilities for 
feedback.

Ideally, these experiments will be repeated in multiple 
subjects with a range of experience in myoelectric control, 
and on subjects using donned prostheses during daily-life 
tasks. However, the current case study is a necessary and 
encouraging first demonstration of the practical applicability 
of our approach with both able-bodied and amputee subjects.

Conclusion

The primary contribution of this article is a concrete demon-
stration of adaptive switching in an applied setting of robotic 
arm control, in both able-bodied subjects and an amputee 
subject. This study is the first time that real-time prediction 
learning has been used to improve the control interface of a 
prosthetic device during uninterrupted use. Our experiments 
with an amputee subject showed that for simple tasks, 

Figure 5.  (a) Average time the able-bodied subjects spent switching per trial when using non-adaptive and adaptive switching 
(averaged over three trials) and (b) average number of switches made by the able-bodied subjects per trial when using non-adaptive 
and adaptive switching (averaged over three trials).
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enabling adaptive switching on a robotic arm significantly 
decreased the time spent switching between functions. This 
extends previous work using pre-recorded (non-real-time) 
data that indicated the potential merit of adaptive switching. 
These results have been extended to a box-and-blocks task 
that is more representative of complex everyday tasks.

We believe that adaptive switching can help to decrease 
the time and cognitive load required by amputees during 
complex tasks and real-world functional situations involv-
ing wearable prostheses. In future work, we will study the 
use of adaptive switching in shared-control functional 
tasks with prosthetic users, wherein switching control is 
further delegated to a control system to reduce the cogni-
tive burden on the user.
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