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Abstract

This paper extends recent work in interactive machine learn-
ing (IML) focused on effectively incorporating human feed-
back. We show how control and feedback signals comple-
ment each other in systems which model human reward. We
demonstrate that simultaneously incorporating human control
and feedback signals can improve interactive robotic systems
performance on a self-mirrored movement control task where
a RL-agent controlled right arm attempts to match the pre-
programmed movement pattern of the left arm. We illustrate
the impact of varying human feedback parameters on task
performance by investigating the probability of giving feed-
back on each time step and the likelihood of given feedback
being correct. We further illustrate that varying the tempo-
ral decay with which the agent incorporates human feedback
has a significant impact on task performance. We found that
smearing human feedback over time steps improves perfor-
mance and we show varying the probability of feedback at
each time step, and an increased likelihood of those feedbacks
being ’correct’, can impact agent performance. We conclude
that understanding latent variables in human feedback is cru-
cial for learning algorithms acting in human-machine interac-
tion domains.

Introduction
Reinforcement learning (RL) agents can learn optimal ac-
tions through building models of environments through
perceptive sensors during repeated interactions. Often RL
agents cooperate interactively with human trainers to solve
difficult tasks. Human teachers are a unique component of
the environment who may deliver control signals and con-
textual information through feedback. As human-robot in-
teraction becomes more complex, due to rapid advance-
ments in actuator and sensor technology, a significant gap
emerges between the number of possible control signals a
human can provide and the number of controllable actua-
tors a robotic system. There is often a limited set of control
signals which a human can provide, and a large number of
robotic system controllable functions.

The limit of human provided control signals is of par-
ticular interest in the field of robotic prosthesesartificial
limbs attached to the body to augment and/or replace abil-
ities lost through injury or illness. Prosthetic limbs with
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Figure 1: Configuration with A) results example, B) Myo, C)
simulation/learning/feedback System, and D) Nao.

many degrees-of-freedom have been developed (Castellini
et al. 2014). State-of-the-art prosthetics can perform com-
plex functions and movements, but rapid, reactive control
of this functionality, by human users, is limited; this limita-
tion causes some users to abandon their devices (Castellini
et al. 2014; Biddiss and Chau 2007; Micera, Carpaneto, and
Raspopovic 2010; Scheme and Englehart 2011). New meth-
ods are in development to help humans control complex
robotic devices through intelligent control sharing and by
allowing a learning agent inside the prosthetic to model the
human user. The work presented herein explores RL agents
controlled by simulated human electromyography (EMG)
signals, with additional reward feedback signals.

Background

RL is a learning framework inspired by behaviorism (Skin-
ner 1938) which describes how agents improve over time
by taking actions in an environment with a goal of maxi-
mizing expected return, the cumulative future reward sig-
nal received by the agent (Sutton and Barto. 1998). An
agents control policy is iteratively improved by selecting
actions which maximize return. RL problems are often de-
scribed as sequential decision making problems modelled
as Markov Decision Processes (MDPs) which define tuples:
(State,Action, Transitions, γ,Reward), full details of
MDPs are omitted for space and can be found in (Sutton
and Barto. 1998; Mathewson and Pilarski 2016). The ulti-
mate goal of an RL agent is to determine a policy which
maps a given current state to the correct actions to maximize
expected return. In this work we use a continuous actor-
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critic (AC) algorithm (Algorithm 1) similar to that described
in (Pilarski et al. 2011; Pilarski, Dick, and Sutton 2013;
Mathewson and Pilarski 2016). AC methods can reduce vari-
ance in gradient estimation through the use of two learning
systems: a policy-focused actor (selects the best action) and
a critic (estimate of value function, criticizes actor) (Sutton
and Barto. 1998).

The Interactive Shaping Problem (ISP) defines the prob-
lem of optimizing the incorporation of human feedback
into a learning agent in a sequential decision making prob-
lem (Knox and Stone 2010). The ISP asks: how can the
agent learn the best possible task policy as measured by
task performance or cumulative human feedback, given
the information contained in the human responses (Knox
and Stone 2009; 2012). While there are many ways to in-
corporate human knowledge into a learning system both
before and during learning (Thomaz and Breazeal 2008;
Chernova and Thomaz 2014), this paper focuses on incor-
porating human feedback directly alongside MDP derived
reward.

This work builds on the work of Vien and Ertel, who
showed that the human feedback model can be general-
ized to address the problems associated with periods of
noisy, and/or inconsistent, human feedback (Vien, Ertel, and
Chung 2013). Recent advancements in modelling human
feedback with a Bayesian approach have improved on the
work of Knox and Stone in discrete environments (Loftin
et al. 2016). Most recently work by Macglashan et al. show
that human feedback may be better modelled as an advan-
tage function to handle changes in a humans feedback strat-
egy over time (Macglashan et al. 2016).

In this study, we explore the implications of varying sev-
eral latent variables in human feedback for learning algo-
rithms acting in complex human-machine interaction do-
mains. We investigate the probability of the human trainer
providing feedback, the probability that feedback is correct,
and the effect of smearing that feedback over time to account
for the limited number of time steps with direct human feed-
back.

Algorithm 1 Continuous Actor-Critic Reinforcement
Learning

1: initialize: wμ,wσ,v, eμ, eσ, ev, s
2: repeat
3: μ← wT

μx(s)

4: σ ← exp[wT
σ x(s)]

5: a← N (μ, σ2)
6: take action a, observe r, s′
7: δ ← r + γvTx(s′)− vTx(s)
8: ev ← min[1, λvγev + x(s)]
9: v← v + αvδev

10: eμ ← λweμ + (a− μ)x(s)
11: wμ ← wμ + αμδeμ
12: eσ ← λweσ + [(a− μ)2 − σ2]x(s)
13: wσ ← wσ + ασδeσ
14: s← s′
15: until termination criteria is met

Methods

Aldebaran Nao and Myo EMG Data

The experimental set up is shown in 1. It is composed of
the Aldebaran Nao robotic platform (Aldebaran Robotics),
a wireless Myo EMG armband (Thalmic Labs), and a Mac-
Book Air (Apple, 2.2 GHz Intel Core i7, 8GB RAM) for
human feedback and running the learning agent.

The experiments in this paper are performed using a sim-
ulated Nao platform, a simulated EMG signal, and a sim-
ulated human feedback model. We have previously shown
the performance of this experimental set-up to be compara-
ble between simulation and real-world experiments (Math-
ewson and Pilarski 2016). By simulating the human feed-
back, we are able to characterize and vary important latent
variables hidden from the agent which impact the learning
of the system. For this study, we investigate: the rate at
which a human-delivered feedback should decay (smear),
the probability with which the human will provide a feed-
back (P (feedback)), and the probability that this feedback
will be correct for a given MDP (P (correct)). These are
critical variables that have been estimated in previous exper-
iments (Knox and Stone 2015; Loftin et al. 2016), we aim
to improve understanding of their impact through an experi-
mental grid sweep over the variables of interest and investi-
gation into the results.

Experiments

We extend on the results in (Mathewson and Pilarski 2016)
by exploring the impacts of varying model parameters of
human trainer feedback on the RL system during the per-
formance of a self-mirrored movement control task. In this
task, we preprogram the left arm of the Nao to move in a pe-
riodic pattern of flexion and extension at the elbow joint. The
RL agent controls the right arm and selects angular displace-
ment actions attempting to match the pattern of the left. With
this configuration we are able to define an optimal policy,
which would track the pre-programmed arm exactly, with
this optimal trajectory we are able to derive MDP reward
given a set angular error threshold. When the RL-controlled
elbow joint is within the angular deviation threshold of the
preprogrammed elbow joint then a reward of 1 is received
from the MDP, otherwise, a negative relative error is deliv-
ered proportional to the difference between the actual and
optimal angles.

We are interested in modelling smear, the time-decay with
which the feedback given by the human should be decayed.
As the human is unable to give feedback at every step that an
agent takes, we need to account for the fact that after the ex-
act time step a feedback is given there are likely suboptimal
states which support the optimal trajectory. With a decay pa-
rameter we are able to smear the human feedback forward in
time, it has been shown that the limited human feedback can
be applied across near-optimal state-action pairs, and sup-
port the agent learning an optimal solution (Pilarski et al.
2011). We further explore the following characteristics of
human feedback: (P (feedback)) the probability of giving
feedback on each time step, and (P (correct)) the probabil-
ity of giving correct vs. incorrect feedback. These are impor-
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tant latent human parameters to understand, cognitively they
represent how effective and attentive a human trainer is.

The continuous state space is defined by the filtered, time-
averaged, and dimensionally reduced EMG signal and the
angle of the actuated joint, and is represented with approx-
imation using tile coding (Mathewson and Pilarski 2016).
Parameters were set as follows: αv = 0.1/m, αμ = ασ ,
γ = 0.9, λw = 0.3, λv = 0.7, joint angles were limited
by manufacturer specifications at θ ∈ [0.0349, 1.5446] rads.
Weight vectors wμ,wσ,v, eμ, eσ, ev were initialized to 0
and standard deviation was bounded by σ ≥ 0.01. The el-
igibility trace update for the critic is scaled by γ to speed
up convergence. Maximum number of time steps = 10k,
learning update and action selection occurred at 33 Hz or
every 30 ms, and angular deviation threshold was set to
Δθmax = 0.1, absolute angular joint updates were clipped
to 0.1 and actions were selected and performed on every time
step.

The ACRL system was trained online with simulated hu-
man feedback and simulated EMG control signals (designed
to mimic acceptable control signals). Human feedback is in-
tegrated into the learning algorithm as reward accumulated
on Step 6 of Algorithm 1. Performance was measured by
taking the average mean absolute angular error from the last
5k steps. This was done to compare the experimental results
after some learning and helped to reduce noise intrinsic in
early learning.

This paper presents results of a parameterized grid sweep
over three parameters with given estimates of reason-
able values: smear = (0.2, 0.5, 0.9), P (feedback) =
(0.03, 0.05, 0.09), P (correct) = (0.6, 0.75, 0.9). Addition-
ally, as a control case, n = 60 trials without human-feedback
were performed. On all time steps MDP reward and human
reward were directly summed and applied to the learning
agent update (Algorithm 1).

Results
The results are presented in 2. Results are presented which
show performance over a variety of combinations of pa-
rameters for the latent variables of interest: P (feedback),
P (correct) and smear. Results indicate that human interac-
tion improves agent performance on a self-mirroring move-
ment task where performance is measured by the mean an-
gular error over the last 5k time steps. Fig. 2A shows that
a lower probability of potentially incorrect feedback pro-
vides better performance. Fig. 2B shows that there may not
be a significant difference in performance when varying the
probability of the correctness human feedback, given tested
values of P (feedback). This may also be due to the tested
values, which were all greater than a 50% chance of being
correct. Fig. 2C shows that there is a benefit to selecting a
smear decay value appropriate for the task and robotic con-
trol system, this parameter may vary task to task and care
must be taken when selecting the smear constant. The re-
sults indicate that there is benefit to be gained by correct
modelling the latent variables associated with human reward
signal to allow for true simultaneous incorporation of human
control and feedback. These results indicate that the ACRL
algorithm robust to a small amount of incorrect feedback.

On average without human-feedback the RL agent was
able to attain a mean absolute error on the final 5k steps of
0.22± 0.02 (mean ± SEM, n=60). In comparison, the opti-
mal set of parameters (P (feedback) = 0.06, P (correct) =
0.6, smear = 0.5) was able to attain a performance of
0.12 ± 0.01 (mean ± SEM, n=7), the worst performing
set of parameters (P (feedback) = 0.09, P (correct) =
0.9, smear = 0.9) attained a performance of 0.38 ± 0.18
(mean ± SEM, n=4). A total of 232 trials were run over pa-
rameter combinations.

Figure 2: Mean and standard error over experimental condi-
tions A) P (feedback), B) P (correct), C) smear.

Discussion

The experiments in this paper are performed using a sim-
ulated Nao, simulated EMG signal and simulated human
feedback. It has been previously shown the performance of
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this experimental set-up to be comparable between simula-
tion and real-world experiments (Mathewson and Pilarski
2016). In this related work we explore the degree to which
the learning system is affected when incorporating real hu-
man feedback. While working in simulation allows rapid
iteration and enables testing of many different algorithmic
characteristics, simulation is often an easier learning prob-
lem than the real-world, due to simplified physics and re-
duced noise. Future work will address robust modelling real
human feedback, and quantify impact of varying feedback
density and correctness. We have shown that smearing of hu-
man feedback impacts learning, future work will investigate
if the decay of human delivered rewards is best modelled as
time dependent over task performance and if optimal decay
parameters may be learned online.

In this paper we found that modelling the delivery of hu-
man feedback can significantly impact the performance of
an ACRL algorithm. While we have not optimized for the
human feedback characteristics, these results indicate that
some human reward paradigms may be preferable to others
(Loftin et al. 2016). This idea is explored in (Macglashan
et al. 2016) where modelling the user feedback as an ad-
vantage function, we can understand positive feed back as
’yes, that was good’ and negative feedback as ’no, that was
bad’. A greater understanding of human reward strategies is
required. Personalized robotics will demand perception of
human strategies to learn optimal in a very few sample. Fu-
ture work will focus predicting and optimizing for known
and uncertain feedback strategies.

Linking control signals in state space with feedback shap-
ing reward signals effectively blends multisensory human
data to the learning agent. There remains an open problem
of how feedback should best be interpreted by the learning
agent and how to encourage human feedback without caus-
ing prohibitive additional cognitive load. Modelling, and
predicting, human feedback may relieve burden while allow-
ing for shaping control signal interpretation. Human feed-
back is beneficial to the agent, providing it adds compli-
mentary information about the contextual state the agent is
in. Human feedback may shape the MDP reward with more
specificity and more often than the sparse, delayed, MDP-
derived reward.

Our results demonstrate potential benefits by introduc-
ing well modelled human feedback into the robotic learn-
ing system. The inclusion of human shaping signals was
shown to improve performance over strictly environmentally
derived reward. Providing consistent, correct feedback de-
mands cognitive attention from the user which may be dif-
ficult if the user is also required to provide control signals
to the robotic system. Future work is introduced to explore
implications of inviting humans to simultaneously provide
control and feedback signals to learning systems.

Conclusions
This paper contributes a set of results from experiments
incorporating simulated human feedback and simultaneous
human control in the training of a semi-autonomous robotic
agent. These results indicate that task performance increases
with the incorporation of human feedback into existing

actor-critic reinforcement learning algorithms. These results
support the idea that human interaction can improve perfor-
mance in complex robotic tasks when the human feedback
is delivered correctly, consistently, and on a time scale con-
sistent with the original learning problem.

This work supports an emerging viewpoint surrounding
human training of a robotic system tightly coupled to a user.
By showing improving the performance of the RL agent this
work further supports the sharing of autonomy between hu-
man and machine.
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