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Abstract

Modern automation systems largely rely on closed loop control, wherein a controller

interacts with a controlled process via actions, based on observations. These systems

are increasingly complex, yet most deployed controllers are linear Proportional-Integral-

Derivative (PID) controllers. PID controllers perform well on linear and near-linear

systems but their simplicity is at odds with the robustness required to reliably control

complex processes. Modern machine learning techniques offer a way to extend PID

controllers beyond their linear control capabilities by using neural networks. However,

such an extension comes at the cost of losing stability guarantees and controller interpret-

ability. In this paper, we examine the utility of extending PID controllers with recurrent

neural networks—–namely, General Dynamic Neural Networks (GDNN); we show that

GDNN (neural) PID controllers perform well on a range of complex control systems and

highlight how they can be a scalable and interpretable option for modern control systems.

To do so, we provide an extensive study using four benchmark systems that represent

the most common control engineering benchmarks. All control environments are evalu-

ated with and without noise as well as with and without disturbances. The neural PID

controller performs better than standard PID control in 15 of 16 tasks and better than

model-based control in 13 of 16 tasks. As a second contribution, we address the lack of

interpretability that prevents neural networks from being used in real-world control pro-

cesses. We use bounded-input bounded-output stability analysis to evaluate the parame-

ters suggested by the neural network, making them understandable for engineers. This

combination of rigorous evaluation paired with better interpretability is an important step

towards the acceptance of neural-network-based control approaches for real-world sys-

tems. It is furthermore an important step towards interpretable and safely applied artificial

intelligence.
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1 Introduction

Modern production engineering involves increasingly complex physical processes [1]. The

physical processes underlying cutting-edge production engineering cannot be appropriately

expressed with simple models [2]. New, more complex classical control methods are being

developed, but their increased complexity is what makes them challenging for control engi-

neers to design and apply [3]. Limited by both the number of skilled control engineers and

their cost, the production engineering industry has widely chosen to continue to use simple,

understandable linear controllers. While these controllers are easy to set-up and adjust, they

are not suitable for the complex non-linear behaviour of the processes they are expected to

control. Using these simple controllers comes at a cost: it means processes will require close

monitoring and human assistance whenever the system changes in an unforeseen way. In the

face of increasingly complex systems, both control-engineer-designed methods and closely-

monitored simple controllers fail to scale.

One way to bridge this gap between simple controllers and complex control systems is

by applying modern machine learning techniques [4]. Extending the capabilities of well-

accepted and used controllers with machine learning yields a potential solution to the lack of

scalability and adaptability in existing control approaches. In this paper, we will investigate

the use of neural networks to adapt the parameters of a Proportional-Integral-Differential

(PID) controller not only before deployment but online during ongoing control. This con-

tinuous adaptation to the process would allow for linear controllers to perform well for any

control task, as the controller constantly linearizes its behaviour around the state the system

is currently in. As our investigation shows, this results in superior control performance and

disturbance rejection.

The PID controller is one of the most widely used controllers [5]. A PID controller calcu-

lates its control output u based on the current error e, the error derivative de
dt and the error inte-

grated over time
R t

0
edt. Each error measure is multiplied by its corresponding constant—KP

with the error, KI with the integrated error, and KD with the error derivative—and then

summed. A PID controller is tuned with respect to the system to be controlled by adjusting

these three constants. While this controller is simple and well understood, its advantages come

at the price of limited capabilities. PID controllers perform well only on linear systems or sys-

tems that are linearized. As PID controllers are usually adjusted before deployment, they nei-

ther handle disturbances nor varying system dynamics well enough to meet the needs of

modern production engineering.

Several prior studies have shown that neural networks can improve performance when

used to tune the parameters of traditional PID controllers online. Simple feed-forward net-

works can adjust the PID parameters in multiple settings [6, 7]. More sophisticated neural net-

works like strictly recurrent, diagonal [8] and quasi-diagonal [9] recurrent networks have also

been investigated. However, these specific design choices for the neural network’s architecture

result in very specific behaviour and learning [10] and thus are unlikely to generalize well over

different control environments. To evaluate whether the use of neural networks with all possi-

ble connections is applicable to control engineering tasks in general, a broad range of different

control environments is required. In this paper, we therefore implement and evaluate general

dynamic neural networks, thus extending the current state of the art.

Previous works have demonstrated the applicability of neural-network-based parameter

tuning, but only for one well-defined control task at a time, e.g. pendulums [7], two-tank sys-

tems [11] or magnetic systems [6]. As no single approach has been applied successfully to mul-

tiple representative control engineering problems in the literature, the effectiveness of the
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suggested approaches is hard to estimate. For this reason, we investigate our approach on four

different systems that represent the most common challenges in control engineering, resulting

in an extensive comparison. By comparing the control performance on all four different tasks,

we extend the current literature which focused on one problem at a time. Additionally, our

simulations are closer to real-world conditions than those used in previous work, as they

include disturbances and noise.

Despite their potential to improve control performance, neural networks are not widely

used for parameter tuning in real-world control systems. One major barrier prevents their

adoption: due to the lack of interpretability, the suggested PID parameters cannot be evaluated

for their appropriateness. As a result, the control loop itself loses one of its most important

properties—its stability guarantees. Previous papers that utilized neural networks for PID

parameter tuning did not address the effect on input-output stability, thus ignoring a key con-

cern in control engineering. The domain of control engineering demands interpretability to

ensure system safety [12]. As neural networks introduce a black box to the system [13], their

use for PID parameter tuning is not yet widely accepted. Real-world use requires the ability to

check and reason about the parameter choices a neural network outputs when granted access

to a PID controller’s parameters. We suggest that the use of neural networks will in fact enable

designers to achieve better performance without significantly increasing the design complexity

or diminishing design interpretability when deploying a controller—if combined with tradi-

tional control engineering tools like stability analysis.

To summarize our contributions: as a first contribution of this paper, we advance the use of

specifically tailored neural network architectures by investigating the use of General Dynamic

Neural Networks (GDNNs) for online parameter tuning in PID controllers. These neural PID

controllers are evaluated on four different closed loop control engineering tasks. Each task rep-

resents a different, common challenge in control engineering, namely non-linear behaviour,

unstable equilibrium, dead time, and chaotic behaviour. These applications have furthermore

been used for evaluation of control at several machine learning venues, e.g. [14–16]. We com-

pare the performance of our neural approach with a standard PID controller, which acts as a

baseline, and with a system-appropriate model-based controller, which should provide the

best possible performance. To evaluate the robustness of our approach, each comparison is

performed with and without significant sensor noise and with and without disturbance. All

controllers are evaluated quantitatively for all scenarios, making this study unique in its com-

prehensiveness when compared to prior work.

As a second contribution, we demonstrate how input-output stability analysis—a classic

analysis that is well known in control engineering—can be used in a novel, online way to

explain the effects of parameter tuning. This analysis is done for the control system, exhibiting

chaotic behaviour as an example of a challenging control task. This assessment provides an

explanation of when the system is stable with respect to the PID parameters, making the neu-

ral network outputs understandable to control engineers. While input-output stability is an

important aspect of every closed-loop control approach, it is widely ignored in the existing lit-

erature that suggests the use of neural networks for PID parameter tuning. This paper there-

fore addresses key attributes of safe and interpretable artificial intelligence.

2 General dynamic neural network for PID parameter tuning

The aim of this work is to extend the classic PID controller framework, composed of the PID

controller and the plant, with as few changes to the physical setup of the control system as pos-

sible. Maintaining the core structure of the classic PID control framework allows for easy
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adoption to existing industrial applications. This structure is preserved by restricting the neu-

ral network’s inputs to signals which are already available in the closed loop control setting.

The closed loop control setting is depicted in Fig 1(a). The neural network’s inputs are the con-

trol system’s output v and the control error e, while the outputs are the three PID parameters

to tune, i.e. KP, KI, and KD. At each time step, the neural network computes the PID parame-

ters based on the observations and passes them into the PID controller. The PID controller

then uses these parameters to compute the control output u.

To ensure fast online computation with limited hardware, the neural networks imple-

mented in this investigation are restricted to one hidden layer with four neurons. Furthermore,

for control systems that can be described by simple differential equations increasing the num-

ber of neurons would lead to overfitting. The network architectures differ only in additional

recurrent or feedback connections. An example can be seen in Fig 1(b). The figure shows a

neural network, where the output of each neuron in the first layer is fed back as part of the first

layer’s input with a delay, denoted as g−1, of one time step. For all neurons, the activation func-

tion tanh is chosen, following the rationale of [17].

The standard approach for training neural networks is backpropagation [18]. Most deep

learning approaches adjusts the neural network’s weights by end-to-end optimization [19].

This optimization involves formulating a loss function that describes the difference between

the neural network’s outputs and the ideal outputs. From this loss, a gradient with respect to

the weights is computed and propagated through the network. At each neuron, the weights are

then adjusted to minimize the loss. However, in the present framework, Fig 1(a), backpropaga-

tion cannot be naively applied. In this framework, the neural network’s outputs are the PID

parameters KP, KI, and KD. Using standard backpropagation would therefore require knowing

the ideal PID parameters at any given time.

A way to train the neural network without the ideal outputs is to numerically approximate

backpropagation. In this work, we chose a numerical Levenberg-Marquard algorithm [20] to

minimize the squared control error. At each time step, the Jacobian matrix, shown in Eq 1,

of the neural network weights is numerically approximated using finite differences with

respect to small changes in each weight. Each weight is then adapted to decrease the control

error.

Fig 1. Neural PID architecture and example neural network. A neural network is integrated into standard closed

loop control (a). The neural network receives the system output and the error as input and outputs the three PID

parameters KP, KI, and KD. The double-lined arrows indicate that the associated variable could be a vector, while the

single-lined arrows indicate scalar variables. An example neural network (b) shows one possible set of connections. All

networks have 9 neurons in three layers. The output of each input neuron is fed back into the input layer with a delay,

denoted as g−1, of one time step.

https://doi.org/10.1371/journal.pone.0243320.g001
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The Jacobian matrix of a general dynamic neural network with p input neurons, q dynam-

ical system (plant) outputs and k weighted connections was calculated as

Jwðvðx;wÞÞ ¼
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where x 2 Rp
is the neural network input vector, w 2 Rk

is the vector of weights which

describes the network topology and vðx;wÞ 2 Rq
are the outputs of the dynamical system

(plant). According to [21], it is sufficient to calculate the partial derivatives of the systems out-

put instead of the error function.

As the analytic calculation would result in extensive computations, it is numerical approxi-

mated using a difference equation, rather than a differential one as solution of the equation

Ĵwðvðx;wÞÞ ¼

j
0

j
1

..

.

jk

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

T

; ji ¼
vðx;wÞ � vðx;w � ZεðwiÞÞ

εðwiÞ
; Zp ¼

(
1; p ¼ i

0; p 6¼ i
; ð2Þ

where Ĵ w is the approximated Jacobian matrix, ji is the i-th column of Ĵ w, η is the step size and

� is the machine precision. � has to be calculated for each pass, using the equation

�ðwiÞ ¼ max ð1; jwijÞ
ffiffiffiffiffiffiffi
�min
p

; ð3Þ

where w is a vector, containing the weights, and �min is the implementation data type, double

precision in this implementation. The complete calculation of the Jacobian matrix can be

found in Algorithm 1.

In the industrial control setting we consider in this paper, it is important that finding an

appropriate network architecture, i.e. the connections and delays between neurons, does nei-

ther need sophisticated engineering nor significant time. Any approach that makes the set up

too complicated would defeat the purpose of extending the existing PID framework. We there-

fore chose to create ten neural network architectures for each control challenge by randomly

adding feedback connections and then chose the neural network that performed best. This
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process of finding an architecture can be made more efficient by using search algorithms [22].

For each tested neural network, the weights were initialized randomly with a mean of zero and

a standard deviation of one.

Training data was collected from the differential equations, that describe each benchmark

system, without any additional noise or disturbances. We followed an approach from classical

control engineering by exciting the system with input signals of different lengths and ampli-

tudes—called Amplitude Modulated Probabilistic Random Binary Signals (APRBS) [23]—to

collect data samples that sufficiently describe the dynamics of the system [24]. This approach is

an extension of using a Dirac impulse for system identification [25]. We collected 35, 000 data

samples for each benchmark system, and split them into training, validation, and test sets with

a ratio of 15%, 30%, and 55%, respectively.

Algorithm 1 Numerical approximation for Jacobian matrix.
1: Input: Dynamical system (plant) output v(x;w), neural network
inputs x, weights W
2: Output: Estimate of Jacobian matrix ĴW
3: foreach: Weight wi do
4: � maxð1; jwijÞ

ffiffiffiffiffiffiffi
�min
p

// Calculate �

5: For j = 1 to g do
6: vtmp,1  v(x;w), vtmp,2  v(x;w − ηε(wi)) // Compute difference
of v
7: For o = 1 to q do
8: ĴWðjmþo;iÞ  

vtmp;1 � vtmp;2
�

// Backward difference

9: Return: ĴW

3 Experiments

To evaluate the performance of the neural PID controller, we use four typical control prob-

lems. Each system offers a different control challenge. Each individual system is controlled

with and without noise. The noise is Gaussian white noise with a signal to noise ratio (SNR)

of 20dB and corresponds to noisy measurements from sensors and is added to the system

output.

To further evaluate the robustness of the controller, we inflict upon each system a suitable

disturbance. The term disturbance refers to an unwanted and unexpected system input that

will result in an increase of the system error. Disturbances can occur due to external influences

or due to failure in the system and they are individual for each kind of system. For each system,

the disturbance is increased in size from zero until only one control approach is still able to sta-

bilize the system. Disturbances of this magnitude are then used in the experiments. These dis-

turbances are not included in the training data for the neural PID controller. All experiments

are run over 50 independent runs to ensure statistical relevance. The system differential equa-

tions are solved using the Dormand-Prince solver. To simulate real-world conditions of a dis-

crete sample time, the controller output can be adapted every 0.01s. This intervention time is

chosen to represent the limitations of real-world actuators, which cannot adjust their values on

an arbitrarily small timescale. The solver is run iteratively for 0.01s, using the result of the for-

mer step as starting conditions. During each 0.01s intervention time window, the controller

output u is kept constant.

The training is done on an Intel Core i5-4570 with a 3.2 GHz clock rate, 6 MB of shared L3

cache, 32 GB DDR3 RAM. Once learned, the neural networks run on a Raspberry Pi 3 Model

A+.
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Two-tank system

The first system is a nonlinear two-tank system, as seen in Fig 2 and is described by the differ-

ential equations in [26]. The controller has access to a pump, regulating the input, while the

measured output is the water level in the second tank. This system is a standard benchmark

system in control theory. It corresponds to various industrial processes, e.g. bio-reactors, filtra-

tion, and nuclear power plants. There exist a number of control approaches for this system,

including direct control via neural networks [27], adaptive output feedback [28], and backstep-

ping [26], which will be used as comparison.

To evaluate the robustness of the compared control approaches, the two-tank system is

disturbed continuously between t = 20s and t = 40s. As a disturbance, the controller output

is set to zero, which would correspond to a drain of the water supply. The water levels in the

tank are therefore independent from the control inputs for 20s. The voltage for the pump,

u, was limited to the range [−500V, 500V] to simulate a pump appropriate to the tank

dimensions.

Fig 2. Two-tank system. This nonlinear system is widely used to study nonlinear behaviour in control engineering

systems. The controller can adjust the amount of water being put into the first tank. The goal is to keep the water level

in the lower tank (v(t) = x2(t) at the setpoint.

https://doi.org/10.1371/journal.pone.0243320.g002
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Inverted pendulum on a cart

The second system is a nonlinear inverted pendulum on a cart, as shown in Fig 3. The system

is described by the differential equations in [29]. The control task is to stabilize the inverted

pendulum at its unstable equilibrium by applying a force on the cart. The cart’s movement is

restricted to 0.5m in either direction. This system is a widespread benchmark system in control

theory due to its nonlinearity and unstable equilibrium [29, 30]. Practical applications for

inverted pendulums include rocket control during initial stages of flight or keeping a walking

robot in an upright position. For comparison, a linear–quadratic regulator (LQR) [31, 32] and

a double PID controller [32] are used.

The system is disturbed by a force of 8.5N to the pendulum at time t = 10s. This disturbance

can be interpreted as a strong and unexpected wind condition during the launch of a rocket.

The controller ouptut u was bounded within [−50N, 50N], which corresponds to a typical

actuator of that size.

System with non-negligible time delay

The third system is a first order linear time invariant (LTI) system with a non-negligible time

delay. Time delay is a problem in control theory that is often forgotten while designing con-

trollers [33]. Time delays can result in decreased performance and system instability. The

benchmarks for this system are a PID controller [34] and a smith-predictor [35]. Fig 4 demon-

strates the delayed system response for an input.

This system is disturbed by a (dimensionless) disturbance of −5 between t = 50s and t = 75s

continuously. Such a disturbance can be thought of as a temporary blockage in a fluid trans-

port system. The exact system specifications can be found in [34]. The controller output u was

bounded between the range of [−10, 10].

Fig 3. Inverted pendulum on a cart. This system is a nonlinear system with an unstable equilibrium. The control task

is to move the cart to a predefined position, while keeping the pole up.

https://doi.org/10.1371/journal.pone.0243320.g003
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Chaotic thermal convection loop

The fourth system is a chaotic thermal convection loop, as shown in Fig 5. Its dynamics are

described by the equations

_x1ðtÞ ¼ pðx2 � x1Þ ;

_x2ðtÞ ¼ x1 � x2 � x3ðx1 þ bÞ;

_x3ðtÞ ¼ x1x2 þ bðx1 þ x2Þ � x3 � u;

ð4Þ

with p = 10 and β = 6 as appropriate constants [36]. x1 is a measure for how far the current

flow velocity differs from the steady point of the system—if x1 is zero, the system is in its steady

point. x2 and x3 are measures for the difference in temperature between the points A and B, as

well as C and D in Fig 5 respectively. u is a the power, applied to the heater and the control

variable.

Chaotic behavior may lead to vibrations, oscillations and failure in systems and is therefore

an important aspect of control theory. As chaotic behavior is unpredictable, mathematical

Fig 4. System with non-negligible time delay. The Figure shows the systems response (including the time delay TD)

to an input.

https://doi.org/10.1371/journal.pone.0243320.g004

Fig 5. Chaotic thermal convection loop. This system is an example for chaotic behaviour. The control task is to

maintain a constant flow in the inner torus—the flow is measured at the points A and B. Half of the torus that contains

the fluid is surrounded by a heating element, the other half is surrounded by a cooling jacket. The control variable is

the heating power, applied on the lower half of the torus.

https://doi.org/10.1371/journal.pone.0243320.g005
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models are only sufficient to a certain point, hence closed loop control is a desirable approach

[37]. Usual control approaches for the chaotic thermal convection loop are nonlinear feedback

controllers [38] and backstepping [39, 40].

To evaluate the robustness of the applied control approaches, the system is disturbed with a

force of 100W continuously between t = 5s and t = 5.5s. This perturbation can be interpreted

as a temporary change in the cooling water temperature. To simulate real actuators with a lim-

ited capacity, the controller output u is limited between [−100W, 100W] to simulate an appro-

priate heating element.

4 Results and discussion

The results for all experiments can be found in Table 1. For each system the mean and variance

from 50 independent runs are shown for all controllers in all tested scenarios. The best control

approach is highlighted in bold. For all values, a two-sample t-test was performed and a control

approach is only considered to be superior for p< 0.05. From Table 1, it can be seen that the

Table 1. Control results for the four benchmark systems.

Control Benchmark RMSE on test data over 50 runs

Disturbance - - ✔ ✔
SNR - 20 dB - 20 dB

Two-tank system

Mean Neural PID 0.74 0.86 0.84 1.00

Standard PID 0.95 0.99 1.00 1.10

Backstepping 1.10 1.10 1.20 1.10

Variance Neural PID 0.0036 0.0040 0.0056 0.0460

Standard PID 0.0025 0.0023 0.0052 0.0063

Backstepping 0.0016 0.0018 0.0036 0.0024

Inverted pendulum

Mean Neural PID 0.034 0.02 0.09 0.27

Standard PID 0.035 0.04 140 140

LQ regulator 0.05 0.05 140 140

Variance Neural PID 0.0004 0.0003 0.0490 0.0007

Standard PID 0 1.1 � 10−7 0 0.0023

LQ regulator 0 3.3 � 10−9 0 0.0022

LTI system with input delay

Mean Neural PID 0.13 0.15 0.26 0.28

Standard PID 0.22 0.23 0.36 0.38

Smith predictor 0.18 0.19 0.19 0.20

Variance Neural PID 0.0006 0.0005 0.0007 0.0003

Standard PID 0.0007 0.0006 0.0004 0.0003

Smith predictor 0.0006 0.0005 0.0005 0.0003

Chaotic thermal convection loop

Mean Neural PID 0.23 0.90 1.90 1.70

Standard PD 0.24 1.60 13.00 4.20

Backstepping 0.26 0.89 9.80 9.80

Variance Neural PID 1.2 � 10−5 0.0003 0.16 0.22

Standard PD 0 2.00 0 1.40

Backstepping 0 0.0001 0 1.4 � 10−5

https://doi.org/10.1371/journal.pone.0243320.t001
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neural PID controller performs best in 12 scenarios, pairs with the standard PID controller in

one and performs second best in two scenarios. To compare control approaches, there are

common measurements that are used in control engineering, e.g. rise time, overshoot, settling

time [5]. However, these measurements all address the error between the setpoint and the

actual systems output with different emphases. We therefore used the root-mean-squared-

error (RMSE) between the setpoint and the system output to summarize these error measures

in a single number without losing information.

Two-tank system

For the two-tank system, a backstepping controller is chosen for a comparison, as this

approach takes the nonlinear behavior of the system into account and has demonstrated to be

well suited for this system [26]. The PID controller is parameterized with the constants KP =

3.65, KD = −2 and KI = 0.4. All controllers are able to control the system, while the neural PID

controller exhibited the smallest error for all scenarios. However, the advantage the neural PID

controller yields is relatively small, as can be seen in Table 1. As this system is the easiest to

control, it can be expected that the standard PID controller and backstepping perform on a

similar scale.

Inverted pendulum

The inverted pendulum on a cart is controlled by a standard PID controller stack [29], and a

LQR [32] for benchmarking. The PID controller, responsible for the position, has the values

are KP = −2.4, KD = −0.75 and KI = −1 and the controller for the angle is set to KP = 25, KD = 3

and KI = 15 [29]. All three approaches are able to initially stabilize the system. For the scenario

without disturbance, the neural PID controller performs equally to the standard PID controller

when there is no noise present. For the scenario with only noise, the neural PID controller is

the best control approach. Furthermore, only the neural PID controller is able to stabilize the

disturbed system, resulting in a substantially lower error as can be seen in Table 1.

System with non-negligible time delay

For the system with non-negligible time delay, the standard PID controller is set to KP = 1.5,

KD = −0.1 and KI = 0.7. The neural PID controller is superior in all scenarios, when compared

to the standard PID controller. When compared to the Smith predictor [41], the neural PID

controller performs better only for the scenarios without noise. However, as the Smith predic-

tor has knowledge about the exact time delay, it has a significant advantage over the neural

PID controller.

Chaotic thermal convection loop

The PID parameters yielding the lowest error for the chaotic thermal convection loop are KP =

25.3, KD = 8.9 and KI = 0—the controller is therefore a PD controller. The system is initialized

outside of its inherently stable region (region of attraction) with the initial conditions x1 = x2 =

x3 = 5. Without control, the system will therefore not converge to the desired steady state x1 =

x2 = x3 = 0.

All controllers are capable of stabilizing the system, as can be seen in Fig 6(a). The backstep-

ping approach has the least overshoot but takes a long time to reach the steady state. The stan-

dard PID controller is more aggressive, resulting in a higher overshoot but still a smaller error.

The neural PID controller performs best as it finds a good balance between settling time and

overshoot.
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Out of four scenarios, the neural PID controller demonstrates superior control perfor-

mance. Only in the scenario with noise but without disturbance does backstepping perform

slightly better (0.89 vs 0.9). This can be explained by backstepping being designed using the

differential equations. It therefore knows the underlying systems dynamics and is less influ-

enced by the sensor noise.

Between the time t = 5s and t = 5.5s, the control output is set to u = −100W to simulate the

disturbance described earlier. The standard PD controller becomes meta stable and its control-

ler output iterates between the maximum value of 100W and the minimum value of −100W.

Although backstepping is proven to be globally, asymptotically stable in the Lyapunov sense

[42], it also becomes meta stable. This can be explained by the real world conditions. As the

controller can change its control output only every 0.01s the backstepping approach fails,

resulting in switching inputs between the maximum value and the minimum value, as seen in

Fig 6(b). Both controllers (PID and backstepping) use excessive amounts of energy without

being able to stabilize the system.

The neural PID controller is able to stabilize the system after the disturbance. Fig 6(c)

shows how the neural network changes the PID parameters in response to the system output.

When x1 is far from the setpoint, the KP parameter has a high absolute value to force the system

towards its steady state. To further increase the controller output at t = 7.9s, where the system

reaches its furthest distance from the set point KI is increased. After the system reaches its

steady state again, all PID parameters are adjusted back to their stationary value to ensure

asymptotic performance. The neural PID controller furthermore uses significantly less energy

to control the system.

Investigating the solutions stability

Despite the experimental evidence that suggests the enormous benefit of using neural net-

works to adapt PID parameters online, this approach is not yet used on real-world system.

This is due to the black box character of neural networks and the stringent safety requirements

Fig 6. Control performance for the disturbed chaotic thermal convection loop. Subfigure (a) shows the setpoint (x1 = 0,

which corresponds to a steady flow) and the system output for all controllers. Subfigure (b) shows the controller outputs for

all three controllers. In subfigure (c), the PID parameters, applied by the neural network are shown.

https://doi.org/10.1371/journal.pone.0243320.g006
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for control processes. One of the most important safety requirements of a closed loop control

approach is input-output stability. It describes whether the system output is bounded for all

bounded inputs. A system can be evaluated for stability by analysing the closed loop transfer

function, i.e. the relation between the system output to its input.

For a bounded-input bounded-output stability analysis, the closed loop transfer function is

computed as

VðsÞ
V�ðsÞ

¼
GðsÞHðsÞ

1þ GðsÞHðsÞ;
ð5Þ

where V(s) is the system output, V�(s) is the setpoint, G(s) is the system transfer function and

H(s) is the controller transfer function in the Laplace domain. Following the Nyquist criterion,

the system is stable if all poles are in the left half of the left half plane, i.e. their real values are

smaller than zero. In the example of the chaotic thermal convection loop, the systems transfer

function G(s), linearized around a steady state x1 = x2 = x3 = 0, does not change over time and

only has to be computed once. The controller transfer function H(s) is dependent on the PID

parameters and therefore changes at every time the neural network adjusts these parameters.

To make sense of these changes and interpret them from a stability perspective, the controller

transfer function therefore needs to be computed at every time step. This varies from the tradi-

tional stability analysis, which is computed once under the assumption of non-changing PID

parameters. Together, these transfer functions express whether the closed-loop solution is sta-

ble or unstable.

As an important contribution, we therefore perform an online analysis of the input-output

stability for the controller. This analysis can be seen in Fig 7. The Figure shows the systems

output and the stability, with respect to its linearized steady state over the experiment and the

real values for all four poles of the transfer function. The closed loop transfer function is not

stable in the beginning, during settling and after the disturbance. This can be expected, as the

system is far away from its steady state for which stability is evaluated. However, as the systems

output gets close to the set point, i.e. the steady state, the closed loop transfer function becomes

stable. Knowing about the relationship between chosen PID parameters and stability allows to

include this knowledge into the training. A potential way to include this information would

be to include the poles as a regularization term during training in order to force the system

towards an input-output stable behaviour. Furthermore, the input-output stability evaluation

is an important insight for control engineers and makes the neural PID controllers under-

standable for humans, thus emphasising its applicability for safety critical systems.

5 Future work

This paper presents a first step towards accommodating the needs of control engineers when

integrating machine learning algorithms into existing control architectures. While we identi-

fied a way to relate the parameters applied by the neural network back to input-output stabil-

ity, this new information was not yet leveraged during the training procedure. It is a natural

extension of this paper to use the newly found information about stability as a regularizer

when training the neural network to ensure only input-output stable PID parameters. Beyond

extensions of the exact framework used in this paper, we have provided an effective demon-

stration of the more general idea of leveraging machine learning algorithms to enhance exist-

ing control methods.

While other examples exist in the literature (e.g., the combination of neural networks [43]

or fuzzy logic systems [44] with backstepping), many other combinations of different machine

learning approaches with other control algorithms have the potential to provide good results.
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For example, the machine learning methods from reinforcement learning might be well-

applied to linear quadratic regulators while maintaining interpretability.

6 Conclusion

In this paper, we conduct an extensive and rigorous investigation into the use of general

dynamic neural networks for online PID parameter adaption. We perform experiments on

four different systems, with and without sensor noise as well as with and without disturbance,

resulting in 16 experiments in total. These scenarios cover the most important challenges in

control engineering. This study is therefore unique in its extensiveness, as previous papers

only used one type of benchmark system. The neural-network-based approach outperforms a

standard PID controller in 15 of 16 scenarios and outperforms a model-based controller in 13

of 16 scenarios.

These results showcase the potential of extending existing systems by machine learning in

general and neural networks in particular. Furthermore, we keep the neural network design

and integration simple to allow for easy adoption of our technique. With an appropriate imple-

mentation as a library, our technique could be used without extensive knowledge of either con-

trol engineering or neural networks. To the best of our knowledge, this is the first investigation

that uses general dynamic neural networks, extending the state of the art for using neural net-

works to tune PID parameters. We perform a detailed analysis for one representative scenario,

highlighting the superior control performance of our approach over both the traditional PID

controller and model-based backstepping. It is worth noticing that while training data was

Fig 7. Stability analysis for the chaotic thermal convection loop with disturbance. The dashed line shows the systems output, when controlled by the

neural PID controller. The closed loop transfer function is not guaranteed to be stable within the grey areas, despite the algorithm stabilizing the system. As

the system approaches its steady state, the system becomes input-output stable with the chosen PID parameters. The second subplot shows the real values

for all four poles. The system is only stable (white background colour) if all poles have real values smaller than zero.

https://doi.org/10.1371/journal.pone.0243320.g007
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gathered from simple differential equations, the results indicate significantly increased resil-

ience towards noise and unforeseen disturbances.

Although the significant potential of neural networks for PID parameter tuning is known

[7, 8], this technique has not been used in real-world applications to date. As the functioning

of a neural network in this setting is not understood, control engineers refrain from using

them. In a first attempt to solve this problem, we perform an input-output stability analysis to

interpret how neural networks function within the suggested framework. Tying the neural net-

work outputs back to stability makes this neural-network-based approach understandable to

humans. We therefore address a key issue when applying machine learning algorithms for

control problems: the interpretability of and subsequently the trust in the machine learning

solution. This work is thus an important step to increase the acceptance of machine learning

based approaches for real-world systems and an important step towards safe and interpretable

applied artificial intelligence.
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