
Received November 21, 2019, accepted January 2, 2020, date of publication January 13, 2020, date of current version January 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965930

Sequential Association Rule Mining for
Autonomously Extracting Hierarchical Task
Structures in Reinforcement Learning
BEHZAD GHAZANFARI 1, FATEMEH AFGHAH 1, AND MATTHEW E. TAYLOR 2
1School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, AZ 86011, USA
2School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163, USA

Corresponding author: Behzad Ghazanfari (bg697@nau.edu)

ABSTRACT Reinforcement learning (RL) techniques, while often powerful, can suffer from slow
learning speeds, particularly in high dimensional spaces or in environments with sparse rewards.
The decomposition of tasks into a hierarchical structure holds the potential to significantly speed
up learning, generalization, and transfer learning. However, the current task decomposition tech-
niques often cannot extract hierarchical task structures without relying on high-level knowledge pro-
vided by an expert (e.g., using dynamic Bayesian networks (DBNs) in factored Markov decision
processes), which is not necessarily available in autonomous systems. In this paper, we propose a novel
method based on Sequential Association Rule Mining that can extract Hierarchical Structure of Tasks in
Reinforcement Learning (SARM-HSTRL) in an autonomous manner for both Markov decision processes
(MDPs) and factored MDPs. The proposed method leverages association rule mining to discover the causal
and temporal relationships among states in different trajectories and extracts a task hierarchy that captures
these relationships among sub-goals as termination conditions of different sub-tasks. We prove that the
extracted hierarchical policy offers a hierarchically optimal policy in MDPs and factored MDPs. It should
be noted that SARM-HSTRL extracts this hierarchical optimal policy without having dynamic Bayesian
networks in scenarios with a single task trajectory and also with multiple tasks’ trajectories. Furthermore,
we show theoretically and empirically that the extracted hierarchical task structure is consistent with
trajectories and provides the most efficient, reliable, and compact structure under appropriate assumptions.
The numerical results compare the performance of the proposed SARM-HSTRL method with conventional
HRL algorithms in terms of the accuracy in detecting the sub-goals, the validity of the extracted hierarchies,
and the speed of learning in several testbeds. The key capabilities of SARM-HSTRL including handling
multiple tasks and autonomous hierarchical task extraction can lead to the application of this HRL method
in reusing, transferring, and generalization of knowledge in different domains.

INDEX TERMS Association rule mining, extracting task structure, hierarchical reinforcement learning.

I. INTRODUCTION
Reinforcement learning (RL) is known as a commonly used
approach for planning and sequential decision making in
artificial intelligence (AI) systems, where the agents gradu-
ally learn and optimize their actions from delayed rewards
through a trial-and-error mechanism. However, one of the
main challenges of RL approaches is scalability to high-
dimensional or sparse rewards state spaces [1]. Hierarchical
reinforcement learning (HRL) methods are known to reduce

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

the computational complexity of RL approaches by tempo-
ral and state abstraction in the form of decomposing the
learning problem to a hierarchy of several sub-problems.
Sub-goals refer to the local target states that not only pro-
vide easy access or high reinforcement gradients, but also
must be visited frequently [2], [3]. These sub-goals can
help an agent to accelerate the learning process, particu-
larly in high dimensional spaces. In [4], an HRL decom-
position method called MAXQ is proposed based on the
assumption of having an expert with the knowledge of
task structures to provide a correct hierarchy, however such
assumption can restrict the application of this method in

11782 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3004-0823
https://orcid.org/0000-0002-2315-1173
https://orcid.org/0000-0001-8946-0211

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

autonomous systems where a limited expert’s understanding
is available [5].

In the absence of an expert, several HRL techniques have
been reported for task decomposition, in which a number
of sub-goals that are correlated with the successful policies
are utilized as the required states to decompose the learn-
ing task [2], [3], [6]. However, extracting these states in an
autonomous manner is still a challenging problem to reach
the expected detection accuracy or since they rely on advance
knowledge [7]. One important missing piece in the majority
of existing HRL methods is that the potential hidden cor-
relations among the sub-goals to achieve the ultimate goal
have been overlooked. Therefore, most of these previously
reported methods cannot extract the hierarchical structure
and the relation among sub-goals or temporally extended
actions [8]. The key contribution of this work is to propose an
HRL method based on the idea of sequential association rule
mining (SARM) that extracts hierarchical knowledge from
the hidden correlations among the extracted sub-goals and
uses this knowledge to decompose the tasks into multiple
sub-tasks.

The rest of this paper is organized as follows: In Section II,
a comprehensive review of current HRL techniques in dif-
ferent domains is presented. Section III provides a review
of the required concepts and notations used throughout the
paper. In Section IV, the proposed SARM-HSTRL method
is described, followed by multiple examples that explain the
method step by step. The theoretical analysis including the-
orems and proofs of the properties, and the time complexity
of this method are shown in Section V. The performance of
the proposedmethod is evaluated for different simulation sce-
narios in Section VI. The concluding remarks are presented
in Section VII.

II. RELATED WORKS
HRL methods can potentially address two common issues
of RL approaches related to high-dimensional state spaces
and the sparse rewards by decomposing the tasks into sev-
eral sub-tasks. Thus, HRL methods provide temporal and
state abstraction rather than only learning, which make them
different from the methods that are based on representation
learning such as deepRLmethods. Furthermore, the extracted
hierarchical structure can be used for transfer learning and
generalization of knowledge while the optimality of solu-
tions can be satisfied. It is worth noting that HRL and deep
RL methods are different areas of research with different
objectives. Deep RL techniques use function approximation
methods or representation learning methods to provide prac-
tical solutions for applications where the state spaces are
continuous or include images. Moreover, deep RL methods
still suffer from sparse rewards issues. HRL methods have
been also used in deep RL domain to address sparse reward
issues and to facilitate transfer learning and generalizing of
knowledge [9]–[13].

In general, HRL methods can be categorized depending
on the domains that they are applied to. These categories

include: 1) Markov decision processes (MDPs) for discrete
state and action spaces; 2) Factored Markov decision pro-
cesses (FMDPs); and 3) Continuous domains and deep RL.
Since we want to distinguish between MDPs in discrete
from continuous and image state spaces, we refer to them as
continuous domains and deep RL. Deep RL methods are not
commonly used in FMDPs since the classical RL methods
in MDPs and FMDPs lead to better results and the optimal
solutions can be acquired. However, there is no guarantee
that the deep RL methods can provide optimal solutions.
Thus, the HRL methods are often developed based on the
domain characteristics and none of the existing methods
can work well in all domains— i.e., the no-free-lunch the-
orem. For example, the methods proposed in FMDPs can
extract the task structure in several levels, hierarchical forms,
since FMDPs can be described in a high-level representation
that makes it feasible to extract such knowledge–the details
related to the performance of HRL methods in each domain
are described in the following subsections.

Themain contribution of our proposedmethod is to decom-
pose the hierarchical structure of tasks in an autonomous
manner in the most efficient way in MDPs (discrete) and
FMDPs. Moreover, this method offers the following advan-
tages compared to the state-of-the-art techniques in the field
including: 1) The proposed method can be applied in both
of MDPs and FMDPs, not limited to just one of them;
2) The proposed method extracts the hierarchical optimal
policy without having dynamic Bayesian networks (DBNs) in
factored MDPs in scenarios with a single task trajectory and
also with multiple tasks’ trajectories; and 3) The proposed
method is able to extract the hierarchical task structures of
several tasks’ trajectories while the most reported techniques
focus on one successful trajectory. We also prove that the
extracted structure is the most efficient, reliable, and the
compact hierarchical structure for both MDPs (discrete) and
FMDPs.

A. HRL METHODS IN MDPS (DISCRETE STATE AND
ACTION SPACES)
The HRL methods based on extracting the sub-goals [2],
[3], or the ones based on bottlenecks extraction [14]–[16] can
only extract a flat hierarchy, (i.e., one level) which means
that these methods only find the sub-goals or the bottlenecks,
rather than a hierarchical structure of them. Since these meth-
ods often use the paths or the sub-graphs of the agent, or the
shortest paths among the nodes of a graph to calculate their
required measures such as betweenness [16], their perfor-
mance considerably degrades in scenarios with a large state
space, or when the number of actions to reach the goal-states
increases. They also usually require prior knowledge about
themeasures that helps to partition the state space to parts that
are connected densely inside, but sparsely to each other [8].

Next, we provide a review of the common methods
for extracting the sub-goals or bottlenecks. In summary,
both types of these HRL methods are based on cluster-
ing or classification approaches to separate the sub-goals or

VOLUME 8, 2020 11783

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

the bottlenecks. The frequency of visiting the states is consid-
ered as the key factor in the detection of the sub-goals in [2]
and other extensions of this work including [3]. The visita-
tion frequencies in such pure forms are prone to error and
involve significant time-consuming computations for sub-
goal extraction. In [6], any state is considered as a sub-goal if
it has two conditions of a high frequency of state occurrence
and large reinforcement gradients. Thus, this method may not
show good performance in a domain with sparse rewards.
We should note that these conditions are necessary but not
enough [8].

A metric to detect the bottleneck states from a local per-
spective, called ‘‘relative novelty’’ was introduced in [15],
where the novelty of the next visited states is compared to
the novelty of the states which were visited before. Such
methods need some characteristics of the sub-goals to be
able to classify the states as sub-goals. The proposed method
in [17] learns the value function by using image processing
techniques. This method suffers from the same issues as the
frequent-based methods and it is limited to two-dimensional
spaces [8]. The graph-based methods are another common
way to find the bottleneck states, i.e., the states which sep-
arate a graph into sections that are densely connected within
themselves but sparsely connected to each other. These graph-
based methods receive the MDP state transition graph as an
input. For example, the Max-Flow/Min-Cut algorithm pro-
posed in [18] is performed using a clusteringmethod based on
the graph density, in which the topology clustering has been
used for detecting the bottlenecks to split a state-space into
multiple clusters. The performance of this method depends
on two functions that are defined based on the graph den-
sity: one for calculating the clustering quality and the other
to indicate the separation quality between the clusters. The
authors in [14] proposed an approach by using a similarity
value function along with graph partitioning to extract the
value bottlenecks.

As described in [8], an spectral clustering algorithm was
introduced in [19] as an approximation of the normalized cut
to partition the local transition graph. In [20], the method
proposed in [19] was improved in an offline manner by
eliminating some of its requirements in terms of advance
knowledge. In [16], the authors used a measure based on the
centrality measure, called as ‘‘betweenness’’ to partition the
graph.

To sum up, these methods are generally based on applying
different clustering approaches on the states transitions to
partition the state space and extract the bottlenecks.

B. HRL METHODS IN FACTORED MDPS (FMDPS)
Some of the current HRL methods which are based
on extracting the task-dependent hierarchy in FMDPs
include HEX-Q [21], variable influence structure analysis
(VISA) [22], and hierarchy induction via models and trajec-
tories (HI-MAT) [23], [24]. Since there are implicit structure
representations of the problems among the state variables
in FMDPs, DBNs as a high-level source of pre-knowledge

are often used to decompose the tasks in such processes,
noting their capability to extract the impact of each action
on the state variables. VISA analyzes the impacts of state
variables on one another by building a causal graph using
DBNs. The state variables that affect others are assigned to
deeper levels in the hierarchy. HI-MAT and VISA algorithms
rely on the availability of DBNs for each action [22]–[24].
Since VISA considers the impacts of all actions regardless
of the domain, it can create unnecessary branches in the
extracted hierarchy or unnecessary sub-tasks. Thus, it may
result in an ‘‘exponentially sized hierarchy’’ that limits its
application in some domains [23], [24]. To address this prob-
lem, HI-MAT was proposed to remove such unsuccessful
and redundant action cycles. This method leverages a single
and carefully constructed trajectory to construct a MAXQ
hierarchy. It is shown that the constructed hierarchy is com-
pact and comparable to manually engineered ones. However,
the main disadvantage of both these methods is that utilizing
DBNs require high-level knowledge that should be provided
by an expert or needs to be extracted via a large number
of computations [25]. Among these HRL methods proposed
for factored MDPs, HEX-Q is the only one that does not
rely on DBNs. HEX-Q extracts a task hierarchy based on
an ordering of the frequency of the state variable changes.
The state variables with the highest change frequency are
assigned to the lowest level of the hierarchy, and the state
variable with the lowest number of changes are considered
as the root nodes [21]. However, this method is not capable
of identifying the relations among the states variables that can
potentially result in divergence of the learning process [23].

C. HRL METHODS IN CONTINUOUS DOMAINS
AND DEEP RL
There are several methods based on skill discovery that have
been proposed in continuous domain [26]–[31]. The authors
in [28] introduced skill chaining, in which each skill leads
to a designated target event. They used supervised learn-
ing to learn the initiation sets of skills as they are able to
reach each other successfully. They attempted to extend their
work in [27] by defining a library of abstraction for skill
acquisition. In [30], the authors proposed skill learning from
demonstration trajectories. In [26], the authors constructed
parameterized skills of some experiences by making a gener-
alization estimation topology of them. In [29], a segmentation
approach for policies is developed to improve the scalabil-
ity of the method. Since these methods rely on supervised
learning, they work based on what they have been trained for,
and they cannot be easily extended to larger states and actions
spaces.

Deep RL has been introduced as a bridge between RL
and representation learning. The majority of the methods
that attempt to use hierarchical structures in deep RL can
only work in applications in which the states are images.
Some of them can also work in classical RL problems such
as [32]–[34], but still similar to [35]–[44], these methods
suffer from the inability to extract hierarchical structures in

11784 VOLUME 8, 2020

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

several layers as the HRL methods that have been proposed
for FMDPs [22]–[24]. In [11], the authors used the values
of observed states to train function approximations in order
to estimate the values of unseen states for different goals.
This method can be used for defining options. However,
they assumed the goals are given in advance which is not a
practical assumption for real tasks in RL. In [12], the authors
used some predefined sub-goals in multi-task and transfer
learning in deep RL.

It should be noted that some HRL approaches have been
applied in deep RL techniques [9]–[12], [35]–[45] which con-
sider some level of in advance knowledge or internal rewards
to extract the temporally extended actions, although these
methods are considerably different from the ones utilized in
FMDPs. In other words, the HRL methods that have been
applied in each of these domains are essentially different
from one another and there are not any scalable methods
that work in all of these domains. A few methods includ-
ing [32]–[34] can work in MDPs and deep RL groups. They
define another learning or approximation parts that possibly
conflict with the goal reward of the original problem in RL.
These methods cannot scale up in continuous or image state
spaces, cannot be applied in FMDPs, and also they do not
extract the hierarchical structure of tasks.

In summary, conventional sub-goal extractionmethods that
canwork inMDPs, do not extract a hierarchical task structure.
The few existing hierarchical structure extractor methods in
RL including HEX-Q, HI-MAT, and VISA only work in
FMDPs.More importantly, HI-MAT and VISA rely on DBNs
knowledge, which is a high-level supplementary knowledge
provided by human experts. We should note that HI-MAT,
the most recent HRL approach in the literature, cannot be
applied in MPDs, and it can only handle one trajectory while
the need to work with several trajectories is required in sev-
eral RL applications. However, our proposed SARM-HSTRL
method extracts a hierarchical optimum policy of the task
structure for both MDPs and FMDPs, while it does not rely
on DBNs as a pre-knowledge structure provided by human
experts in FMDPs. SARM-HSTRL is also the first method
that can extract the hierarchical optimum policy of the task
structure with multiple policies.

III. BACKGROUND
In this section, we explain the concepts of MDPs and FMDPs
as the two domains that the proposed method is applied to.
Then, we provide a brief introduction to association rule
mining.

A. MDPS AND FMDPS
RL tasks are typically defined in a MDP framework as a
5 − tuple: 〈S,A,P,R, γ 〉. In this paper, we focus on finite
MDPs, where S = {s1, . . . , sn} is a finite set of states,
A = {a1, . . . , am} is a finite set of primitive actions, P :
S×A× S → [0, 1] is a one-step probabilistic state transition
function, R : S ×A→ R is a reward function, and γ ∈ (0, 1]
denotes the discount rate. The agent’s goal is to find a policy

(a mapping from the states to the actions),5 : S×A→ [0, 1]
that maximizes return as the accumulated discounted reward
R =

∑T
i=0 γ

iri, for each state in S.
FMDPs are known as an extension of MDPs that contain

a structured representation of problems, where T and R are
represented in a compact way. In factored MDPs, the states
are described by a set of state variables. To have a unified
definition for both MDPs and FMDPs, each state in an MDP
can be described by a random variable X which contains one
variable X1, X = (X1), that takes different values. In FMDPs,
X is a multivariate random variable, X = (X1,X2, . . . ,Xn).
Each state x is an instantiation of X , and it can be shown as a
vector of (x1, x2, . . . , xn) such that ∀i xi ∈ Dom(Xi), in which
DOM (X) = 〈D1,D2, . . . ,Dn〉 refers to the set of possible
values for X as a multivariate variable [46].

The value of a state s based on a policy π is defined as the
expected return that is gained by following π of the state s.
There is always at least one policy that its expected return
is equal or greater than any other policies for all states [47]
that such policy or policies are known as optimal policies and
denoted π∗. Hence, the corresponding state-value function,
V , and the action-value function, Q, are optimal and shown
as follows: V ∗(s) = maxπ Vπ (s) for all s ∈ S, and Q∗(s, a) =
maxπ Qπ (s, a) for all s ∈ S and for a ∈ A(S), respectively.

B. AN OVERVIEW ON ASSOCIATION RULE MINING
Association rule mining (ARM) methods use a combination
of two key measures of support and confidence in a proven
effective extraction strategy to obtain and evaluate the most
efficient and reliable relationships among the variables in
a dataset. ARM has been applied in bioinformatics to dis-
cover the patterns in datasets that are statistically impor-
tant [48], or in retail stores to find the items that are commonly
being sold together among millions of transactions [49], [50].

An ARM problem is defined by a pair of 〈 ITEMSET,
Transaction 〉, where ITEMSET= {i1, . . . , ig} is the set of all
items and Transaction= {�1, . . . , �N } is the set of all trans-
actions. Each transaction is a subset of items of ITEMSET.
The relationship among the items in the transaction set can
be defined by an association rule. An association rule is
expressed in the form of A→ B, where A and B are disjoint
sets of items; A ∩ B = ∅. The frequency of the occurrence of
A and B together in a Transaction is defined as a key factor,
also known as support of the association rule. The frequency
of occurrence of A and B, relative to the frequency of the
occurrence of A, is known as confidence. The definition of
support and confidence are as follows [50]:

support(A→ B) =
σ (A ∪ B)

N

confidence(A→ B) =
σ (A ∪ B)
σ (A)

where σ (·) is the number of observed transactions including
the elements inside of the parenthesis, and N is the total
number of transactions. The support factor is often used as
a measure to disregard the items that do not occur together so

VOLUME 8, 2020 11785

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

frequently relative to N , and confidence can express the reli-
ability of the extracted rules. The corresponding thresholds
for support and confidence, known as minsup and minconf,
respectively, can be used to extract the important rules [50].

ARM algorithms typically consist of two parts: 1) Frequent
Itemset Generation: All of the itemsets that satisfy theminsup
condition are extracted, i.e., frequent item sets. 2) Rule Gen-
eration: Building upon the outputs of the Frequent Itemset
Generation, this step calculates the confidence of the obtained
frequent itemsets and checks their eligibility by comparing
their confidences with the minconf threshold. The frequent
pattern growth (FP-growth) algorithm has been proposed for
Frequent Itemset Generation by constructing a compact data
structure, called a FP-tree. The confidence value is calcu-
lated for each rule and evaluated based on minconf. The
FP-tree is constructed by reading the transactions one by
one and mapping them onto a path of the FP-tree in which
FP-tree uses the common item sets to provide a compressed
data structure. FP-Growth is an efficient approach that uses
FP-tree and extracts frequent item sets directly from that [51].
This algorithm outperforms the majority of frequent patterns
extraction algorithms in large datasets; for the analysis of
time complexity and more details about FP-growth algorithm
see [50]–[52].

IV. PROPOSED SARM-HSTRL ALGORITHM
In this section, we describe the proposed algorithm to extract
a hierarchical structure of tasks in RL named SARM-HSTRL
for both MDPs and FMDPs. Despite the existing HRL meth-
ods in MDPs, SARM-HSTRL extracts a hierarchical abstrac-
tion, not a flat abstraction in MDPs. Also, it works in FMDPs
without having advance knowledge like DBNs. In both of
these domains, it is proven theoretically that the proposed
method extracts hierarchical optimal policies. We also show
that the extracted hierarchical task structures are consistent
with the trajectories and can provide the most efficient, reli-
able, and compact structure under appropriate assumptions.
The experimental results confirm the ability of this method
to find the hierarchical optimal policies when dealing with
multiple trajectories. Also, the performance of this method
is compared to several known methods in the literature via
multiple experiments, while the proposed method does not
rely on any pre-knowledge input. In the next subsections,
we define the terms and concepts used throughout the paper,
followed by a detailed description of this method through
multiple examples.

A. DEFINITIONS
Definition 1: To assign a unique representation to a set of
multiple state variables in FMDPs, here we define a reversible
encoder-decoder operation. A map function, MF , is defined
as an encoder which maps the state variables in FMDPs to
one variable.MF−1 denoted the the decoder which performs
the reverse process of retrieving the FMDPs’ state variables
from just that single value, L, as described in Algorithm 1.

Algorithm 1MF−1(L)
1: Input: L as a MDPs’ state value that is mapped from

the FMDPs state value R, n is the number of variables
in the FMDPs’ state space.

2: Output: R as the corresponding state value in the
FMDPs’ state space.

3: for i = n : 2 do
4: TEMP =

∏i−1
j=1 numDj;

5: Rxi = L/TEMP;
6: L = mod(L,TEMP);
7: if L == 0 then
8: Rxi = Rxi − 1;
9: L = TEMP;

10: end if
11: end for
12: Rx1 = L

MF is defined as

MF(x1, x2, . . . , xn) = Rx1 +
n∑
i=2

Rxi

i−1∏
j=1

numDj

and should be a surjective, injective, and invertible function,
whereDi refers to the set of possible values for each state vari-
able, numDi denotes the number of possible values inDi, and
Rxi shows the index of xi in numDi. Therefore,

∏n
i=1 numDi

is the number of total possible values for X .
Definition 2: Transitions are considered unpredictable

when they lead to entering or leaving the sub-goals. The
boundaries among the states’ clusters which have unpre-
dictable transitions are considered as exits and defined by
a state-action pair Gi = (sTi , a) when taking action a, as a
primitive action, from state sTi , as a sub-goal, leads to the
resultant state that is a goal state to complete sub-task Ti [21].
A region is a set of states which are reachable from each
other such that any exit states in a region can be reached from
other states with probability 1 [21]. This concept has been
further explained with an example in Section IV-C— ‘‘An
Example of SARM-HSTRL’’.
Definition 3: A task hierarchy H is generally shown as

a tree, or a directed acyclic graph, 〈T ,E〉, in which the
root as the main task, T0, is decomposed to other sub-tasks
T1, . . . ,Tn and the edges, E represent the relation among
them. A sub-task, Ti, is a semi-MDP (SMDP), shown by
〈Xi, Si,Gi,Ci, 〉 [24], where Xi is the set of variables that their
corresponding values change during performing the sub-task,
Si denotes the set of admissible states of Ti, Gi shows the
exits of corresponding sub-tasks as termination conditions
of Ti, and Ci is the set of child tasks of Ti. Child tasks, Ci,
can be formed based on different HRL frameworks such as
MAXQ or option.

In the task hierarchy graph, leaf nodes correspond to sub-
tasks that interact with the environment directly by apply-
ing primitive actions, A, to states, Si. Other nodes of the

11786 VOLUME 8, 2020

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

Algorithm 2 SARM − HSTRL
Input: Transaction, minsup, minconf.
Output: HST.
1. SARM: Sequential association rule mining
1.1) Frequent Itemset = FP-growth (Transaction,
minsup);
1.2) Association Rules = Rule Generation (Frequent
Itemset, minconf);
2. HST: HST-construction (Association Rules) // See
Algorithm 3.

task hierarchy include sub-tasks as abstract states and their
corresponding local policies as abstract actions. We should
note that the sub-tasks are defined over the extracted regions
as the policies that lead to leaving these regions via exits.
These definitions guarantee that no action can lead to leaving
a sub-task except via its exits. Each sub-task similar to a
region includes a set of states, actions, Markov transitions,
and reward functions.

B. ALGORITHM OF SARM-HSTRL
The proposed SARM-HSTRL algorithm decomposes the tasks
into multiple sub-tasks by extracting the sub-goals as the sub-
tasks’ termination or exits. Sub-goals are the nodes of the task
graph and the relations of the tasks, in the form of association
rules, are the graph’s edges. The state space is partitioned
recursively in a top-down manner, and the state abstraction
and the corresponding sub-tasks (i.e., temporal abstraction)
are formed for these partitions. The state abstraction and the
temporal abstraction can limit the policy search space that
leads to increasing the speed of learning. In other words, each
sub-task, Ti, in which i shows the index of sub-task, is defined
based on the sub-goal states. These sub-goals, as the exit
states, are defined as the states that are frequently visited in
successful trajectories (i.e., the trajectories where the agent
reaches a goal state). In other words, the problem of finding
the sub-goals and the relations among them can be seen as
extracting association rules, A → B in which |A| >= 1 and
|B| = 1, such as {sd , . . . , sg → sh}, where {sd , . . . , sg, sh}
are the sub-goal states.We consider |B| = 1 in the association
rule in the second step of SARM to have similar forms of the
extracted association rules to construct the structure in HST.
It should be noted that there often exists a set of some key
sub-goals that are common among different tasks, and the
proposed SARM-HSTRL method can extract such key sub-
goals by processing a set of trajectories of tasks with random
start and goal states.

The proposed SARM-HSTRL is composed of two phases
(see Algorithm 2). In the first phase, several association rules
are extracted using an SARM approach following the two
steps of i) Frequent Itemsets Generation, and ii) Rule Genera-
tion procedure. Then, the proposedHST-constructionmethod
converts these association rules to a hierarchical structure
tree.

Input: Transaction alongside with two parameters of min-
sup and minconf are the inputs given to SARM-HSTRL.
Transaction is a set of successful trajectories. A successful
trajectory is defined as a trajectory of states that leads to the
goal reward [23]. Each trajectory of visited states, �k =

{s1, . . . , sh}, is considered as a transaction member of the
Transaction set, in which h shows the number of states in
that transaction. In FMDPs, the proposed function MF (see
Definition 1) is used to map the multivariate state variables
to a univariate state variable. All visited states in success-
ful trajectories are stored in the ITEMSET. Since we apply
SARM on the states, we considered the transactions based on
the trajectories of states, while the corresponding actions of
these trajectories of states are used in the final step of HST to
define the exit pairs and the task hierarchy.

The algorithm also takes two parameters of minsup and
minconf as input. If the minsup is set to its maximum pos-
sible value (i.e., one), the sub-goals must be visited in each
trajectory of each transaction. If we set a very small value to
the minsup, the performance of FP-growth will be degraded
as SARM-HSTRL may provide some false-positive itemsets
for the evaluation of Rule Generation. Hence, we face a
trade-off in selecting reasonable values for minsup and min-
conf. On one hand, these values should be small enough
to capture different sub-goals and relations in RL domains
with multiple types of successful trajectories. On the other
hand, if the minsup and minconf are set to very small val-
ues, the extracted hierarchical structure would extract some
unnecessary sub-goals and relations. Thus, the proper range
of these parameters can be set based on the number of trajec-
tories of encountered tasks.

An interesting fact about this method is that the parameters
minsup and minconf are defined based on the features that
make some states sub-goals. There is a significant margin
between the values of support and confidence of the regular
states and the sub-goal states. As a result, we can perform a
simple search starting from the states with larger values of
support and confidence to the ones with smaller values to
ensure that all the notable states are captured. In fact, high
support and confidence of some states relative to other ones
make these states as sub-goal states. The range of these values
can vary based on the application domains, but there is still
a considerable margin between these numbers for a typical
state and a sub-goal.

SARM: The input of SARM are Transactions, trajectories
of states, and the two thresholds of minsup and minconf
which are used in its two steps to extract some states of
the Transactions as sub-goals in form of association rules.
In the first step, the frequent itemset- the biggest groups of
states which are visited together in the Transaction as their
support are bigger than minsup— are nominated for further
processing to the second step of SARM. In the second step
of SARM, the association rules, in form of A→ B in which
|A| >= 1 and |B| = 1 are extracted as {sd , . . . , sg → sh},
where {sd , . . . , sg, sh} are the sub-goal states. It should be
noted that the sequence of states as the trajectory of states

VOLUME 8, 2020 11787

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

without the corresponding actions are given as the input to
SARM to find the sub-goals. The corresponding actions are
used later in the final step of HST to define the exits.

Here, sequential association rule mining is applied in two
consecutive steps: 1) Frequent Itemset, and 2) Association
Rules.

1.1) Frequent Itemset: First, we use the FP-growth algo-
rithm to perform Frequent Itemset Generation. The transac-
tion set is defined by Transactions= {�1, . . . , �N } in which
N shows the number of input transactions and a transaction
�k = {s1, . . . , sn} is a successful trajectory. Also, ITEMSET
is equivalent with S, S = {s1, . . . , sn} in which n denotes
the size of state space. In this step, the support factor of
different possible sets of states through the Transaction set
is calculated by FP-growth algorithm. This algorithm can
extract different sets of states which have been observed
together in members of Transaction set bigger than minsup
in an efficient way. In other words, the Frequent Itemset
Generation algorithm searches for the largest sets of states
which their occurrence frequency is larger than minsup.

Figure 1 shows the performance of a simple pruning
approach in an example. Let us consider four states of
s1, s2, s3 and s4 with the corresponding support values of
0.6, 0.8, 0.5, and 0.9, respectively. In a naive tree search,
there are 24−1 = 15 possibilities to be evaluated.When using
this pruning method withminsup of 0.75, since the two states
of s1 and s3 are visited in trajectories with a frequency less
than minsup, all of the further nodes that include these states
do not to be considered. As there are only 5 nodes that should
be extended, hence this method offers 75% less evaluation
without losing optimally. Let us assume that the support value
of s2s4 is 0.78, then s2s4 is recognized as a frequent itemset.
In fact, s2s4, in form of the association rule, s2 → s4, is the
largest set of states that satisfies the minsup.
1.2) Association Rules: Next, the Rule Generation pro-

cedure is performed on the extracted frequent itemsets as
the output of FP-growth algorithm. The objective is to find
the states that there is a meaningful temporal relation among
them and to provide those states and their relations in the
form of rules. In other words, different temporal relations
among the qualified states of frequent itemsets’ levels are
evaluated by comparing the minconf as the threshold with
the confidence of those frequent itemsets and representing the
qualified ones in the form of association rules. Recall that a
confidence value is the conditional probability of occurrence
of a consequent of a certain rule when its premise has been
seen, and is calculated using the minconf threshold 1.
For the example described in Figure 1, the permutations of

s2 and s4 in form of s2 → s4 or s4 → s2 are the only inputs
for rule generation. In the rule generation step, the confidence
of the association rules s2 → s4 and s4 → s2 are compared
with the minconf. If their confidence is above the minconf,

1The confidence value of each association rule can be used as a priority
score to select from the corresponding temporally extended actions of asso-
ciation rules.

FIGURE 1. An example of a tree search for 4 states. If the support values
of s1 and s3 are smaller than minsup, possible combinations of them are
not evaluated— meaning that only the states above the dashed blue line
are evaluated. The red lines show the nodes which are not evaluated.
s2s4 is considered as a frequent itemset. FP-growth algorithm in a
practical way based on the FP-tree data structure provides such pruning
to perform the evaluation without missing any proper possibilities.

they are considered as the tasks to be constructed from the
two sub-goal states of s2 and s4.

Hierarchical Structure of Tasks (HST): Besides extract-
ing a set of sub-goals as the association rules, SARM-HSTRL
also extracts different possible sequences of these sub-goals
for HST construction in a sequential association rule mining
procedure. The value of t , time of each sub-goal in each
trajectory, can be compared to create a sequence of observed
sub-goals.

Each sequence shows the relationship among the sub-goals
in a flat manner of one association rule. Let us consider an
example with four sub-goals denoted by a, b, c, and d and
two trajectories of a, b, c→ d and b, a, c→ d , where the
t’s values of a and b in the trajectories are {1, 2} and {2, 1},
respectively. If the frequencies of those orders were the same,
it means that the order of visiting a and b is not important
to achieve the consequence sub-goal although each sequence
could have a different probability value.

Algorithm 3 describes the HST-constructionmethodwhich
generates the hierarchical structure of tasks. HST helps an
agent to choose the correct sub-tasks. Each association rule
ARi can be shown in the form of ARi = sti, . . . , s(t+n)i →
s(t+n+1)i, where {sti, . . . , s(t+n)i} denotes a sequence of sub-
goals of the ARi. In this algorithm, Leni denotes the number

11788 VOLUME 8, 2020

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

Algorithm 3 HST-construction
1: Input: AR-set is the set of association rules. AR-set =
{AR1, . . . ,ARNumRules}.

2: Output: Constructing a tree, T , with one node that is
the root node, R.

3: num : the number of children of the Parent-Node.
4: PNt : the tth child of the Parent-Node.

5: for i = 1 : NumRules do
6: Parent-Node=R;
7: for j = Leni : 1 do
8: t = 1;
9: FlagM = 0;

10: repeat
11: if ARij == PNt then
12: Parent-Node=PNt ;
13: FlagM = 1;
14: end if
15: t = t + 1;
16: until t <= num and FlagM == 0
17: if FlagM == 0 then
18: A new child Node in the Parent-Node is

created: PNnum+1 = ARij;
19: Parent-Node = PNnum+1;
20: end if
21: end for
22: end for

of items in ARi. The number of elements of the premise of the
ARi is n+ 1, and the number of elements of the consequence
of each AR is 1; thus, the Leni is n+2. ARi,j is the jth element
from the end of ARi,j. For example, ARi,2 is st+n and ARi,leni
is st . NumRules is the number of association rules. ‘‘Num’’
is defined in line 3 as the counter or the number of children
of the parent node which changes as the nodes are added to
the parent node. The parent node refers to the current node to
which the elements are being added.

Asmentioned earlier, HST is a tree of sub-goal states which
shows the relation among them in a hierarchical manner.
Now, the task hierarchy H as a tree of sub-tasks T1, . . . ,Tn
is built based on HST in which each Ti corresponds to one of
the sub-goals. Thus, n shows the number of sub-tasks which
is the same as the number of sub-goals.
Si of Ti, the set of admissible states of Ti, is defined as a

set of states that the ith sub-goal, sTi , is reachable from them
without passing other sub-goals. The corresponding exit of
the sub-task Ti, Gi = (sTi , a), is defined as pair of a state
(a sub-goal) and an action that makes the sub-task completed.
In other words, after choosing the action, a, the agent leaves
the sub-goal, sTi and the corresponding state space of the
sub-task, Si of the Ti. After extracting the sub-goals states
and their relations, the trajectories are partitioned based on
these sub-goals to find the corresponding states that lead to
the sub-goals.

C. AN EXAMPLE OF SARM-HSTRL
In this section, we provide a detailed example to describe the
proposed SARM-HSTRL on a testbed described in Figure 2.
To define an association rule, a pair of 〈 ITEMSET, Trans-
action 〉 needs to be defined. ITEMSET is equivalent with
S, S = {s1, . . . , sn} in which n denotes the size of state
space. Therefore, ITEMSET = {s1, . . . , s60} in the following
example. Transaction = {�1, . . . , �N } is the set of all trans-
actions. As mentioned earlier, each transaction is defined as a
successful trajectory of states from a start state to a goal state.
Since the start states and goal states are chosen randomly,
the first elements as the start states and the last elements as
the goal states of these trajectories can be different.

Let us define an experiment to describe the different steps
and terms of the SARM-HSTRL in the following state space
depicted in Figure 2. In this experiment, there are 3 phases
in the system and the agent has five primitive actions: up,
right, down, left, and enter. The goal states are in the third
phase. The agent starts from the first phase and can move
in the second phase if the agent enters state s7 and takes
the action enter. The third phase activates if the agent is
in the second phase and enters s34 and executes the action
enter. There are 60 states, where the first four actions are the
movement actions (i.e., up, right, down, left) and the action
enter can take the agent to the next phase. The agent starts
from a random place and should pass through states s27 and
s54 to go to the goal states, which are selected randomly,
in order to receive the goal reward. There is a positive reward
to reach the goal state by passing these phases in the right
order and a negative smaller reward for taking each action.
If we run the Q-learning method for the agent on this maze
for different start and goal states, it learns policies gradually
during different episodes. An episode is a trajectory of the
sequence of states and actions and it leads to a goal reward
if it reaches the goal state that is in the third phase. Clearly,
many episodes in the beginning of the run will not lead to the
goal reward. But, Q-learning gradually learns the policies to
reach the goal state that goes through s27 and s54.

1) ITEMSET AND TRANSACTION
We consider three runs, each run corresponds to a different
start and goal state, and 200 episodes of learning for each run.
Among 200 episodes of each run, we select the two that have
the largest accumulated rewards as follows:
The first run: the start state is s1 and the goal state is s57.

�1 = {s1, s2, s3, s7, s27, s31, s35, s34, s54, s58, s57}.

�2 = {s1, s5, s6, s7, s27, s31, s30, s34, s54, s53, s57}.

The second run: the start state is s3 and the goal state is s59.

�3 = {s3, s7, s27, s26, s30, s34, s54, s55, s56, s60, s59}.

�4 = {s3, s7, s27, s31, s35, s34, s54, s58, s59}.

The third run: the start state is s12 and the goal state is s59.

�5 = {s12, s8, s7, s27, s26, s30, s34, s54, s58, s59}.

VOLUME 8, 2020 11789

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

FIGURE 2. The testbed for the example described in Section IV-C. The size
of the testbed is 4× 5× 3 = 60 states.

�6 = {s12, s11, s7, s27, s26, s30, s31, s35, s34, s54, s58, s59}.

In the above example, ITEMSET = {s1, . . . , s60}, Trans-
action = {�1, . . . , �6}, and the number of transactions is 6
(N = 6). All of these transactions lead to the goal states of
their runs, it means they are successful trajectories.

2) FREQUENT ITEMSET
To calculate the association rules in the ITEMSET, we need
to calculate the support for each possibility of extracted asso-
ciation rules in the form of A → B by performed by using

FP-growth algorithm, in which |A| >= 1 and |B| = 1 like
{sd , . . . , sg→ sh} and {sd , . . . , sg, sh} are the sub-goal states.
As defined in Section III-B, the support factor is calculated
as follows:

support(A→ B) =
σ (A ∪ B)

N

The FP-growth algorithm checks all the possibilities of
the state sequences without missing the most important ones
by pruning the combination of elements that their support
value or the support value of their children in the search-graph
is smaller than minsup based on the FP-tree. Hence, by using
a pruning approach based on the support values, we did not
proceed all the combinations of nodes that are composed of
s1 or s3 in the Figure 1 since the support of s1 and s3 were
smaller than minsup.

Now, we describe the process of calculating the support
measure in several examples. For instance, let us consider
A = s1 and B = s58. Since these two states (i.e., s1 and
s58) are only simultaneously observed in �1, then σ (s1 ∪
s58) = 1. Thus, support (s1 → s58) = 1

6 . As another
example, if we consider A = s7 and B = s34, since s7 and
s34 are visited in all {�1, . . . , �6}; thus, σ (s7 ∪ s34) = 6
and support (s7 → s34) = 6

6 . The support values of all the
combinations should be calculated while the further appear-
ance of those combinations is not proceeded if their support
factor is less than minsup. If the minsup value is set to 0.9,
by a simple pruning approach and calculating the support
of the units with one element, single states, there are just
4 states, (i.e., s7, s27, s34, s54) for which their support values
(i.e., 1) is larger than 0.9. Thus, a simple pruning approach
results in not proceeding the other nodes. Now, the support
value of dual combinations of these states are checked (i.e.,
s7s27 or s7s54 or s54s34). If their support values are calculated,
it can be seen that the support of all of these dual combina-
tions are 1 (larger than 0.9). Next, we calculate the support
values of three-state combinations, it can be seen all of trinary
combinations satisfy the minsup. Finally, the quadric combi-
nations, which are based on permutations of s7s27s34s53, are
checked. These support values are 1, and therefore they are
nominated as the frequent Itemsets for the second level of
SARM.

Association Rules: As defined in Section III-B, the confi-
dence value of an association rule is calculated as follows,

confidence(A→ B) =
σ (A ∪ B)
σ (A)

In this paper, we use the sequential ARM (SARM) tech-
nique instead of a conventional ARM technique due to its
capability to consider the order of items in addition to their
occurrence frequency. If we consider minconf = 0.9 then
(s7, s27, s34 → s54) satisfies the constraint since the con-
fidence of (s7, s27, s34 → s54) is 1. In this case, the other
orders have the confidence of 0 (e.g., confidence (s54, s7, s34
→ s27) = 0.)

11790 VOLUME 8, 2020

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

FIGURE 3. The extracted task hierarchy for Figure 2. An example of a
sequential association rule mining and HST-construction of one rule.

3) HST
The states of s7, s27, s34 and s54 are given to HST as its
input. Since there are not any states between s7 and s27,
we just consider the first element, s7, as a sub-goal for HST
and disregard s27. Similarly, since there are not any states
between s34 and s54, we just consider s34 which is the first
element among them for the HST. Therefore, we just have
the association rule s7 → s34 which is constituted of two
sub-goals of s7 and s34, and the HST constructed based on
them in order as shown in Figure 3. In this example, there
exists only one rule (i = 1) in which the length of the rule is
2 — Len1 == 2. The Parent-Node refers to the root with an
empty child, since the length of the rule is 2 (Len1 == 2),
thus, j is initialized to 2, and AR12 is s34 which is compared
in line 11 of Algorithm 3 if the Parent-Node has at least a
child. Since the Parent-Node is an empty child, hence, a node,
2 : s34, is created for that in line 18 of Algorithm 3 and the
Parent-Node refers to its child that is empty. Now, AR11 is s7
that is added in form of 1 : s7 as the child of 2 : s34.
Now, we define the sub-tasks T0 and T1 for s7 and s34

correspondingly. The state space is partitioned based on s7
and s34 as the states which have been observed before each
of them without passing other sub-goals. The state space are
recognized as the S1 = 〈s1, . . . , s20〉 and S2 = 〈s21, . . . , s40〉.
Since s7 and s27 are consecutive by one action, enter, the exit
is defined as (s7, enter) in which s27 does not belong to S1.
In the same way for s34 and s54, (s34, enter) is considered as
the exit.

The exits G0 = (s7, enter) and G1 = (s34, enter)
are formed for sub-tasks T0 and T1, respectively. The edge
between sub-tasks T0 and T1, denoted by E , in the extracted
graph shows the relation between these sub-tasks. T0 as the
sub-task is formed of S0 = {s1, . . . , s20} andG0 = (s7, enter)
and it does not have any childs. T1 as the sub-task is formed of
S1 = {s21, . . . , s40}, G1 = (s34, enter), and its child is C1 =

T0. T0 and T1 nodes can be considered as the abstract states
and their corresponding policies as the abstract actions2. The
policy of sub-task T0 is a local policy for S0 that leads reach-
ing to s27 by G0. The policies of sub-tasks can be obtained
of the episodes. The sequences of states of episodes are used
as the transactions to extract the exits, and the corresponding
actions which lead to the exits are used to extract the policies.

D. AN EXAMPLE OF HST CONSTRUCTION
OF SEVERAL RULES
Let us consider an example with several rules, AR1 = bcde,
corresponded to b, c, d → e, AR2 = dbce, corresponded to

2 In the task hierarchy, the sub-tasks are considered as the abstract states
and their corresponding local policies as the abstract actions [21].

FIGURE 4. An example of a HST-construction of several rules.

d, b, c → e, AR3 = acde, corresponded to a, c, d → e (see
Figure 4). In the first step, the proposed algorithm constructs
a tree with the reverse ofAR1, creating one branch with values
edcb. Then, the reverse of AR2 is added to the tree, making a
new branch from c since AR2,2 = c cannot be matched in the
tree from that point in line 18 of Algorithm 3. Thus, a new
branch from e is created to contain the remaining values of
AR2. Finally, the reverse of AR3 is added to the tree, where
a mismatch happens in AR1,4 that results as a new branch
created at node c.

V. THEORETICAL ANALYSIS
In this section, we provide a theoretical analysis to study the
properties of the extracted hierarchical structure of the tasks
using the proposed SARM-HSTRL method. The problem of
extracting a hierarchical structure in RL can be considered
as a hierarchical credit assignment problem of MAXQ, and
the proposed SARM-HSTRL provides a solution to automat-
ically perform such extraction in MDPs and FMDPs. Since
the required convergence conditions of SARM-HSTRL are
different in MDPs and FMDPs, its theoretical analysis has
been evaluated in each domain separately.
Theorem 1: The proposed SARM-HSTRL converges to a

hierarchical optimum policy in MDPs. A hierarchical policy
is defined as an assignment of a local policy to each sub-task.
A hierarchical optimum policy is a hierarchical policy that
makes the best accumulated reward [24].

Proof: Using Definition 2 in [21], the proof to show
the extracted HST leads to a hierarchical optimal policy
is straightforward if we show that only one variable of X
changes as a result of each action; then the Q function of
such a hierarchy can be recursively expanded and mapped
to a Q function of a flat MDP. In our proposed method
in MDPs, each node of HST corresponds to a sub-MDP
and based on Definition 1, there exists only one variable in
our state variable, X . Therefore, the proposed SARM-HSTRL
converges to a hierarchical optimum policy as proved for
HEX-Q algorithm [21]. Hierarchical execution can be applied
by using a decomposed value function since the proposed

VOLUME 8, 2020 11791

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

method similar to MAXQ breaks down the MDP to inter-
linked sub-MDPs directly. Q function for each node, exit, as a
sub-MDP of the tree is defined recursively as follows:

Q∗Ti (s
Ti , a) =

∑
s′
Pa
sTi s′

[Ra
sTi s′
+ V ∗Ti (s

′)]

where s′ is the hierarchical next state. Q∗Ti (s
Ti , a) shows the

expected value of node Ti after performing (abstract) action a
in (abstract) state sTi and in the continue pursuing the optimal
hierarchical policy. V ∗Ti (s) is the decomposition of optimal
hierarchical value function that is calculated recursively as
follows:

V ∗Ti (s) = max
a

[V ∗Ci(a)(s)+ Q
∗
Ti (s

Ti , a)]

where V ∗Ci(a) shows the child of Ti implementing action a. �
Next, we study the convergence of the proposed method in

FMDPs. For FMDPs, if the state abstraction and temporally
extended actions are constructed based on one state variable
in each layer, then the proof of theorem 1 is still valid (as
shown in HEX-Q [21]). However, the assumed condition in
HEX-Q of only having changes in one state variable for
FMDPs is not a practical assumption; therefore here we
evaluate the optimality of the SARM-HSTRL’s solution for a
general case. Basically, there is not a straightforward proof
for convergence of methods which extract the hierarchical
structure of tasks in FMDPs [22], [24]. It is proven in [53]
that having the stochastic substitution and reward respecting
characteristics preserves the optimality for reduced MDPs
such as FMDPs. Thus, stochastic substitution and reward
substitution can be used to prove the optimality by showing
that each reduced MDP has the mentioned characteristics.
Next, we review such characteristics of the proposed method.
Definition 4:Transaction,�, a set of extracted trajectories,

is called representative if � includes all possible state action
pairs that lead to the ultimate goals.

In SARM-HSTRL, the trajectories are used instead of high-
level sources of knowledge (e.g, DBNs). DBNs show the
casual relations among the state variables for each action;
the HRL models based on DBNs can present irrelevant states
variables in the state abstraction. More importantly, as we
mentioned earlier, the assumption of havingDBNs in advance
is not practical in autonomous settings. Our proposed method
solves this problem by extracting the relations among the
states and the state abstraction in an autonomous manner,
where the trajectories are the only source of knowledge to
show the effects of actions on state variables.
Definition 5: A non-redundant trajectory is defined as a

trajectory which is not possible to remove one or more of its
states and action pairs such that the remaining sequence still
leads to the goal states [24].

In [24], a trajectory-task pair, 〈�k ,Ti〉, where �k =

〈s0, a0, . . . , sn−1, an−1, sn〉 ⊂ �, is called consistent with H
if the following two conditions are held: i) sub-task Ti, as an
SMDP, corresponds to a node in H ; ii) if the observed states
except the last two ones in �k are a subset of Si; in other

words, {s0, . . . , sn−2} ⊆ Si and {s0, . . . , sn−2} ∩ Gi = ∅.
Also, (sn−1, an−1) is an exit of Gi of the sub-task Ti. Clearly,
a trajectory �k is consistent with the extracted HST, H ,
if 〈�k ,T0〉 is consistent with H .
Theorem 2: If eachmember of the set of trajectories, trans-

actions� = 〈�1, . . . , �m〉, is non-redundant, SARM-HSTRL
builds a hierarchy H , as every trajectory of the set is consis-
tent with H .

Proof: Our proposed method first generates a hierarchy
H based on the extracted association rules of the repre-
sentative and non-redundant trajectories. Since a sequential
ARM is used, it selects a sequence of states of trajectories
that preserves the appeared order of them as the association
rules. These association rules as a whole are added to the
HST tree one by one and if two nodes cannot be matched,
a branch of the parent node of H is created (i.e., lines 17-20
of Algorithm 3). If a trajectory �k is denoted by �k =

〈s0, a0, . . . , sn−1, an−1, sn〉, the proposed method finds the
conjunction of values of X that are true in sn−1 and not before
that and assign them to the goal Gi [24]. If there are not such
values of X , some suffix of the sequence can be disregarded
without any impacts to achieve the goal, it is a contradiction
with the property of non-redundancy. As a consequence, Si
will be the set of all states which do not satisfy Gi; thus,
{s0, . . . , sn−2} will satisfy the required condition to be in Si.

It is noted that the trajectories can be considered as
a sequence of sub-trajectories, where each of these par-
titioned sub-trajectories is a conjunction of values of X
as termination conditions of that sub-trajectory. With this,
the above argument can be applied to each sub-trajectory
recursively [23]. �
Definition 6:A hierarchy is called safe if it guarantees that

‘‘the state variables in each task are sufficient to capture the
values of any trajectories consistent with the sub-hierarchy
rooted at that task node [24]’’. In fact, the concept of safe
refers to the stochastic substitution and reward respecting for
sub-tasks as mentioned in [53].
Theorem 3: The hierarchical structure of tasks being

extracted by SARM-HSTRL,H , of a representative� guaran-
tees that ‘‘the total expected reward during each trajectory of
� is only a function of the values of x ∈ Xi in the starting state
of � [24]’’ for any trajectory-task 〈�j,Ti〉 that is consistent
with H . Also, there is just one hierarchical structure of tasks
that can be extracted based on the extracted exit states, sub-
goals, which are safe with respect to �.

Proof: SARM-HSTRL constructs Ti = 〈Xi, Si,Ci,Gi〉
directly based on the sub-goals, exit states, of several trajecto-
ries. The sub-goals are used to partition the sequence of states
of trajectories,�. The actions in any sequence of state-action
pairs of each trajectory are primitive and change the values
of Xi as their resultant states. Their resultant states are in the
same partition, except the exit states as termination condi-
tions, Gi. If it changes the variables outside of the current
sub-task, Ti, that variable, Xk , should appear in the sequence
of state-actions pairs before exit states’ variables of Ti. Thus,
it will be placed inside of sub-task Ti which is a contradiction

11792 VOLUME 8, 2020

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

with the assumption that it can have effects on variables more
than Xi which are outside of current sub-task. In the same
way, we can say that all immediate rewards in the trajectory
are functions of the variables in Xi. Therefore, the summation
of discounted rewards and the probability of transition in
each trajectory are just related to Xi; therefore, the extracted
hierarchical structure of tasks is safe with respect to �. The
proposedmethod forms the sub-tasks of sub-goals all in once;
thus, if there is another hierarchy, H ′, as it is consistent
with �, it will violate the safe characteristic with respect
to �. This completes the prove that the extracted hierarchy
by SARM-HSTRL leads to the hierarchical optimal policy. �
Theorem 4: The extracted hierarchical structure of tasks

using SARM-HSTRL provides the most efficient, reliable, and
compact hierarchical structure considering the representative
and non-redundant set of trajectories,�, when the problem is
sparse in both of MDPs and FMDPs. Efficiency is measured
by the probability of usage and the resultant performance.
Reliability is a function of the accuracy for the certainty
of occurrence of next sub-tasks depending on which sub-
tasks have been done so far. Resultant performance captures
the compactness concept and is defined as how much the
extracted structure abstract the action space. Thus, efficient
sub-tasks are considered as the sub-tasks which summa-
rize the longest frequent sequence of actions in temporally
extended actions.

Proof: The sub-tasks are extracted based on the support
and confidence measures in the form of association rules as
the most efficient and reliable sequence of sub-tasks, exit
states, among the representative and non-redundant trajecto-
ries, �. The support measure checks the ratio of witnessing
all possible sub-tasks to all observations in �. Thus, it finds
the sub-tasks that happen with the highest probability related
to other ones. In other word, these sub-tasks are the best
summarization, the longest and the most frequent of what
happened in the past. Reliability implies providing the highest
accuracy of predicting the next sub-tasks based on summa-
rization of several trajectories and what have been done so far.
The confidencemeasure evaluates every possible sequence by
constructing a tree considering all possible eligible sequences
among several trajectories. It preserves their sequences and
compacts the extracted sub-tasks in the form of sequential
association rules by matching and mapping them from the
last task to the first ones. Also, it can be said the required
size for value function table is a function of the depth, l, and
branch, d , of the tree. The branch of the tree is the number
of sequences of sub-tasks as they cannot be matched to the
current nodes of the tree. The depth of the tree is the number
of sub-tasks that in the worst case equals to the length of
trajectory when they are not sub-parts of each other. Thus,
the space complexity of value function tables of the hierarchy
is O(ld). �

A. RELATIVE ADVANTAGES OF SARM-HSTRL
In this section, a summary of key advantages of the proposed
SARM-HSTRL related to other methods is provided. One key

contribution of this method is that despite other methods in
the literature that are restricted to only MDPs or FMDPs,
SARM-HSTRL can be applied in both MDPs and FMDPs
since it does not need in advance knowledge such as the state
transitions, or some knowledge or constraints about the size
of abstraction or reversible state transitions. Our proposed
method works from scratch based on trajectories and without
the need for the state transition graph or DBNs, and con-
siders both topological and value intrinsic relationships and
structures in trajectories to extract the hierarchical structure
of tasks.

The proposed SARM-HSTRL can also outperform the
HI-MAT algorithm in the sense that HI-MAT only works on a
single successful trajectory, while in many RL settings, there
are several optimal or near-optimal trajectories that cannot
be represented in HI-MAT, unless it is generalized by using
another function (i.e., action generalization). However, our
proposed method does not require a single, carefully formed,
trajectory, and it can efficiently handle the funnel property of
sub-tasks, while HI-MAT cannot be generalized from many
different starting places in a few terminal states (i.e., it does
not have the funnel property [23]).
SARM-HSTRL searches for the sub-goals, and the number

of sub-goals in an RL task is much less than the size of
state space. Thus, using the FP-growth algorithm is efficient
and practical in SARM-HSTRL when the state space is large,
and the number of sub-goals is relatively low. Such sparsity
is a very common assumption in HRL methods [22], [24].
In scenarios where the state space is small, or there is a
considerable level of similarities among the successful tra-
jectories, then many states will be visited frequently, and
hence detected by the association rulemining algorithm as the
sub-goals. This may, in turn, degrade the performance of the
proposed method. In the domains that there is a considerable
dynamism or they have small state spaces, probably other
techniques based on the flat representation of sub-goals work
faster and are more practical.

Finally, the proposed SARM-HSTRL method can be easily
scaled up to high dimensional discrete action space and even
continuous action space as it considers all paths together
at once. The complexity of SARM-HSTRL is a function of
complexity of FP-growth algorithm as its main component to
extract the association rules, which is proven to be very prac-
tical in terms of time complexity for real usages [50], [52].

B. TIME COMPLEXITY
In this section, we discuss the time complexity of the
proposed SARM-HSTRL. The association rule mining has
considerably better performance compared to conventional
correlation extraction methods such as mutual informa-
tion or statistical hypothesis testing, since these methods are
often not able to precisely extract the intrinsic correlations
among these variables [50]. However, ARM improves upon
such simple methods by using a combination of two key
measures of support and confidence in a proven scalable
extraction strategy to obtain and evaluate the most efficient

VOLUME 8, 2020 11793

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

and reliable relationships among the variables in the datasets.
The number of rules can be calculated as R = 3d - 2d+1

+ 1, in which d shows the number of items as shown
by [50]. Therefore, the exponential growth makes the eval-
uation impractical to enumerate all possible rules in large
datasets in a naive manner. Also, there is an exponential
growth in Rule Generation, each frequent k-itemset has 2k−2
rules, where k is the number of items of the corresponding
itemset [50]. Thus, ARM is a necessity to handle such large
search space for practical situations without compromising
the optimality.

As mentioned in [50], ‘‘the size of a FP-tree typically is
smaller than the size of the uncompressed data,’’ and in the
worst-case scenario, the size of a FP-tree is effectively equal
to the size of the data. The performance of the FP-growth
algorithm is related to the compact factor of the trajectories
and the value of minsup. In the worst-case scenario, the sup-
port values of all combination of items are larger thanminsup,
and 2d+1 itemsets will be generated, where d is the number
of items.

As mentioned above, SARM-HSTRL by using FP-growth
algorithm method provides a promising solution in practi-
cal applications where the state space is large and sparse.
If the state space is small, or the successful trajectories have
many similarities to each other, many states will be visited
frequently, and hence detected by ARM as the sub-goals.
Clearly, the concept of sub-goals becomes meaningless in
such conditions. Another possible scenario to consider is
when the adjacent states around the sub-goals are visited
frequently. For both these conditions, one efficient solution is
to cluster the adjacent sub-goals as one entity and create one
corresponding temporally extended action for that entity. t ,
order of occurrence, for each state in each trajectory is already
stored by SARM-HSTRL as they are used in HST for possible
orderings of the sub-goals. They can be also used to find the
close sub-goals for clustering purposes.

VI. EXPERIMENTAL RESULTS
In this section, several experimental results are presented to
evaluate the performance of SARM-HSTRL on four different
testbeds. In the first two experiments, the agent has 5 actions,
press-key and 4 movement primitive actions. The press-key
does not change the place of the agent. The agent can move
with its primitive actions in four directions: up, right, down,
left. If there is a wall in the way, the agent stays in its current
state. In all of the experiments, if the agent does the press-
key action, it will receive a reward of 0 in the sub-goals
and a reward of −10 in other states. The reward of other
actions is −1. The agent movement with probability 0.8 is
according to an intended action and is randomly in one of
the directions with probability 0.2. The discount factor is set
to γ = 0.9.
In constructing the HST, 10 start and goal states are chosen

randomly. A goal state is defined as an important, task-
specific state that ends an episode once visited. A start state,
s0, is a state from which an agent begins an episode. For

FIGURE 5. The structure of the first testbed: the size of the maze is
22× 22 and it has 7 sub-goals. The sub-goals are colored with yellow.

each of them, the agent starts the learning using a common
learning mechanism such as Q-learning; the learning is fin-
ished after 5000 episodes. They are ordered based on the
accumulated reward, and the best five ones are selected.
They are given to the SARM-HSTRL and the HST produces
a hierarchical structure of tasks based on the whole length of
transactions. Now, the sub-tasks are formed for the agent and
the HST helps the agent to choose their phase of learning.
If they are expanded as primitive actions, the number of steps
to reach a goal is equal to the number of action selection
calls.

The performance of SARM-HSTRL in HRL is evaluated
for two different hierarchical structures of tasks, experi-
ment 1 as shown in Figure 6 and experiment 2 as shown in
Figure 7. In these figures, for the sake of comparison between
Q-learning, Cascading Decomposition [20], HI-MAT [23]
and SARM-HSTRL, 10 runs are considered where in each
of them, a start state and a goal state are chosen randomly.
The maximum number of actions for each episode is 4000,
and the total number of episodes is 8000. SARM-HSTRL is
compared to Cascading Decomposition as a representative
approach inMDPs, which is discussed in [8], [20], is the latest
and considerable improvement for methods proposed in [3],
[14], [16]. As seen in Figures 8.(a) and 8.(b), the proposed
SARM-HSTRLmethod results in a hierarchical optimum pol-
icy task structure, as does HI-MAT, while our method does
not rely on any prior knowledge (i.e., DBNs). It has been
proven in [23] that HI-MAT leads to better results compared
to VISA, and this implies that SARM-HSTRL outperforms
the VISA method too. It is worth mentioning that HI-MAT
cannot be implemented in experiment 2 including multiple
successful trajectories, as it can only work with one success-
ful trajectory that interprets the tasks. Therefore, HI-MAT
does not appear in Figures 8.(c) and 8.(d).

11794 VOLUME 8, 2020

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

FIGURE 6. (a) The first task hierarchy that constituted of 8 layers (7 levels +1) of Figure 5 for experiment 1. The number
after ‘‘:’’ shows the corresponding sub-goal in Figure 5 that enables moving from the current level to the next one. (b) In
other words, each level is Figure 5 in which the corresponding sub-goals of each level that provide moving to the next
level are shown in part (a).

FIGURE 7. (a) The first task hierarchy that constituted of 5 layers (4 levels
+1) of Figure 5 for experiment 2. The number after ‘‘:’’ shows the
corresponding sub-goal in Figure 5 that provide moving from the current
level to the next one. (b) In other words, each level is Figure 5 in which
the corresponding sub-goals of each level that provide moving to the next
level are shown in part (a).

The proposed method is implemented inMATLAB and the
size of the of the first testbed is 22× 22 and it has 7 sub-goals.
The sub-goals are colored with yellow, Figure 5. The size of
the second testbed is 30 × 16, Figure 9a. In experiment 1,
Figure 6, the task hierarchy has 7 levels — it has (484× (7+
1)) = 3872 states. If the agent enters in sub-goals states in

the following order 1, 2, 3, 4, 5, 6 and 7 and does the press-
key action in each of them, and then enters in the goal state
of the run and performs the press-key action again, the agent
receives a reward of +10, and the episode will be finished.
The value of minsup is 0.9 and the value of minconf is 0.9.
In experiment 2, Figure 7, the task hierarchy has 4 levels,

but with a more complicated structure- it has (484×(4+1)) =
2420 states. If the agent enters in one of the sub-goal states
from the leaves of tree 1 or 2 or 3 first, then as the second
level enters in one of their parent 4 or 5, then as the third and
fourth level in 6 and 7 in order and does the press-key action
in each of them, and finally enters in the goal state of the run
and performs the press-key action, the agent receives a reward
of+10 and the episode will be finished. The value of minsup
is 0.3 and the value of minconf is 0.9.
There is a significant difference in speed of learning

between the proposed method with Cascading Decomposi-
tion and Q-learning as shown in Figures 8.(b) and 8.(d).
The most important attribute of the SMDP framework is
using temporally extended actions to decrease the number
of steps. As it is shown in HRL in Figures 8.(a) and 8.(c),
the temporally extended actions considerably decrease the
number of steps. p-values have been calculated between the
proposed method with Q-learning and Cascading Decompo-
sition in each diagram by using the t-test for α = 0.01; the
significant change is validated — p-values are much smaller
than 1× 10−5.

In experiment 3, the accuracy of SARM-HSTRL is evalu-
ated thorough all possible sub-goals, where 10 random states
for the start and goal states are selected. The minsup and
minconf are set to 0.6 and 0.9, respectively for Figure 9.(a).
The agent has four actions up, right, down, and left. Both the
stochastic rate and learning rates are 0.1, and the discount
factor and the ε − greedy are the same as the previous
experiments. The agent receives a reward of zero for each
action, unless it enters to the goal state, where it receives 10.
The number of trials is 500 for each pair of start and goal

VOLUME 8, 2020 11795

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

FIGURE 8. The diagrams of comparing the performance of SARM-HSTRL with Q-learning, HI-MAT, and Cascading Decomposition.
Performance comparison of SARM-HSTRL with Q-learning, HI-MAT, and Cascading Decomposition in experiment 1 (Fig. 6) and
experiment 2 (Fig. 7). Since experiment 2 including multiple successful trajectories, HI-MAT cannot be implemented. HI-MAT can only
work with one successful trajectory that interprets the tasks. (a) Represents the number of steps along episodes in experiment 1.
(b) Comparison of receiving rewards along episodes in experiment 1. (c) Represents the number of steps along episodes in
experiment 2. (d) Comparison of received rewards along episodes in experiment 2.

states that 5 of the best trajectories are used. As it can be seen
in Figure 9.(b), SARM-HSTRL detects the sub-goals prop-
erly. SARM-HSTRL with the given threshold did not consider
all the possible sub-goals in the right side of Figure 9.(b)
since the middle ones are placed in better policies, they can
reach the possible goals with more probability and fewer
actions.

In experiment 4, we aim to show the accuracy of
SARM-HSTRL in FMDPs, using Taxi driver problem as a
known testbed (Figure 9.(c)). We scale up both place dimen-
sions of Taxi driver problem for 4 times to reach 20 × 20.
The taxi domain is composed of a 5 × 5 grid world, a taxi,
and a passenger, where the taxi starts from a random place
and pick-up the passenger from one of those places (B, G, R,
and Y) and put-down the passenger in one of these places.
The place of pick-up and put-down are chosen randomly.
The taxi has six primitive actions, north, south, east, west,
pick-up, and put-down. The agent receives a reward of −1
for movement actions, a reward of −10 for wrongly doing
the action pick-up or put-down, and a reward of +20 for
successfully completing the mission. Each action succeeds

in its job with the probability of 0.8 in each state and it has
a random effect in that state with the probability of 0.2. The
number of trials is 2000, and 16 random start and goal states
to capture all possible combinations of pick-up and put-down.
The maximum number of actions is 1000 in each trial.minsup
is set to 0.0625 and minconf is set to 0.7. The minsup value
is selected as 0.0625, noting that there are 16 combinations
for pick-up, and put-down- 1/16 = 0.0625. Discount factor,
ε − greedy, and learning rate have been initialized similar
to experiment 1. As is shown in Figure 9.(d), the number
of observing detected sub-goals for pick-up is correct (the
brightest ones). Also, some states in the paths to sub-goals are
visited more frequently, and therefore they are being detected
as the sub-goals. For example, when these states are in the
optimal paths of several sub-goals, or they are adjacent to the
wall states, they will be visited more because of the stochastic
rate. They can be easily pruned by considering the sequence
and their adjacency to states with the largest support. There is
another way in such condition, where the adjacent extracted
sub-goal states can be considered as a cluster to define just
one temporally extended actions for them.

11796 VOLUME 8, 2020

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

FIGURE 9. The testbeds and the results that show the accuracy of detection of SARM-HSTRL on two testbeds. (a) A maze world.
(b) The frequency of visiting detected sub-goals by SARM-HSTRL in transitions. (c) Taxi driver problem as an example in FMDPs.
(d) The frequency of visiting the detected sub-goals by SARM-HSTRL in transitions in a 4 times scale in places’ dimensions of Taxi
driver problem, 16 times larger state space. The states near to wall states of three places are more probable to visit because of they
experience less influence of the stochastic rate and the place of pick up places. Also, the four places as the SARM-HSTRL are
detected correctly that have the most observing, the brightest ones.

VII. CONCLUSION
An HRL method called SARM-HSTRL is proposed to
autonomously extract a task hierarchy for RL by using a
sequential association rule mining approach, where multiple
sub-goals are extracted as frequently visited states from the
successful trajectories in the form of association rules. These
sub-goals are used to define exits as the termination condi-
tions to form temporal and state abstractions. The current
methods in MDPs can only extract a flat hierarchy, (i.e., one
level) which means that these methods only find the sub-
goals or the bottlenecks, rather than a hierarchical structure
of those. Despite the majority of the previously proposed
HRL methods in FMDPs (e.g., HI-MAT and VISA) that rely
on DBNs model to use prior knowledge about the effects
of actions on state variables, our proposed method indepen-
dently extracts the relations among states and state abstrac-
tion. Moreover, since DBNs show the causal relations among
the state variables for each action, it can determine irrelevant
states variables for state abstraction. However, the proposed
method only extracts the relevant correlations. The conver-
gence of the proposed method to a hierarchical optimal solu-
tion is proven for both MDPs and FMDPs. We also proved

that the extracted structure is the most efficient, reliable, and
the compact hierarchical structure for discrete MDPs and
FMDPs.

The experimental results show a considerable improve-
ment in the speed and quality of the learning process for
the analyzed experiments. It is expected that the extracted
hierarchical structure in the form of sub-tasks provides a
supplementary, more robust, and higher level of knowledge
to be transfered among the sub-tasks rather than sharing
value functions, which are highly sensitive to the type and
the amount of similarity between the source and target
domains. Therefore, the decomposed structure of tasks based
on SARM-HSTRL provides an abstraction that an agent can
reuse, generalize, and transfer to new domains. This work
is the first one to use the idea of sequential association
rule mining in HRL and even RL. Therefore, we used the
SARM method in its original form to prove its superior
performance and capabilities from both theoretical and exper-
imental aspects. There aremore developed versions of SARM
that will be studied in our future works. Also, applying
the proposed SARM-HSTRL in deep RL algorithms can be
considered as future works. There are several types of deep

VOLUME 8, 2020 11797

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

RL techniques that can potentially benefit from using our
proposed HRL technique.

ACKNOWLEDGMENT
The authors would like to appreciate the reviewers’ comments
and suggestions which helped to improve the research and
this article.

REFERENCES
[1] A. G. Barto and S.Mahadevan, ‘‘Recent advances in hierarchical reinforce-

ment learning,’’ Discrete Event Dyn. Syst., vol. 13, no. 4, pp. 341–379,
2003.

[2] A. McGovern and A. G. Barto, ‘‘Autonomous discovery of temporal
abstractions from interaction with an environment,’’ Ph.D. dissertation,
Univ. Massachusetts, Boston, MA, USA, 2002.

[3] M. Stolle, ‘‘Automated discovery of options in reinforcement learning,’’
Ph.D. dissertation, McGill Univ., Montreal, QC, Canada, 2004.

[4] T. G. Dietterich, ‘‘Hierarchical reinforcement learning with the MAXQ
value function decomposition,’’ J. Artif. Intell. Res., vol. 13, pp. 227–303,
Jul. 2018.

[5] M. E. Taylor and P. Stone, ‘‘Transfer learning for reinforcement learn-
ing domains: A survey,’’ J. Mach. Learn. Res., vol. 10, pp. 1633–1685,
Jul. 2009.

[6] B. L. Digney, ‘‘Learning hierarchical control structures for multiple tasks
and changing environments,’’ in Proc. 5th Int. Conf. Simul. Adapt. Behav.
Animals Animats, vol. 5, 1998, pp. 321–330.

[7] C.-C. Chiu andV.-W. Soo, ‘‘Subgoal identifications in reinforcement learn-
ing: A survey,’’ in Advances in Reinforcement Learning. Rijeka, Croatia:
InTech, 2011.

[8] B. Ghazanfari andN.Mozayani, ‘‘Extracting bottlenecks for reinforcement
learning agent by holonic concept clustering and attentional functions,’’
Expert Syst. Appl., vol. 54, pp. 61–77, Jul. 2016.

[9] X. B. Peng, G. Berseth, and M. Van De Panne, ‘‘Terrain-adaptive loco-
motion skills using deep reinforcement learning,’’ ACM Trans. Graph.,
vol. 35, no. 4, pp. 1–12, Jul. 2016.

[10] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, ‘‘DeepLoco:
Dynamic locomotion skills using hierarchical deep reinforcement learn-
ing,’’ ACM Trans. Graph., vol. 36, no. 4, pp. 1–13, Jul. 2017.

[11] T. Schaul, D. Horgan, K. Gregor, and D. Silver, ‘‘Universal value function
approximators,’’ in Proc. Int. Conf. Mach. Learn., 2015, pp. 1312–1320.

[12] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor, ‘‘A deep
hierarchical approach to lifelong learning in minecraft,’’ in Proc. AAAI,
vol. 3, 2017, p. 6.

[13] A. Vezhnevets, V. Mnih, S. Osindero, A. Graves, O. Vinyals, and
J. Agapiou, ‘‘Strategic attentive writer for learning macro-actions,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 3486–3494.

[14] S. Mannor, I. Menache, A. Hoze, and U. Klein, ‘‘Dynamic abstraction
in reinforcement learning via clustering,’’ in Proc. 21st Int. Conf. Mach.
Learn. (ICML), 2004, p. 71.

[15] Ö. Şimşek and A. G. Barto, ‘‘Using relative novelty to identify useful
temporal abstractions in reinforcement learning,’’ in Proc. 21st Int. Conf.
Mach. Learn. (ICML), 2004, p. 95.

[16] Ö. Şimşek andA. G. Barto, ‘‘Skill characterization based on betweenness,’’
in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1497–1504.

[17] C. Drummond, ‘‘Accelerating reinforcement learning by composing solu-
tions of automatically identified subtasks,’’ J. Artif. Intell. Res., vol. 16,
pp. 59–104, Jul. 2018.

[18] I. Menache, S. Mannor, and N. Shimkin, ‘‘Q-cut-dynamic discovery of
sub-goals in reinforcement learning,’’ in Proc. Eur. Conf. Mach. Learn.
Springer, 2002, pp. 295–306.

[19] Ö. Şimşek, A. P. Wolfe, and A. G. Barto, ‘‘Identifying useful subgoals
in reinforcement learning by local graph partitioning,’’ in Proc. 22nd Int.
Conf. Mach. Learn. (ICML), 2005, pp. 816–823.

[20] C.-C. Chiu and V.-W. Soo, ‘‘Automatic complexity reduction in reinforce-
ment learning,’’ Comput. Intell., vol. 26, no. 1, pp. 1–25, Feb. 2010.

[21] B. Hengst, ‘‘Discovering hierarchy in reinforcement learning with
HEXQ,’’ in Proc. ICML, vol. 19, 2002, pp. 243–250.

[22] A. Jonsson and A. Barto, ‘‘Causal graph based decomposition of factored
MDPs,’’ J. Mach. Learn. Res., vol. 7, pp. 2259–2301, Dec. 2006.

[23] N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich, ‘‘Automatic discovery
and transfer of MAXQ hierarchies,’’ in Proc. 25th Int. Conf. Mach. Learn.
(ICML), 2008, pp. 648–655.

[24] N.Mehta, S. Ray, P. Tadepalli, and T. Dietterich, ‘‘Automatic discovery and
transfer of task hierarchies in reinforcement learning,’’ AI Mag, vol. 32,
no. 1, p. 35, Jul. 2017.

[25] M.Wynkoop and T. Dietterich, ‘‘LearningMDP action models via discrete
mixture trees,’’ in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases. Springer, 2008, pp. 597–612.

[26] B. Da Silva, G. Konidaris, and A. Barto, ‘‘Learning parameter-
ized skills,’’ 2012, arXiv:1206.6398. [Online]. Available: https://arxiv.
org/abs/1206.6398

[27] G. Konidaris and A. G. Barto, ‘‘Efficient skill learning using abstraction
selection,’’ in Proc. IJCAI, vol. 9, 2009, pp. 1107–1112.

[28] G. Konidaris and A. G. Barto, ‘‘Skill discovery in continuous reinforce-
ment learning domains using skill chaining,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2009, pp. 1015–1023.

[29] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, ‘‘Robot learning
from demonstration by constructing skill trees,’’ Int. J. Robot. Res., vol. 31,
no. 3, pp. 360–375, Mar. 2012.

[30] G. Konidaris, S. Kuindersma, R. Grupen, and A. G. Barto, ‘‘Constructing
skill trees for reinforcement learning agents from demonstration trajecto-
ries,’’ in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1162–1170.

[31] G. Konidaris, S. Kuindersma, R. A. Grupen, and A. G. Barto,
‘‘Autonomous skill acquisition on a mobile manipulator,’’ in Proc. AAAI,
2011.

[32] K. Gregor, D. J. Rezende, and D. Wierstra, ‘‘Variational intrin-
sic control,’’ 2016, arXiv:1611.07507. [Online]. Available: https://
arxiv.org/abs/1611.07507

[33] A. S. Lakshminarayanan, R. Krishnamurthy, P. Kumar, and
B. Ravindran, ‘‘Option discovery in hierarchical reinforcement learning
using spatio-temporal clustering,’’ 2016, arXiv:1605.05359. [Online].
Available: https://arxiv.org/abs/1605.05359

[34] M. C. Machado, M. G. Bellemare, and M. Bowling, ‘‘A laplacian
framework for option discovery in reinforcement learning,’’ 2017,
arXiv:1703.00956. [Online]. Available: https://arxiv.org/abs/1703.00956

[35] J. Achiam and S. Sastry, ‘‘Surprise-based intrinsic motivation for deep
reinforcement learning,’’ 2017, arXiv:1703.01732. [Online]. Available:
https://arxiv.org/abs/1703.01732

[36] P.-L. Bacon, J. Harb, and D. Precup, ‘‘The option-critic architecture,’’ in
Proc. AAAI, 2017, pp. 1726–1734.

[37] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, ‘‘Unifying count-based exploration and intrinsic motivation,’’
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1471–1479.

[38] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, ‘‘Diversity is all you
need: Learning skills without a reward function,’’ 2018, arXiv:1802.06070.
[Online]. Available: https://arxiv.org/abs/1802.06070

[39] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel,
‘‘Vime: Variational information maximizing exploration,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 1109–1117.

[40] A. Klyubin, D. Polani, and C. Nehaniv, ‘‘Empowerment: A universal agent-
centric measure of control,’’ in Proc. IEEE Congr. Evol. Comput., vol. 1,
Dec. 2005, pp. 128–135.

[41] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, ‘‘Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3675–3683.

[42] S. Mohamed and D. J. Rezende, ‘‘Variational information maximisation
for intrinsically motivated reinforcement learning,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 2125–2133.

[43] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, ‘‘Curiosity-driven
exploration by self-supervised prediction,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017.

[44] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, ‘‘Feudal networks for hierarchical
reinforcement learning,’’ 2017, arXiv:1703.01161. [Online]. Available:
https://arxiv.org/abs/1703.01161

[45] C. Florensa, Y. Duan, and P. Abbeel, ‘‘Stochastic neural networks for
hierarchical reinforcement learning,’’ 2017, arXiv:1704.03012. [Online].
Available: https://arxiv.org/abs/1704.03012

[46] O. Sigaud and O. Buffet, Markov Decision Processes in Artificial Intelli-
gence. Hoboken, NJ, USA: Wiley, 2013.

[47] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1, no. 1. Cambridge, MA, USA: MIT Press, 1998.

11798 VOLUME 8, 2020

B. Ghazanfari et al.: SARM for Autonomously Extracting Hierarchical Task Structures in RL

[48] G. Bebek and J. Yang, ‘‘Pathfinder: Mining signal transduction pathway
segments from protein-protein interaction networks,’’ BMC Bioinf., vol. 8,
no. 1, p. 335, 2007.

[49] W. Lin, S. A. Alvarez, and C. Ruiz, ‘‘Efficient adaptive-support association
rule mining for recommender systems,’’ Data Mining Knowl. Discovery,
vol. 6, no. 1, pp. 83–105, Jan. 2002.

[50] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining (Always
Learning). Reading, MA, USA: Addison-Wesley, 2006. [Online]. Avail-
able: https://books.google.com/books?id=KZQ0jgEACAAJ

[51] P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data
Mining, 2nd ed. London, U.K.: Pearson, 2018.

[52] W. A. Kosters, W. Pijls, and V. Popova, ‘‘Complexity analysis of depth first
and fp-growth implementations of apriori,’’ in Proc. Int. Workshop Mach.
Learn. Data Mining Pattern Recognit. Springer, 2003, pp. 284–292.

[53] T. Dean and R. Givan, ‘‘Model minimization in Markov decision pro-
cesses,’’ in Proc. IAAI, 1997, pp. 106–111.

BEHZAD GHAZANFARI is currently pursuing
the Ph.D. degree with Northern Arizona Univer-
sity. He is working on reinforcement learning,
multiobjective reinforcement learning, deep learn-
ing, multiagent systems, and bio-medical signal
processing.

FATEMEH AFGHAH is currently the Director of
the Wireless Networking and Information Pro-
cessing (WiNIP) Laboratory. Before joining NAU,
she was an Assistant Professor with the Electri-
cal and Computer Engineering Department, North
Carolina A&T State University, from 2013 to
2015.

She is a Representative of the IEEE regions
R1-6, on the membership board standing commit-
tee for the IEEE Signal Processing Society. Her

research areas include wireless communications, game theoretical optimiza-
tion, and biomedical signal processing. Her current research focuses on
developing predictive modeling techniques using game theory and graph
theory to optimize the performance of current medical diagnosis methods.
She also works on optimizing the performance of autonomous multiagent
systems and wireless communications networks.

MATTHEW E. TAYLOR received the Ph.D. degree
from the Department of Computer Sciences,
UT-Austin, in 2008. After a postdoctoral position
at the University of Southern California, he was
a Professor with the Lafayette College and with
Washington State University. He is currently a
Principal Researcher with Borealis AI, a Canadian
Institute funded by the Royal Bank of Canada,
where he helps to lead a research team in Edmon-
ton focused on reinforcement learning.

VOLUME 8, 2020 11799

