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Abstract. Since resources for data acquisition are seldom infinite, both
learners and classifiers must act intelligently under hard budgets. In this
paper, we consider problems in which feature values are unknown to
both the learner and classifier, but can be acquired at a cost. Our goal
is a learner that spends its fixed learning budget bL acquiring training
data, to produce the most accurate “active classifier” that spends at
most bC per instance. To produce this fixed-budget classifier, the fixed-
budget learner must sequentially decide which feature values to collect to
learn the relevant information about the distribution. We explore several
approaches the learner can take, including the standard “round robin”
policy (purchasing every feature of every instance until the bL budget is
exhausted). We demonstrate empirically that round robin is problematic
(especially for small bL), and provide alternate learning strategies that
achieve superior performance on a variety of datasets.

1 Introduction

While a doctor may have the option of using a wide variety of medical tests
(including MRIs, blood work, etc.) to diagnose a patient, many medical plans
involve capitation payments that restrict the per-patient cost of medical diag-
nosis and treatment. These physicians can only consider diagnostic strategies
that spend at most a specified amount; they would clearly want to use the
most accurate such strategy. In general, these strategies can operate sequen-
tially: e.g. first performing test Blood7 (at cost C(Blood7)), then using this
information to decide on the next action; perhaps performing Liver3 if Blood7

was positive, but performing Urine2 if Blood7 was negative, and so forth. Once
the total cost of the tests performed reaches the capitation amount bC (i.e. if
C(Blood7) + C(Urine2) + · · · = bC), the strategy must stop collecting informa-
tion and render a decision — e.g. “Cancer = true”. We call such a strategy a
“bounded active classifier” [1].
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Earlier results [1] have shown that one can PAC-learn the decision-theoretic
optimal “bounded active classifier” BAC∗ = arg minb{error(b)|b ∈ cost-bC-
active classifiers}, assuming the learner has no a priori resource bound — i.e.
it can purchase every feature of as many instances as necessary. Of course, if we
are charging the classifier (read “physician”) for each feature, it seems strange to
provide this information for free to the learner (think “experimental designer”).
This paper extends those earlier results by investigating the challenge of learning
this BAC∗ when the learner has a fixed budget to spend acquiring the relevant
training data — i.e., when the learner can spend only a total of bL to produce
the best classifier that can spend only bC per instance. Thus, we investigate the
problem of budgeted learning a bounded active classifier.

In Sect. 2, we introduce the formal framework for budgeted learning a bound-
ed active classifier, highlight the simplifying assumptions we make, and derive
complexity results that show our task is NP-hard in general. Section 3 demon-
strates how to improve the running time of the (intractable) optimal algorithm,
while Sect. 4 discusses a variety of tractable algorithms that attempt to find good
approximate solutions to the problem. Section 5 describes the loss functions that
are required by some of our approaches, and Sect. 6 gives empirical results that
compare the proposed algorithms. Finally, Sect. 7 reviews related literature and
Sect. 8 summarizes our contributions. The proofs, and other information about
these studies, all appear in the website [5].

2 Formal Description

The “budgeted bounded-active-classifier learner”, bBACl, is given the (non-
negative) cost C(Xi) ∈ IR+ of acquiring each individual feature Xi of any single
specified instance1 and the loss matrix L = [`i,j ] whose (i, j) element specifies
the penalty for returning the class ci when the true class is cj ; by convention
we assume `i,i = 0 and `i,j > 0 for i 6= j. bBACl also knows the total amount
the learner can spend bL ∈ IR+, and how much the resulting active classifier can
spend per instance bC ∈ IR+.

At any time, the bBACl can see the current m×(r+1) “tableau”, whose rows
each correspond to an instance i ∈ {1, . . . ,m} and whose first r columns each
correspond to a feature, and whose r+1st column is the class label. Initially, only
the class label is specified; the other m × r entries are all unknown. In general,

we will let x
(j)
i refer to the initially unknown value of the ith feature of the

jth instance. At any point, bBACl can perform the (i, j) “probe” to determine

the value of x
(j)
i , at cost C(Xi). This also reduces bBACl’s remaining budget

from bL to bL − C(Xi). Once this budget reaches zero, bBACl stops collecting
information and returns a bounded active classifier BAC, which corresponds to
a decision tree of bounded depth [2].

1 We assume that these costs are independent of each other, both within and across
instances. Moreover, if any test costs C(Xi) = 0, we can simply gather that infor-
mation for each instance and then consider the resulting reduced problem where
C(Xi) > 0 for all remaining Xis.



The score of any BAC B is its expected misclassification error:

Q(B) =
∑

x,y

P (x, y) L(B(x), y) . (1)

Letting All(bC) be the set of all such active classifiers that spend at most bC per
instance, our goal is the BAC from this set that minimizes this error:

BAC∗ = arg min
B∈All(bC)

Q(B) . (2)

2.1 Simplifying Assumptions

For our work we will assume a constant misclassification cost `ij = 1 for i 6= j and
`ii = 0. Our algorithms will need to estimate the probabilities over the values of

the features of an instance P (x
(j)
i ) to decide which probe to perform. We will take

a Bayesian stance by assuming there is a prior distribution over labeled instances,
before seeing any data.2 As a simplification, we will make the Näıve Bayes as-

sumption, which means the distribution of x
(j)
i is independent of x

(j)
k (for k 6= i)

as we know the value of the class yj .
3 Hence, if instance j is labeled with class

+, we will model the distribution of its ith feature x
(j)
i ∼ Dir(α

(i)
1,+, . . . , α

(i)
w,+ )

as a Dirichlet distribution with parameters α
(i)
j,+ > 0, assuming Xi has |Xi| = w

values [3]. These parameters are unrelated to the ones for negatively labeled

instances α
(i)
j,− and also unrelated to the parameter values for other features

Xh, for h 6= i. Initially, we will assume that each such distribution is uniform
Dir( 1, . . . , 1 ). If we later see a sample S with 29 Y = + instances with Xi = +

and 14 Y = + instances with Xi = −, the posterior distribution for x
(j)
i for a

new Y = + instance would be Dir( 1 + 29, 1 + 14 ). The mean probability for
Xi = + here would be P (Xi = +|S) = 30/(30 + 15) = 2/3.

In general, if a variable X’s prior distribution is X ∼ Dir(α1, . . . , αw ), then

P (X = i) =
αi

∑

k αk

(3)

If we then observe a sample S that includes ai instances of X = i, then X’s
posterior distribution remains a Dirichlet, with new parameters

X|S ∼ Dir(α1 + a1, . . . , αw + aw ) . (4)

In the formal description above, a probe of the form x
(j)
i specifies the feature

to probe (Xi) and the specific instance in the tableau (instance j) on which
to perform the probe. However, because of our Näıve Bayes assumption, we

2 The sparsity of the data means the obvious frequentist approach of using simple
frequencies is problematic.

3 Note that Näıve Bayes models often produce good classifiers even for datasets that
violate this assumption.



can treat all instances with the same class label identically. Thus, rather than
querying specific instances, we only consider probes of the form (i, y) that request
the ith feature of a randomly chosen instance in the tableau whose class label
is y. (By convention, this process selects the value of an (i, y) feature-value that
has not been seen before.)

2.2 Complexity Results

Madani et al. [4] proves the following much simpler task is NP-hard: Given a set
of coins with known prior distributions and a fixed total number of flips, decide
when to flip which coin to decide which coin has the highest head probability.
Our framework inherits that negative result. (Identify each coin fi with a binary
feature, whose head probability corresponds to the probability the class is true,
given fi is true, P (c = +|fi = +); we also let P (c = +|fi = −) = 0 for all
features.) In addition, [1] shows that computing the best active classifier is NP-
hard in general, even if we know the entire distribution. Our framework inherits
that negative result as well.

3 The Optimal Policy

As our problem is a finite Markov Decision Process, there exists a deterministic
optimal policy for spending the learning budget such that the expected1 total
(expected2) misclassification error4 of the final bounded active classifier is min-
imized. Mathematically, the optimal learning policy is the one that minimizes:

∑

i∈Outcomes

P (i)
∑

x,y

P (x, y|i) L(BAC∗(x), y) (5)

where each “outcome” corresponds to a state in which our learning budget has
been fully exhausted and has resulted in posterior Dirichlet distributions over
the feature values.

Such a policy can be computed via a bottom-up dynamic program. Unfortu-
nately, the number of outcomes (and hence the computational complexity) has
a prohibitive lower bound:

Proposition 1. [5] Let |Xi| denote the domain size of feature Xi, |S| denote
the number of classes, t = |S|

∑

i |Xi| − 1, and each feature has unit cost. Then
the bottom-up dynamic program must compute the value of

Ω

(

(

bL+t
bL

)bL (

bL+t
t

)t 1√
t

)

outcomes.

We have considered improving upon this näıve dynamic program by reducing
the number of subproblems that must be solved. Below we show an interesting
way to achieve this reduction by exploiting the equivalence of two “permuted”
states under the conditional independence assumption.

4 The first expectation1 is over the set of possible Dirichlet distributions produced
by the learner’s purchases, and the second expectation2 is over the possible labelled
instances (x, y) that can occur given the resulting Dirichlets



Table 1. Reduction in computation time using Proposition 2

bL bC Features Domain Size Näıve Improved

2 4 6 4 161 sec 65 sec
3 2 4 3 888 sec 432 sec
4 3 4 3 8280 sec 3360 sec

Definition 1. A proper permutation for a feature Xi with w domain values is
a bijective function f : [1, w] → [1, w] that applies the same reordering of the w
parameters for every Dirichlet distribution on Xi.

Example 1. Let

(Xi|Y = 0) ∼ Dir(4, 2, 7), (Xi|Y = 1) ∼ Dir(3, 8, 5)

Then a proper permutation for feature Xi is:

(Xi|Y = 0) ∼ Dir(7, 2, 4), (Xi|Y = 1) ∼ Dir(5, 8, 3).

Proposition 2. [5] Assume the Näıve Bayes assumption holds, and identify
a “state” of our problem by the value of bL and the set of Dirichlets over the
feature-class pairs. Consider any two states A and B, that have equal values of
bL and are such that the Dirichlets of A can be made equal to the Dirichlets of
B by specifying a set of r proper permutations, one for each feature Xi. Under
these conditions, the expected value of state A is equal to the expected value of
state B when following an optimal policy, and the optimal action to take from
state A is the optimal action to take from state B.

This proposition allows us to improve the näıve dynamic program by reusing
the computed value of a state A for properly permuted versions of A. The real-
time improvement using Proposition 2 is shown in Table 1. In the last case, the
näıve dynamic program ran out of memory after more than two hours, while
our improved version finished properly in under an hour. Unfortunately such
improvements are not sufficient to remove the exponential complexity of the
dynamic program (recall that this task is NP-complete); therefore, we consider
the following more tractable, suboptimal approaches.

4 Algorithms

This section summarizes a number of “budgeted bounded-active-classifier learn-
ers”. We focus on only the data collection part of the algorithms; after collecting
$bL worth of feature-values, each of the algorithms then passes its learned (pos-
terior) Dirichlet distributions to a dynamic program that produces the BAC∗ in
(2).



4.1 Round Robin (RR)

This obvious algorithm simply purchases complete instances until its budget
bL is exhausted. It draws examples randomly, and so expects to have collected
data about members of each class y in proportion to P (Y = y). If there are r
unit-cost features, we expect to know everything about roughly bL/r instances.
Notice RR implicitly assumes all features are equally valuable in learning the
target concept.

4.2 Biased Robin (BR)

A more selective approach than Round Robin is to purchase a single feature and
test whether or not its observed value has increased some measure of quality.
The Biased Robin algorithm is more selective than RR, continually purchasing
feature Xi as long as it improves quality, and otherwise moving to feature Xi+1

(and of course looping back to X1 after Xr). There are several choices for how
to measure quality or loss; see Sect. 5. Of course, BR must also specify a class
y from which to purchase its desired feature, and it does this by drawing from
the class distribution P (Y = y) on each purchase. As further motivation for this
algorithm, [6] found it to be one of the best approaches for budgeted learning of a
passive Näıve Bayes classifier, albeit with a different loss function. This method
also corresponds to the “Play the Winner” approach discussed in [7].

4.3 Single Feature Lookahead (SFL)

One would always like to avoid wasting purchases on poor features, especially
when faced with a limited learning budget. This motivates a prediction-based
approach, which uses a loss function to estimate the expected loss incurred after
making a sequence of purchases of a single, specified feature.

SFL uses this prediction based approach, and controls the level of myopia or
“greediness” involved by providing an additional parameter, d = the lookahead
depth. With a lookahead depth of d, SFL calculates the expected loss of spending
its next $d sequentially purchasing feature i of instances of class j. That is, if S
denotes our current set of Dirichlets and S′ denotes the Dirichlets after spending
min($d, $bL) purchasing feature Xi of Y = j instances, then the expected loss
for (i, j) is:

SFL(i, j) =
∑

S′

P (S′|S) Loss(S′) . (6)

SFL determines the feature-class pair (i, j) with lowest expected loss, then
purchases the value of this best (i, j) feature for one instance, and updates the
Dirichlets based on the observed outcome of that purchase (and reduces the
available remaining budget). It then recurs, using (6) to compute the score for
all feature-class pairs in this new situation — with its updated Dirichlets and a
smaller budget. This process repeats until the learning budget is exhausted. The
lookahead depth d can be set based on the computational resources available. If



only the next one purchase is considered, then this reduces to the (1-step) greedy
algorithm. SFL was originally used in two previously investigated variants of the
budgeted learning problem [6, 8].

4.4 Randomized SFL (RSFL)

Our experiments show that the SFL algorithm often spends the majority of
its probes purchasing a single discriminative feature-class pair and neglects to
explore other potentially good features. This property can be problematic, par-
ticularly when a dataset contains several discriminative features that can jointly
yield a more accurate BAC than any single feature by itself. The Randomized
Single Feature Lookahead algorithm (RSFL) alleviates this problem by increas-
ing exploration among the best looking feature-class pairs. The RSFL algorithm
is very similar to SFL, as it too calculates the expected loss in (6) for each
feature-class pair. However, rather than deterministically purchasing the pair
with the best SFL score, RSFL considers the best K feature-class pairs and for
each feature-class pair (i, j) in this set, it chooses to purchase feature i of class
j with probability:

exp −SFL(i,j)
τ

∑

i,j exp −SFL(i,j)
τ

(7)

Here, τ is a temperature controlling exploration versus exploitation. Although we
set τ to one throughout this paper, we include it in (7) to show the relationship to
the Gibbs distribution. After experimenting with various values for the number
of feature-class pairs, K, we found that K = (number of classes)× bc seemed to
perform well, particularly when the learning budget was not much greater than
the number of features.

5 Loss Functions

As mentioned earlier, several of our algorithms rely on a loss function

Loss : {Dirichlet distributions over features} → IR (8)

that attempts to measure the quality of a given probability distribution. After
experimenting with several different choices of loss functions, we found Condi-
tional Entropy Loss and Depth 1 BAC Loss to be effective.5

Conditional Entropy measures the uncertainty of the class label Y given the
value of a feature Xi:

−
∑

x

P (Xi = x)
∑

y

P (Y = y|Xi = x) log2 P (Y = y|Xi = x) . (9)

5 The obvious loss function is just to use (2) to compute the expected error of the
optimal BAC. However, since loss functions can be called several times on a single
purchase, the computational expense of computing (2) is prohibitive.



The Biased Robin algorithm uses (9) before and after the purchase of feature
Xi to determine whether the purchase improved the ability of Xi to predict the
class Y .

On the other hand, other algorithms (SFL, RSFL, and greedy) use

min
i

∑

x

P (Xi = x)min
y

(1 − P (Y = y|Xi = x)) (10)

which calculates the expected misclassification error of the best Depth 1 BAC.
Since BR needs to detect small changes in a distribution, it tends to perform
better with the more sensitive conditional entropy calculation in (9).

6 Experimental Results

To compare the algorithms, we tested their performance on several datasets
from the UCI Machine Learning Repository [9]. We used supervised entropy
discretization [10] to discretize datasets with continuous values. Each dataset was
then randomly partitioned into five folds. The algorithms were run five times,
and on each run a single fold was set aside for testing, while the remaining four
were available for purchasing. For each algorithm, we used the average value of
these five runs as the algorithm’s misclassification error on the whole dataset.
We repeated this process 50 times to reduce the variance and get a measure of
the average misclassification error. Thus, each point in the graphs that follow
represents 50 repetitions of five-fold cross validation.

In the first set of experiments, all features have unit cost and the datasets
contain some irrelevant features. We set the classifier’s budget to bc = 3, as this
is large enough to allow several features to be used, but small enough to keep
computations tractable. All Dirichlets parameters are uniformly initialized to 1.
For reference, each graph also includes a gold standard “All Data” algorithm,
which is allowed to see the entire dataset, and thus represents the best that one
can do using the Näıve Bayes assumption on the data.

Figure 1 shows the performance of the algorithms on the Glass Identifica-
tion dataset: a binary class problem with nine features whose domain sizes vary
between one and three. The four features that have a domain size of one rep-
resent irrelevant information that any learning algorithm (especially one under
a constraining budget) should avoid. Both RSFL and BR learn better than the
obvious RR algorithm for all learning budgets considered. In fact, we found the
optimal bC = 3 BAC produced by the “All Data” algorithm involves four dif-
ferent features, and these four features are precisely the ones that RSFL and
BR purchase heavily during learning. This is in contrast to the RR purchasing
behaviour that spends equally on all features, despite their unequal predictive
power. Finally, SFL and Greedy spend their entire budget on only one or two
features during learning, which accounts for their low accuracy BACs.

The Breast Cancer dataset contains ten features, only one of which is irrele-
vant to the concept. This dataset is particularly interesting because nearly all its
features are good predictors, but three features have markedly lower conditional
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Fig. 1. Identical costs and some irrelevant features — RSFL and BR outperform RR

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Iris

Learning Budget

0/
1 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

0 20 40 60 80 100 120 140 160

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Vote

Learning Budget

0/
1 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

RR
BR
SFL (depth25)
RSFL (K=2*bc)
Greedy
All Data
RSFL (K=6*bc)

Fig. 2. Identical costs, no irrelevant features — RR still suboptimal

entropy than the rest. To produce the lowest error BAC, the learning algorithms
must discover the superiority of these three features. We find RSFL does exactly
this, spending 20%, 21%, and 32% of its budget respectively on the three strong
features. In comparison, RR spends 10% of its budget on every feature which
makes it much more difficult for it to separate the top features from the rest.
BR also performs better than RR for all learning budgets considered.

The next set of experiments, shown in Fig. 2, considers datasets without
any irrelevant features. The Iris dataset has only four features and is a three
class problem. Given that all four features are relevant, and that bC = 3 in this
experiment, the optimal BAC requests every feature at some point in its tree.
With only four features to consider, RSFL is able to test them all effectively and
produce better BACs than RR for all budgets considered. BR is also competitive
with RR, except at some of the very low budgets where BR’s exploration model
prevents it from ever investigating some of the features.

Figure 2 (right) shows another binary class problem, the Vote dataset, that
contains 16 features. Many of these features have similar (high) predictive power.
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Fig. 3. Different feature costs — RSFL and BR dominate RR

Once again we see that both RSFL and BR beat RR when the learning budget
is small. RSFL asymptotes after about 50 purchases — it spends its budget
finding a few strong features quickly and outputs a fairly low error BAC. As
expected, at larger budgets RR collects enough information on every feature
to find many more suitable candidates for its BAC than RSFL can. The graph
shows that one can improve the performance of RSFL by increasing the number
of top feature-class pairs that RSFL considers on this dataset. We also observe
that BR’s exploration model is particularly well suited to this task because it is
able to collect information on every feature at larger budgets, which is crucial
on a dataset such as Vote with a large number of predictive features.

Our final set of experiments involved datasets where the features differed in
cost. Both the Heart Disease dataset and the Pima Indians dataset have known
cost data [9], which we used in our tests. The scaled Heart Disease costs range
from $1 to $7, and our tests are run with bc = $7. This dataset represents
the worst case for RR, because the irrelevant features happen to be the most
expensive ones. In fact, RSFL achieves the same error rate after $100 that RR
takes $500 to reach. In the Pima dataset, feature costs are between $1 and $5,
and we set bc = $5. The two irrelevant features have cost $1, and the single best
feature is $4. Once again, BR and RSFL dominate RR for all budgets considered.

7 Related Work

There are a number of different senses of “costs” in the context of learning [11].
Our research considers two of these: the costs paid by the learner to acquire
the relevant information at training time to produce an effective classifier and
also the costs paid by the classifier, at performance time, to acquire relevant
information about the current instance. We impose hard constraints on the total
cost of tests that can be performed per instance, and on the expenses paid by
the learner.



Many existing (sub)fields, such as active learning [12] and experimental de-
sign [13] (as well as earlier results such as [6]) focus on only the first of these
costs – e.g., bounding how much the learner can spend to produce an accurate
passive classifier. In addition, many of these systems request the class label for
an otherwise completely specified instance. Thus they require only a single quan-
tity per instance. Our problem is the complement of this: class labels are known
but feature information must be purchased. Unlike most of the other models,
this means our work may need to consider the correlations amongst the many
unknown properties of an instance. Other results seeking to reduce the sam-
ple complexity for learning include decision theoretic subsampling [14], on-line
stopping rules [15], progressive sampling [16], and active feature value acquisi-
tion [17]. We note that these techniques differ from our approach because we
place a firm prior budget on the learner’s ability to acquire information, while
these approaches typically allow the learner to purchase until some external
stopping criteria (for instance, accuracy) is satisfied.

Weiss and Provost [18] recently explored a problem related to one that we
encounter in our overall framework: how to represent the class distribution when
only a firm budget of n training examples can be used. As discussed in Sect. 4,
our algorithms select which class to probe in different ways (e.g. performing
lookahead (SFL, Greedy), drawing from the true class distribution (RR and
BR), or combining lookahead with a Gibbs distribution (RSFL)).

As for the costs paid by the classifier at performance time, both [19] and [1]
attempt to produce a decision tree that minimizes expected total cost. However,
neither work assumes an a priori resource bound on the learner, thereby allowing
for unconstrained amounts of training data with which to build these classifiers.
Again, our work makes the more realistic assumption that if data costs money
at performance time, it very likely costs money at learning time as well.

Finally, we can view our model as a (fixed horizon, partially observable)
Markov Decision Process (MDP) [20]. We note that although the MDP formula-
tion is theoretically clear, it has not yielded strong results in our experiments due
to the dimensionality and lack of suitable features for function approximation;
see [21]. A simpler version of our problem also exists in the MDP framework [8],
and the results of that work motivate several of the policies that we adapt for
budgeted learning of bounded active classifiers.

8 Conclusions

Many standard learning algorithms implicitly assume the features are always
available for free, to both the learner at “training time” and later the classifier,
at “performance time”. This paper extends those systems by explicitly consider-
ing these costs, at both training and performance time. It introduces the formal
framework for budgeted learning a bounded active classifier, and presents some
complexity results. We also propose a more efficient way to implement the opti-
mal algorithm, which we prove works effectively. Moreover, this paper motivates
and defines a variety of tractable learning strategies and shows they work effec-



tively on various types of data — both with identical and with different feature
costs. In particular, we demonstrated that our proposed strategies can often do
much better than the obvious algorithm – “Round Robin” – especially when
training data is limited.
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A Proofs

A.1 Proposition 1

We use two lemmas to aid in the proof. The first is a standard result from the
theory of partitions [22]:

Lemma 1. There are

(

n − 1
b − 1

)

ways to express an integer n ≥ 1 as the sum of

exactly b positive integers.

while the second lemma can be derived from the first [23]:

Lemma 2. There are
∑b

j=1

(

n − 1
j − 1

)(

b
j

)

=

(

n + b − 1
b − 1

)

. ways to express

an integer n ≥ 1 as the sum of b nonnegative integers.

Proof (of Proposition 1). Let d = |S|
∑

i |Xi|. Working from the bottom-up, the
dynamic program must begin by calculating the value of all possible “end states”,
where an end state corresponds to a complete allocation of the learning budget,
bL, over the possible purchases. Using our Näıve Bayes assumption and the unit
cost of features, each purchase can result in d possible outcomes. Thus, at the
bottom level, the dynamic program (dp) must consider the value of every distinct
subproblem q, where q corresponds to a complete allocation of the learning
budget bL over the possible outcomes d.

Stated this way, the number of distinct subproblems q that the dynamic
program has to solve is exactly the number of ways to express the learning
budget bL as the sum of d nonnegative integers. Using Lemma 2, at the bottom
level, the dp must solve

(bL + d − 1)!

(bL)!(d − 1)!
(11)

subproblems; using Stirling’s formula on each factorial, we get

(bL + d − 1)!

(bL)!(d − 1)!
>

(

bL+d−1
bL

)bL
(

bL+d−1
d−1

)d−1 √

2π(bL + d − 1)
√

2πbL

√

2π(d − 1)(1 + 1
11bL

)(1 + 1
11(d−1)

)
>

(

bL+d−1
bL

)bL
(

bL+d−1
d−1

)d−1

2
√

2π
√

d − 1

∈ Ω

(

(

bL+d−1
bL

)bL
(

bL+d−1
d−1

)d−1

(d − 1)
−1

2

)

and the result follows using t = (d − 1). ut



A.2 Proposition 2

To prove Proposition 2, the following lemma is required.

Lemma 3. Let the Näıve Bayes assumption hold, and consider any set D of
Dirichlets over the feature-class pairs and a bounded active classifier BACD

(with bound bC) constructed from D. Given any set of Dirichlets D′ where D′

can be made equal to D by specifying exactly one proper permutation for each
feature, then there exists a bounded active classifier BACD′ (also with bound
bC) constructed from D′ such that the expected error of BACD is equal to the
expected error of BACD′ .

Proof. Let P (.)D denote a probability under D, and P (.)D
′ denote a probability

under D′. Let b be a branch of BACD, which, without loss of generality, specifies
some feature values (Xi = xi,Xj = xj), and has classification label Y = y. Then
the expected accuracy of branch b is

P (Xi = xi,Xj = xj , Y = y)
D

=

P (Xi = xi|Y = y)DP (Xj = xj |Y = y)
D

P (Y = y) =

P (Xi = x′
i|Y = y)D

′ P (Xj = x′
j |Y = y)

D
′ P (Y = y)

where x′
i is the image of xi under the proper permutation for Xi. Thus we

have converted a branch b of BACD into a new branch b′, where the expected
accuracy of b′ under D′ is the same as the expected accuracy of b under D. We
can repeat this conversion for each branch of BACD to get a set of new branches
which, when summed together, have the same expected accuracy as BACD. Of
course, since the expected misclassification error is 1−(expected accuracy), the
new branches have the same expected misclassification error as BACD as well.

All that remains to be shown is that the set of new branches forms a valid
BAC with bound bC . To see this, note that we can apply our transformation
by doing a pre-order traversal of BACD, where at each non-leaf node specifying
feature Xk, we reorder its subtrees using the proper permutation for feature
Xk. A reordering of subtrees cannot invalidate the BAC, nor can it increase the
bound bC . Once the entire tree has been traversed, we are guaranteed to have
applied our transformation to each feature of each branch, ensuring that each
branch has been fully converted. The converted tree is the desired BACD

′ . ut

Proof (of proposition 2). Let us adopt the notation that DA denotes the Dirich-
lets of state A. Further, let DA + (ijd) denote the Dirichlets of state A after
observing Xi = d on a Y = j instance. Finally, let fi denote the proper permu-
tation for feature Xi, V π∗

(p) denote the expected value of state p when following
an optimal policy, and dom(Xi) denote the domain of feature Xi.

The proof follows from induction on bL. In the base case, bL = 0. Since no
learning budget remains in state A or B, there is no action to take, and hence
trivially state A and B have the same (null) optimal action. When bL = 0 the
value of state A under an optimal policy is simply the expected misclassification
error of the BAC∗ constructed from state A’s Dirichlets. By Lemma 3, state B



must have a corresponding BAC with exactly the same expected misclassification
error. Furthermore, the value of state B under an optimal policy cannot be any
less, for if it were, then Lemma 3 implies that state A must have a corresponding
BAC with lower expected error, which is a contradiction to the definition of
BAC∗. Thus states A and B have identical values under the optimal policy for
the base case.

For the inductive step, assume the result holds for bL = n− 1, and let states
A and B have bL = n. Now consider taking any initial action from state A, and
then following an optimal policy. Without loss of generality, assume the action

is to purchase x
(j)
i . Then the value of such an action is:

∑

d∈dom(Xi)

P (Xi = d|Y = j)DA
V π∗

(DA + (ijd), bL = n − 1) =

∑

d∈dom(Xi)

P (Xi = fi(d)|Y = j)DB
V π∗

(DA + (ijd), bL = n − 1) =

∑

d∈dom(Xi)

P (Xi = fi(d)|Y = j)DB
V π∗

(DB + (ijfi(d)), bL = n − 1)

where the last equality follows by an application of the inductive hypothesis,
since DA + (ijd) can be made equal to DB + (ijfi(d)) by using the r proper
permutations, one for each feature. Thus, we have just shown that the value of
an action in state A is equal to the value of the same action from state B, when
the action is followed by an optimal policy. This implies that the value of the two
states under an optimal policy is equal, and that the two states have identical
optimal actions. ut


