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Abstract. Markov Random Fields (MRFs) are a popular and well-
motivated model for many medical image processing tasks such as seg-
mentation. Discriminative Random Fields (DRFs), a discriminative al-
ternative to the traditionally generative MRFs, allow tractable compu-
tation with less restrictive simplifying assumptions, and achieve better
performance in many tasks. In this paper, we investigate the tumor seg-
mentation performance of a recent variant of DRF models that takes
advantage of the powerful Support Vector Machine (SVM) classification
method. Combined with a powerful Magnetic Resonance (MR) prepro-
cessing pipeline and a set of ‘alignment-based’ features, we evaluate the
use of SVMs, MRFs, and two types of DRFs as classifiers for three seg-
mentation tasks related to radiation therapy target planning for brain
tumors, two of which do not rely on ‘contrast agent’ enhancement. Our
results indicate that the SVM-based DRFs offer a significant advantage
over the other approaches.

1 Introduction

Support Vector Machines (SVMs) are a popular tool for classification tasks due
to their appealing generalization properties; this has led several groups to pro-
pose using SVMs for brain tumor segmentation [1–3]. However, SVMs assume
that data (here, individual voxels) is independently and identically distributed
(iid), which is not appropriate for tasks such as segmenting medical images.
In particular, SVMs can not consider dependencies in the labels of adjacent
pixels/voxels. Markov Random Fields (MRFs), a popular classification tech-
nique that models such dependencies, have been used in many medical image
segmentation tasks [4–6], and have also been used in systems for brain tumor
segmentation [5–7]. However, generative MRFs often do not have the discrimi-
native power of discriminative techniques such as SVMs. Conditional Random



Fields (CRFs [8]) and their multi-dimensional extension, Discriminative Ran-
dom Fields (DRFs), are discriminative alternatives to MRFs, which have out-
performed MRFs for several tasks [9, 10]. In the remainder of this section, we
review MRFs (Sect. 1.1), CRFs and DRFs (Section 1.2), and SVMs (Section 1.3).
Section 2 then describes our recently proposed Support Vector Random Field
(SVRF) model, which combines the advantages of both SVMs and CRFs [11].
Section 3 presents an evaluation of these techniques within a system for brain
tumor segmentation that uses an extensive MR preprocessing pipeline and a set
of multi-scale image-based and ‘alignment-based’ features.

1.1 Markov Random Fields (MRFs)

Markov Random Fields (MRFs) are widely used in medical image processing
applications [4–6]. They are ideal for many tasks, and are particularly relevant
to segmentation tasks as they allow the classification of one element to depend
on the labels of neighboring elements of the observation (image, volume, or se-
quence). By contrast, traditional classification techniques assume the data is iid,
and therefore do not model dependencies in the labels of neighboring elements.
MRFs typically use a generative approach, modeling the joint probability of the
features of the set of voxels x = {x1, . . . , xn} and their corresponding labels y:
p(x,y) = p(x|y) p(y). However, these systems often make simplifying assump-
tions to make the calculation of the joint probability tractable. This usually
involves assuming that the likelihoods have a simple factorized form, such as
p(x|y) =

∏
i p(xi|yi), which involves restrictive independence assumptions, and

does not allow the modeling of complex dependencies between the features and
the labels. For the MRF in our experiments, we used a Gaussian assumption
to factor p(x|y) (as opposed to a non-parametric alternative such as Parzen
Windowing [4]), and used the Hammersley-Clifford method [12] to factor p(y),
producing the following model for the posterior, given a set of labeled training
data S = {〈xi, yi〉}i.

p(y|x) =
1
Z

exp

[∑
i∈S

log(p(xi|yi)) +
∑
c∈C

Vc(yc)

]
(1)

where C is a set of cliques in the neighborhood (here defined as the set of 8
planar neighbors), Vc(y) is a clique potential function of labels for the clique
c ∈ C, and Z normalizes over all possible labelings. The Gaussian assumption
allows us to use Maximum Likelihood (ML) parameter estimation.

1.2 Conditional and Discriminative Random Fields (CRF, DRF)

Conditional Random Fields (CRFs) are a discriminative alternative to the tra-
ditionally generative MRFs [8]. Rather than modelling the joint likelihood of the
features and labels p(x,y), discriminative models directly model the posterior
probability of the labels given the features p(y|x). This subtle difference allevi-
ates the need to model the distribution over the observations. This is important



in medical imaging applications, since anatomic structures can have complex
shapes that are not easy to model and may not be appropriately modelled by a
factorized form of p(x|y). Since CRFs directly model the posterior, they can re-
lax many of the major simplifying assumptions often made in MRFs. This allows
the (tractable) modelling of complex dependencies (a) between the features of an
element and its label, (b) between the labels of adjacent elements, and (c) between
the labels of adjacent elements and their features, or even other features of the
observation.

Discriminative Random Fields (DRFs) are a multi-dimensional extension of
1-dimensional CRFs for lattice-structured data [9]. This extension, combined
with the popularity of MRFs in medical imaging applications and the major
advantages that CRFs can have in certain situations over MRFs, suggests that
DRFs could have a major impact on a number of medical imaging tasks. In our
experiments, we used the following DRF model:

p(y|x) =
1
Z

exp

∑
i∈S

Ai(yi,x) +
∑
i∈S

∑
j∈Ni

Iij(yi, yj ,x)

 (2)

where Ai is the ‘Association’ (Observation-Matching) potential for modelling
dependencies between the i-th class label yi and the set of all observations x.
The DRF method uses a Generalized Linear Model (GLM) based on Logistic
Regression for this potential [9]. The ‘Interaction’ (Local-Consistency) potential
for modelling dependencies between the labels of neighboring elements, Ii, is
also a GLM. Non-linear models for both potentials can be induced through
a change of basis. Simultaneously determining the optimal parameters of the
Association potential and the Interaction potential can be done numerically as a
convex optimization problem. The performance of the GLM in DRFs compared
to the probability distribution in the first term of MRFs will depend on the
application. However, note the important difference between the clique potentials
in MRFs and the Interaction potential in DRFs. MRFs indiscriminately smooth
over neighboring cliques while DRFs consider the features when taking into
account interactions in the labels

∑
i∈S

∑
j∈Ni

Iij(yi, yj ,x). This is a subtle but
important point, since it means a DRF can learn how to optimally use image
(and image gradient) information when modeling label dependencies.

DRFs are a powerful method for modeling dependencies in spatial data.
There are, however, several problems associated with this method: it is hard to
find a good initial labeling during inference, and due to the simultaneous learn-
ing of parameters, it tends to overestimate the Interaction potential parameters
which can degrade edges during inference (unless regularization is used very care-
fully). Furthermore, the GLM may not estimate appropriate parameters in data
with a high-dimensional feature space or where features may be correlated (as
with textural features or multi-modality data) [13]. Because of these factors, in
some tasks DRFs will not be advantageous compared to models such as Support
Vector Machines.



1.3 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are a popular tool for classification of data
that is independent and identically distributed. SVMs are less sensitive to class
imbalance than GLMs, and due to the properties of error bounds, SVMs tend
to outperform GLMs, especially in cases where the classes overlap (often the
case in medical imaging applications) [14]. SVMs try to maximize the margin
between classes (here using the simple linear feature space xi ·xj), by finding the
optimal αi values in the following Quadratic Programming problem (represented
in dual Lagrangian form where C is a constant that bounds the misclassification
error) [14]:

max
N∑

i=1

αi − 1
2

N∑
i=1

N∑
j=1

αi αj yi yj (xi · xj)

subject to

0 ≤ αi ≤ C and
N∑

i=1

αiyi = 0

(3)

Unlabelled instances are classified using the learned parameters αi and bias
b, by taking the sign of the following decision function [14]:
f(x) =

∑N
i=1 αiyi(x · xi) + b

2 Support Vector Random Fields (SVRFs)

An SVM is an iid classifier, which does not consider interactions in the labels of
adjacent data points. Conversely, DRFs and MRFs consider these interactions,
but do not have the same appealing generalization properties as SVMs. This
section will review our Support Vector Random Field (SVRF) model, an exten-
sion of SVMs that uses a DRF framework to model interactions in the labels of
adjacent data points [11]:

p(y|x) =
1
Z

exp

∑
i∈S

log(O(yi, Υi(x))) +
∑
i∈S

∑
j∈Ni

V (yi, yj ,x)

 (4)

where Υi(x) computes features from the observations x for location i, O(yi, Υi(x))
is an SVM-based Observation-Matching potential, and V (yi, yj ,x) is the Local-
Consistency potential over a pair-wise neighborhood structure, where Ni are the
8 neighbors around location i.

2.1 Observation-Matching

The Observation-Matching function maps from the observations (features) to
class labels. We would like to use SVMs for this potential. However, the decision
function in SVMs produces a distance value, not a posterior probability suitable



for the DRFs’ framework. To convert the output of the decision function to a
posterior probability, we used a modified version of the method in [15]. This
efficient method minimizes the risk of overfitting and is formulated as follows:

O(yi = 1, Υi(x)) =
1

1 + exp(A × f(Υi(x)) + B)
(5)

The parameters A and B are estimated from training data represented as
pairs 〈f(Υi(x)), ti〉, where f(Υi(x)) is the real-valued SVM response (here, dis-
tance to the separator), and ti denotes a related probability that yi = 1, rep-
resented as the relaxed probabilities: ti = N++1

N++2 if yi = 1, and ti = 1
N−+2 if

yi = −1, where N+ and N− are the number of positive and negative class in-
stances. Using these training instances, we can solve the following optimization
problem to estimate parameters A and B:

min−
l∑

i=1

[ti log O(ti, Υi(x)) + (1 − ti) log(1 − O(ti, Υi(x)))] (6)

Platt [15] used a Levenberg-Marquardt approach that tried to set B to guar-
antee that the Hessian approximation was invertible. However, dealing with the
constant directly can cause problems, especially for unconstrained optimization
problems [13]. Hence, we employed Newton’s method with backtracking line
search for simple and robust estimation. To avoid overflows and underflows of
exp and log, we reformulated (6) as

min
l∑

i=1

[ti(A × f(Υi(x)) + B) + log(1 + exp(−A × f(Υi(x)) − B))] (7)

2.2 Local-Consistency

We use a DRF model for Local-Consistency, since we do not want to make the
(traditional MRF) assumption that the label interactions are independent of the
features. We adopted the following pairwise Local-Consistency potential:

V (yi, yj ,x) = yiyj (ν · Φij(x)) (8)

where ν is the vector of Local-Consistency parameters to be learned, while Φij(x)
calculates features for sites i and j. DRFs use a Φij that penalizes for high abso-
lute differences in the features. As we are additionally interested in encouraging
label continuity, we used the following function that encourages continuity while
discouraging discontinuity: (max(Υ (x)) denotes the vector of max values of the
features):

Φij(x) =
max(Υ (x)) − | Υi(x) − Υj(x) |

max(Υ (x))
(9)

Observe that this function is large when neighboring elements have very
similar features, and small when there is a wide gap between their values.



2.3 Learning: Parameter Estimation

SVRFs use a sequential learning approach to parameter estimation. This involves
first solving the SVM Quadratic Programming problem (3). The resulting deci-
sion function is then converted to a posterior probability using the training data
and estimated relaxed probabilities. The Local-Consistency parameters are then
estimated from the m training pixels from each of the K training images using
pseudolikelihood [12]:

ν̂ = arg max
ν

K∏
k=1

m∏
i=1

p(yk
i |yk

Ni
,xk, ν) (10)

We ensure that the log-likelihood is convex by assuming a Gaussian prior
over ν: that is, p(ν|τ) is a Gaussain distribution with 0 means and τ2I variance
(see [9]). Thus, the local-consistency parameters are estimated using its log
likelihood:

ν̂ = arg max
ν

K∑
k=1

m∑
i=1

On
i +

∑
j∈Ni

V (yk
i , yk

j ,xk) − log(zk
i )

 − 1
2τ

νT ν (11)

where zk
i is a partition function for each site i in image k, and τ is a regularizing

constant that ensures the Hessian is not singular. Keeping the Observation-
Matching (Ok

i = O(yi, Υi(x))) constant, the optimal Local-Consistency parame-
ters can be found by gradient descent.

We close by noting that the M3N [10] framework resembles SVRFs, as it
also incorporates label dependencies and uses a max-margin approach. However,
the M3N approach uses a margin that magnifies the difference between the
target labels and the best runner-up, while we use the ‘traditional’ 2-class SVM
approach of maximizing the distance from the classes to a separating hyperplane.
An efficient approach for training and inference in a special case of M3Ns was
presented in [16]. However, the simultaneous learning and the inference strategy
used still make computations with this model expensive compared to SVRFs.

3 Brain Tumor Segmentation

Segmenting brain tumors is an important medical imaging problem, currently
done manually by expert radiation oncologists for radiation therapy target plan-
ning. Markov Random Fields [5–7] and SVMs [1–3, 17] have been used in systems
to perform this task. We have recently evaluated DRFs and SVRFs for the rela-
tively easy case of segmenting “enhancing tumor areas” [11]. We extend this by
providing improved results for this easy case (due to using better preprocessing
and features), and results for two much harder segmentation cases. This section
will present (i) our experimental data and design, (ii) a summary of the MR
preprocessing pipeline and the multi-scale image-based and ‘alignment-based’



Fig. 1. Left to right: T1 image, T1 image with contrast agent, T2 image, enhancing
area label, edema label, gross tumor label, full brain segmentation.

features that afford a significant improvement over those previous results and
allow us to address more challenging tasks, and (iii) experimental results com-
paring SVMs, MRFs, DRFs, and SVRFs within this context for three different
segmentation tasks.

Our experimental data set consisted of T1, T1c (T1 after injecting contrast
agent), and T2 images (each 258 by 258 pixels) from 7 patients (Fig. 3), each
having either a grade 2 astrocytoma, an anaplastic astrocytoma, or a glioblas-
toma multiforme. The data was preprocessed with an extensive MR preprocess-
ing pipeline (described in [3], and making use of [18, 19]) to reduce the effects
of noise, inter-slice intensity variations, and intensity inhomogeneity. In addi-
tion, this pipeline robustly aligns the different modalities with each other, and
with a template image in a standard coordinate system (allowing the use of
alignment-based features, mentioned below).

We used the most effective feature set from the comparative study in [17].
This multi-scale feature set contains traditional image-based features in addition
to three types of ‘alignment-based’ features: spatial probabilities for the 3 normal
tissue types (white matter, gray matter and cerebrospinal fluid), spatial expected
intensity maps, and a characterization of left-to-right symmetry (all measured at
multiple scales). As with many of the related works on brain tumor segmentation
(such as [1, 2, 6, 20]), we employed a patient-specific training scenario, where
training data for the classifier is obtained from the patient to be segmented. In
order to be fair, all classifiers received the same training and testing pixels, and
the testing pixels came from a different area of the volume than the training
pixels — here, distant MR slices (this prevents the Random Field models from
achieving high scores due to over-fitting.)

In our experiment, we applied 6 classifiers — a Maximum Likelihood classifier
(degenerate MRF), a Logistic Regression model (degenerate DRF), an SVM
(degenerate SVRF), an MRF, a DRF, and an SVRF — to 13 different volumes,
based on various time points from 7 patients.

For each of the Random Field methods, we initialized inference with the cor-
responding degenerate classifier (ie. Maximum Likelihood, Logistic Regression,
or SVM), and used the computationally efficient Iterated Conditional Modes
(ICM) algorithm to find a locally optimal label configuration [12].

The 6 classifiers were evaluated over the 13 time points for the following 3
tasks, where the ground truth was defined by an expert radiologist. The first
task was the relatively easy task of segmenting the ‘enhancing’ tumor area —



Table 1. Jaccard Percentage Scores for Enhancing tumor, Edema areas, and Gross
Tumor areas (high scores in bold). ML denotes Maximum likelihood and LR denotes
Logistic regression

Enhancing Tumor Area Edema Area
Study ML MRF LR DRF SVM SVRF ML MRF LR DRF SVM SVRF

1-1 23.1 24.6 44.4 46.1 49.7 52.8 21.9 21.6 35.7 36.7 57.0 58.2
2-1 0 0 61.3 61.5 86.4 87.7 33.3 34.2 59.2 61.4 88.4 89.2
3-1 69.2 69.7 61.8 61.8 82.0 84.8 34.4 34.4 75.5 77.1 80.7 82.2
3-2 40.1 40.3 84.8 84.6 84.7 87.8 47.6 48.1 73.6 74.1 79.3 83.1
4-1 26.9 27.3 49.1 50.4 77.8 81.7 28.3 29.1 38.6 41.2 53.0 55.4
4-2 58.9 59.7 68.3 70.2 75.7 77.9 43.2 46.8 45.3 46.7 53.7 57.7
4-3 49.2 50.7 71.3 71.6 87.2 88.1 35.4 35.4 69.9 70.7 68.2 69.1
4-4 65.6 68.2 87.5 87.1 86.0 89.1 44.1 43.7 78.6 79.0 76.7 79.3
5-1 67.0 67.5 52.2 51.4 81.8 84.3 47.8 48.6 63.6 65.7 73.8 76.9
6-1 37.4 37.6 76.4 76.2 78.2 80.4 40.3 40.1 79.3 79.7 81.2 83.7
7-1 63.2 63.0 75.5 76.7 80.0 81.4 74.9 77.7 91.2 92.4 93.8 94.9
7-2 37.7 39.3 75.9 75.8 85.5 87.3 39.2 40.4 80.9 82.7 82.1 82.8
7-3 45.3 45.6 81.8 81.5 87.7 89.6 54.1 53.9 79.3 80.7 84.6 86.5

Ave: 44.9 45.7 68.6 68.8 80.2 82.5 41.9 42.6 67.0 68.3 74.8 76.9

Gross Tumor Area
ML MRF LR DRF SVM SVRF

19.3 19.5 39.4 40.9 40.7 40.5
35.4 35.7 65.1 66.1 78.2 76.9
44.5 46.1 72.9 73.4 77.9 78.7
51.2 51.3 76.3 76.2 78.1 80.8
37.4 38.7 39.4 40.1 41.4 41.2
38.0 40.2 39.7 39.4 62.1 64.9
66.0 68.5 73.3 73.5 64.4 64.5
46.7 45.8 83.8 83.5 86.0 89.0
50.1 50.9 65.3 68.3 82.8 84.8
46.6 47.6 79.6 79.4 87.6 88.2
66.4 66.3 71.9 73.2 74.6 74.1
49.6 52.4 68.3 67.9 72.7 72.9
43.4 43.7 73.5 72.7 81.6 83.2

5.7 46.7 65.3 65.7 71.4 72.3

ie. the region that appears hyper-intense after injecting the contrast agent (and
including the non-enhancing or necrotic areas contained within the enhancing
contour). The second task was the segmentation of the entire edema area asso-
ciated with the tumor, which is significantly more challenging due to the high
degree of similarity between the intensities of edema areas and normal cere-
brospinal fluid. The final task was segmenting the Gross Tumor area as defined
by the radiologist. This can be a subset of the edema but a superset of the en-
hancing area, and is inherently a very challenging task, even for human experts,
given the modalities examined. We used the Jaccard similarity measure to assess
the classifications in terms of true positives (tp), false positives (fp), and false
negatives (fn): J = tp

tp+fp+fn .
Table 1 presents the classification results for the three tasks (example test

slice results are shown in Fig 2). For each of the three tasks, SVRFs showed
the best performance on average, while SVMs were the second most effective
method. The differences in the average scores between all methods across the
three tasks were significant at the p < 0.05 level based on a paired example t-test.
Note that SVRFs were the best in all 13 enhancing tumor cases, 12 of the 13
edema cases, and in the challenging Gross Tumor cases, SVRFs were best 8 times,
SVMs best 4 times, and DRFs 1 time. The results from the second patient “2-1”,
produced an interesting observation: significant overlap between Gaussians in the
high dimensional feature space leads ML and subsequently MRFs to misclassify
all areas as non-tumors. This example shows that inappropriate modeling of
p(x|y) can generates poor performance (see the first row of Fig 2). Although
the segmentation tasks for edema and gross tumor areas are very hard, the
discriminative approaches, and in particular SVRFs, still produce segmentations
that are highly similar to the manual segmentations on average for all 3 tasks.

4 Conclusion

We are currently focusing on methods to allow inter-patient testing scenarios
with SVRFs. This necessitates intensity standardization methods as in [17, 5],



Fig. 2. Classification results for 4 different test slices, where each row shows a different
test slice. Top to bottom: 2-1 Enhancing tumor, 7-2 Enhancing tumor, 7-1 Edema, and
4-4 Gross Tumor. Left column to right: Expert Segmentation, ML, MRF, LR, DRF,
SVM, SVRF

and developing more computationally efficient parameter estimation models.
Note that the SVRF results could be improved through the use of non-linear
kernels (as in [1, 2]), and through more effective inference methods. We are also
interested in exploring applications of CRFs in other medical imaging tasks.

This work introduces SVRFs, a method that combines the random field re-
laxation properties of DRFs (to associate labels of neighboring voxels) with the
discriminative properties of SVMs. We then presented experimental results on 3
challenging tasks related to brain tumor segmentation, and found that SVRFs
offer a significant performance advantage over 5 other plausible classifiers, in-
cluding both SVMs and other random field models.
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