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Abstract
Many tasks require evaluating a specified Boolean expression ϕ over a set of probabilistic tests whose
costs and success probabilities are each known. A strategy specifies when to perform which test, to-
wards determining the overall outcome of ϕ. We are interested in finding the strategy with the minimum
expected cost.

As this task is typically NP-hard — for example, when tests can occur many times within ϕ, or when
there are probabilistic correlations between the test outcomes — we consider those cases in which the
tests are probabilistically independent and each appears only once in ϕ. In such cases, ϕ can be written
as an and-or tree, where each internal node corresponds to either the “and” or “or” of its children, and
each leaf node is a probabilistic test. In this paper we investigate “probabilistic and-or tree resolution”
(PAOTR), namely the problem of finding optimal strategies for and-or trees.

We first consider a depth-first approach: evaluate each penultimate rooted subtree in isolation, re-
place each such subtree with a single “mega-test”, and recurse on the resulting reduced tree. We show
that the strategies produced by this approach are optimal for and-or trees with depth at most two but can
be arbitrarily sub-optimal for deeper trees.

Each depth-first strategy can be described by giving the linear relative order in which tests are to be
executed, with the understanding that any test whose outcome becomes irrelevant is skipped. The class
of linear strategies is strictly larger than depth-first strategies. We show that even the best linear strategy
can also be arbitrarily sub-optimal.

We next prove that an optimal strategy honours a natural partial order among tests with a common
parent node (“leaf-sibling tests”), and use this to produce a dynamic programming algorithm that finds
the optimal strategy in time O(d2 (r + 1)d), where r is the maximum number of leaf-siblings and d is
the number of leaf-parents; hence, for trees with a bounded number of internal nodes, this run-time is
polynomial in the tree size. We also present another special class of and-or trees for which this task takes
polynomial time.

We close by presenting a number of other plausible approaches to PAOTR, together with counterex-
amples to show their limitations.

Keywords: satisficing search, diagnosis, and-or tree, computational complexity

1 Introduction
A doctor needs to determine whether her current patient has a certain disease. She knows that a positive
liver biopsy would conclusively show this disease, as would finding that the patient is jaundiced and has a

∗This article significantly extends [GHM02].
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Figure 1: An and-or tree, T1. Here and-nodes are indicated with a horizontal bar through the descending
arcs; i#1 is an and-node while DiseaseX and i#2 are or-nodes.

certain compound in his blood or urine – that is,

DiseaseX ⇔ Liver ∨ (Jaundice ∧ (Blood ∨ Urine) )

This situation corresponds to the and-or tree shown in Figure 1. We assume that each of the associated tests
L,J,B,U has a known cost – say unit cost for this example. The outcome of one test may render other tests
unnecessary; for example, if the liver test is positive, it does not matter whether the patient is jaundiced or
not. Thus the cost of diagnosing this patient depends on the order in which tests are performed as well as on
their outcomes.

A strategy1 describes this testing order. For example, the strategy ξ〈LJUB〉 described in Figure 2(a)
first performs the L test, returning true, namely the outcome +DiseaseX, if it succeeds; if it fails,
ξ〈LJUB〉 performs the J test, returning false, namely −DiseaseX, if it fails. If L fails and J succeeds,
ξ〈LJUB〉 performs the U test, returning true if it succeeds; if it fails, ξ〈LJUB〉 performs the B test, returning
true/false if it succeeds/fails. There are other strategies for this situation, including ξ〈LJBU〉, which
differs from ξ〈LJUB〉 only by testing B before U, and ξ〈LBUJ〉, which tests the B-U component before J.
Notice that all these strategies correctly determine the patient’s disease status. Moreover, each of these
strategies typically performs only a subset of the tests before determining this status. Since, for a particular
patient, different strategies might perform different tests, they could have different costs. If we know the
distribution of patients considered and hence the likelihood that the various tests will succeed, we can then
compute the expected cost of a strategy.

In general, there can be an exponential number of strategies, each of which returns the correct answer,
but which vary in terms of their expected costs. This paper discusses the task of finding a best — namely,
minimum expected cost — strategy, for various classes of these trees. We refer to this problem as “Proba-
bilistic And-Or Tree Resolution” (PAOTR).

1.1 Overview
Each of the strategies discussed so far is depth-first in that, for each and-or rooted subtree, the tests on the
leaves of the rooted subtree appear together in the strategy. We will also consider strategies that are not
depth-first. For example, ξ〈ULJB〉 is not depth-first, since it starts with test U and then moves to test L before
completing the evaluation of the i#2-rooted subtree.

Like the depth-first strategies, strategy ξ〈ULJB〉 is linear, as it can be described in a linear fashion:
proceed through the tests in the given order, omitting any test that is logically unnecessary. The class of

1Formal definitions are presented in §2.
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Figure 2: Two strategy trees for and-or tree T1: (a) ξ〈LJUB〉 (b) ξnl.

linear strategies is so natural that it may be difficult to imagine strategies that do not have this property.
Consider, however, the ξnl strategy, shown in Figure 2(b), which first tests U and, if positive, tests J and then
if necessary L. However, if the U test is negative, ξnl then tests L, then if necessary B, and then if necessary
J. No linear sequence can describe this strategy, as it tests J before L in some instances but L before J in
others. As we will show, the best strategies are often non-linear, and in fact, the best linear strategy can in
general be far from optimal.

We describe these and related notions more formally in §2. In §3 we discuss depth-first strategies in
general and DFA [Nat86], an algorithm that produces a depth-first strategy, in particular. We show that DFA
produces a strategy that, among depth-first strategies, has minimum expected cost, that DFA is optimal for
and-or trees with depth at most two, but that DFA can be quite far from optimal in general. In §4 we discuss
the larger class of linear strategies and show that the best linear strategy can be far from optimal.

In §5 we present a dynamic programing algorithm, DYNPROG, for finding an optimal strategy for any
and-or tree. DYNPROG runs in time O(d2 (r+1)d), where r is the maximum number of tests with a common
parent node and d is the number of leaf-parents. For trees with a bounded number of internal nodes, this run-
time is polynomial. DYNPROG exploits the “Sibling Theorem”, which shows that there is an optimal relative
order for querying tests that are leaf-siblings. We also describe local conditions that guarantee that certain
sibling tests can be performed together by an optimal strategy. We apply this result to produce poly-time
solutions to PAOTR for other special and-or trees: trees with depth three whose tests are all identical.

PAOTR is surprisingly subtle. In §6 we present a number of plausible conjectures, followed in each
case by a refuting counterexample. Finally, the appendices present the proofs of our theorems.

1.2 Related Work
We close this introduction by framing PAOTR and providing a brief literature survey. Table 1 summarizes
previous work done on PAOTR. (Below, we extend PAOTR beyond just and-or trees, to apply to arbitrary
Boolean formulae.)

The challenge of finding an optimal strategy for and-or trees is related to a large number of AI tasks.
As our medical example suggests, it obviously connects to diagnosis, which has been a core AI topic since
the first days. Many other application instances have been mentioned in the literature, including screening
employment candidates [Gar73], competing in a quiz show [Gar73], mining for buried treasure [SK75],
inferencing in an expert system [Smi89, GO91], and determining food preferences [GHM02].

Our goal is to compute a static strategy whose expected cost over a distribution of problems is minimum
given the complete graph structure, namely the and-or tree representing the Boolean expression, together
with the cost and probability information. This differs from the more familiar AI-style “heuristic search”
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algorithms such as A∗ [Nil80, Pea84]. Such algorithms use only “local” structural information, namely
nodes that are adjacent to the current node, and seek the heuristic cost function that is uniformly best, namely
that expand the fewest number of nodes in every situation. These heuristic functions resemble strategies by
implicitly specifying when and how to expand each node. Our strategies, however, are more fine-grained, as
they can specify the proper action at each individual node, rather than just providing general “directions”.

We can view our task in the ”decision making under uncertainty” framework, as we are seeking a se-
quence of test-performing actions (aka a ”strategy”) that optimizes our ”expected utility” [RN95], based on
a utility function that includes both the costs for performing the tests and an infinite penalty for making any
mistakes (meaning we will only consider strategies that always return the correct value).

While an influence diagram (aka decision net [Sha86]) can be an effective tool for finding a single
action or small fixed-length sequence of actions, there are challenges to scaling up to sequences that can be
of variable length. This is true in our case, as a single strategy may require us to perform, say, a single test
in one situation, four tests in another, and all of the tests in a third.

Note that our task is Markovian: after executing a subsequence of actions, we can encode the resulting
state as an and-or tree, and know that this is sufficient for determining the optimal next action to take [Dre02].
Dynamic programming was designed to handle such problems; we explicitly use this technology in Sec-
tion 5. Much of the field of Reinforcement Learning [SB98] involves providing clever tricks for obtaining
relatively efficient approximations for complicated problems in this class. These would be overkill for our
finite horizon ”simple evaluation” task.

The specific notion of PAOTR appears in Simon and Kadane [SK75], who use the term satisficing
search in place of strategy. We motivate our particular approach by considering the complexity of PAOTR
for various classes of probabilistic Boolean expressions.

Observation 1 PAOTR is NP-hard, in the case of arbitrary Boolean formulae.

This can be shown by reduction from satisfiability [GJ79]: if there are no satisfying assignments to a for-
mula, then there is no need to perform any tests, and so a 0-cost strategy is optimal. We can avoid this
degeneracy by considering only “positive formulae”, where every variable occurs only in unnegated form.
However, PAOTR remains NP-hard here, as we show in Theorem 25 (Appendix A). A further restriction
is to consider “read-once” formulae, where each variable appears only one time. Observe that each and-or
tree corresponds to a read-once formula, and each read-once formula with costs and success probabilities
assigned for its variables corresponds to an and-or tree.2 The complexity of PAOTR in this general case is
not known.

Special cases of PAOTR have also been considered. Barnett [Bar84] investigated how the choice of
optimal strategy depends on the probability values in the special case when there are two independent tests
and so only two alternative search strategies. Geiger and Barnett [GB91] noted that optimal strategies for
and-or trees cannot always be represented by a linear order of the nodes. Natarajan [Nat86] introduced
the algorithm we call DFA for dealing with and-or trees, but did not investigate the question of when it is
optimal. In this paper we show that DFA solves PAOTR for trees with depth at most two but can do poorly
in general.

In considering PAOTR we assume that the tests are statistically independent of each other. For this
reason, it suffices to consider individual, as opposed to conditional, probabilities when choosing the next
test to perform. If we allow statistical dependencies, then the read-once restriction is not helpful, as we can

2This PAOTR problem also maps immediately to a “probabilistic series/parallel task”, where each arc in a graph corresponds
to a probabilistic test, where success (respectively, failure) means that a flow is possible (not possible) from a specified source node
through a sequence of arcs to a target. The challenge now is to determine the best arcs to test, to determine whether there will be
flow in a given situation [Colbourn, personal conversation, 1998].
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Table 1: Summary of Previous Results

Structure (with n nodes) Test Dependency† Precondition?† Results
or tree

and tree independent yes O(n lnn)
[Smi89]

or dag
and dag independent yes NP-hard

[Gre91]

or tree
and tree dependent yes NP-hard

[Observation 3]

and-or tree
depth 2 (≡ read-once CNF, DNF) independent no O(n lnn)

§3

and-or tree
with bounded d leaf-parents,

each with at most r leaf-children
independent no O(d2 (r + 1)d)

§5

and-or tree
≡ read-once Boolean formula independent no

�
�

�
�?

and-or tree dependent no NP-hard
[Observation 2]

and-or dag
≡ positive Boolean formula independent no NP-hard

[Theorem 25]

Boolean formula independent no NP-hard
[Observation 1]

And-or tree with n nodes, where r is the largest number of tests with the same parent node, and d is the number of
leaf-parents, which is at most the number of internal nodes.
The contributions of this paper are boxed .
† Each NP-hardness result that holds for independent tests also holds for dependent tests, and each NP-hardness result
that holds with no precondition also holds with preconditions.
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convert any non-read-once but independent and-or tree to a read-once but correlated and-or tree by changing
the j-th occurrence of the test “X” to a new test “Xj”, and then insisting that Xj be equal to each other
version of test X — i.e. P (Xj = x|X = x) = 1. This means. . .

Observation 2 It is NP-hard to compute the optimal strategy for an and-or tree whose tests are correlated.

In this paper we further assume that any test can be performed at any time. In a more general version,
tests may have preconditions. For example, a blood test cannot be performed until the blood shipment has
reached a laboratory; this shipment might have a non-zero cost and a non-unit success probability. This
results in a more complicated cost structure on the and-or tree, as costs are now associated with internal
nodes as well as leaves. This also means we should not collapse adjacent or-nodes (resp., and-nodes).
Greiner [Gre91] shows that it is NP-hard to find the optimal strategy for such “preconditioned” or dags
(resp., “preconditioned” and dags). We can use the same “DAG + independent-tests ≡ tree + dependent-
tests” reduction to show. . .

Observation 3 It is NP-hard to compute the optimal strategy for an and-tree (resp., or-tree) with precondi-
tions, when the tests are correlated.

In [Jan03] Jankowska considers this more general “test precondition” version of PAOTR. She also
shows how to reduce an arbitrary and-or tree to one in which all tests have the same cost and then shows that
the expected cost of an optimal strategy for this tree is approximately the same as for the original tree. She
also connects PAOTR to the theory of cographs, and explores ways to efficiently evaluate structures such as
“and-or ladders”, namely and-or trees such that each internal node is a parent of at most one internal node.

1.2.1 Deterministic And-Or Trees

Charikar et al. [CFG+02] proposed an alternative, deterministic way to evaluate the quality of a strategy
for an and-or tree. Given a fixed boolean formula and a truth assignment for tests, a proof of the formula’s
value is a subset of the tests that is sufficient to establish the value of the formula. The cost of such a proof
is the sum of costs of those tests. For a fixed assignment, the performance ratio of a strategy is the ratio of
the cost of the strategy to the minimum cost over all proofs of the formula’s value. The competitive ratio
of a strategy is the maximum of the performance ratio over all assignments of tests. Here, a “cr-optimal”
strategy is one that minimizes the competitive ratio.

Charikar et al. gave an efficient algorithm for finding a cr-optimal strategy for an and-or tree. Their
algorithm relies on computed functions f T

0 (c) and fT
1 (c) that are lower bounds on the cost that any strategy

for the and-or tree T , for any test assignment, has to pay in order to find a proof of cost c of the value true
and false respectively. These functions are used by the algorithm to balance for each internal node the
cost spent while performing the tests from each of the subtrees rooted at this node’s children. The algorithm
runs in time that is polynomial in the number of tree nodes and in the sum of all test costs.

In the randomized model, and-or trees are treated as fixed, non-stochastic structures but randomness
is introduced into strategies. A randomized strategy is a strategy that can use coin flips to decide which
test to perform. Formally, such a strategy is specified by a probabilistic distribution over a specified set of
deterministic strategies. For a given assignment of tests, the cost of a randomized strategy is the expected
cost of using the strategy under this assignment over all deterministic strategies. The worst case cost of
a randomized strategy is the maximum cost of the strategy over all assignments of tests. A randomized
strategy is optimal if it has the lowest worst case cost over all randomized strategies for a given and-or tree.

Saks and Wigderson [SW86] investigated randomized depth-first strategies, which differ from our de-
terministic depth-first strategy (§3) by selecting the next rooted subtree to evaluate at random, rather than in
some fixed order. They prove that the randomized depth-first strategy is optimal for uniform and-or trees,
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namely those for which every test has the same cost and success probability, every root-to-leaf path has
the same length, and all internal nodes have the same out-degree. Thus, while the worst case cost of any
deterministic strategy for an and-or tree with n tests is n, for uniform and-or trees with n tests and with each
internal node having exactly two children, this strategy has worst case cost Θ

(

n0.753...
)

.
It has been conjectured that this is the largest gap between the worst case cost of a deterministic and a

randomized strategy for a unit-cost and-or tree. Heiman and Wigderson [HW91] proved that the worst case
cost of any randomized strategy for any unit-cost and-or tree with n tests is at least n0.51.

The randomized strategies mentioned above are Las Vegas algorithms in that they are always correct. We
can also consider Monte Carlo strategies, namely randomized strategies that may err with some probability,
either on any input (two-sided error) or only on trees that evaluate to true (one-sided error). Using the best
Monte Carlo strategy instead of a Las Vegas strategy does not increase the worst case cost. Santha [San95]
proved that for any unit-cost Boolean expression a Las Vegas strategy can be transformed into a Monte Carlo
strategy whose worst case cost is lower by a factor linear in the error probability, but that for unit-cost and-or
trees Monte Carlo strategies cannot achieve any better improvement than this linear one.

2 Definitions
This paper focuses on read-once formulae. Each such formula corresponds to an and-or tree – namely, a
rooted tree whose leaf nodes are each labeled with a probabilistic test (with a known positive cost3 and
success probability less than 1 and greater than 0; all tests of a tree are independent) and whose each internal
node (namely non-leaf node) is labeled as either an or-node or an and-node.

A test assignment for an and-or tree with tests {X1, X2, . . . , Xn} is a vector (V1, V2, . . . , Vn), where
for each i, Vi is the value — either true or false — of the test Xi. For a given test assignment, the
value of a leaf node is the value of the associated test, while the value of an or-node (value of an and-node,
respectively) is the value of the logical OR (AND, respectively) of its child nodes’ values; the value of a tree
is the value of its root node. With respect to a given assignment of tests, a node resolves its parent node if
and only if this node value alone determines the value of the parent node. For example any node that has
value true and is a child of an or-node resolves its parent.

A rooted subtree in an and-or tree is a subtree induced by a node and all its descendants.
For any variable X , “+X” refers to “X = true” and “−X” refers to “X = false” and so Pr(+X )

(Pr(−X ), respectively) refers to the probability that X = true (X = false, respectively). For a test X ,
c (X) denotes the cost of X .

A strategy for an and-or tree T is a decision tree for evaluating T — namely a tree whose internal nodes
are labeled with probabilistic tests, whose arcs are labeled with the values of the parent’s test, namely + or
-, and whose leaf nodes are labeled either true or false, specifying the Boolean value of T , indicated
by + and - respectively. For example, each of the strategies for T1 in Figure 1 returns the Boolean value
L∨ (J∧ (B∨ U)) for any assignment to the variables. By convention, we will draw strategy trees sideways,
from left-to-right, to avoid confusing them with top-to-bottom and-or trees. Figure 2 shows two such strategy
trees for the T1 and-or tree. Recall from our earlier discussion of ξnl that a strategy need not correspond to
a linear sequence of tests.

With respect to a given and-or tree, for a test assignment γ we let k(ξ, γ) be the cost of using strategy
ξ to determine the value of the tree given this assignment. For example, for the preceding tree T1 and for
γ = {−L, +J, −B, +U}, k(ξ〈LJUB〉, γ) = c(L) + c(J) + c(U) (as we follow the path L− J+ U+ + of
the strategy ξ〈LJUB〉) while k(ξnl, γ) = c(U) + c(J) (as we follow the path U+ J+ + of the strategy ξnl).

3We can also allow 0-cost tests, in which case we simply assume that a strategy will perform all such tests first, leaving us with
the challenge of evaluating the reduced PAOTR whose tests all have strictly-positive costs.
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Figure 3: (a) Collapsing adjacent or-nodes into a single node. (b) A one-path strategy tree.

The expected cost of a strategy ξ is the average cost of evaluating an assignment, over all assignments:

C[ξ] =
∑

γ

Pr( γ ) × k(ξ, γ) . (1)

We call a strategy nonredundant if for every root-to-leaf path no test is performed more than once.
Given the independence of the tests, there is a more efficient way to evaluate a nonredundant strategy than
the algorithm implied by Equation 1. Extending the notation C[·] to apply to any strategy subtree, the
expected cost of a leaf node is C[ + ] = C[ − ] = 0, and of a (sub)tree ϕχ rooted at a node χ labeled with
a test x is

C[ϕχ] = c(x) + Pr(+x ) × C[ϕ+χ]
+ Pr(−x ) × C[ϕ−χ]

(2)

where ϕ+χ (ϕ−χ) is the subtree rooted at χ’s + branch (− branch).

Definition 4 A strategy ξT for an and-or tree T is optimal if and only if its expected cost is minimal, namely
for any strategy ξ for T

C[ξT ] ≤ C[ξ] . 2

Notice that for any and-or tree any optimal strategy is nonredundant because by removing a part of a
redundant strategy we obtain a strategy with lower expected cost (assume that there is a root-to-leaf path
of some strategy that contains two nodes v1 and v2 labeled by the same test; let v1 be closer to the root of
the strategy than v2 and let A be the label (true or false) of the arc leaving v1 on this path; then by
removing the node v2 together with the substrategy entered by the arc that leaves v2 and is not labeled A
we obtain a strategy that has lower expected cost). For this reason, in the rest of the paper we consider only
nonredundant strategies.

The depth of a tree is the maximum number of internal nodes in any leaf-to-root path. Thus depth one
and-or trees correspond to conjunctions or disjunctions while depth two and-or trees correspond to Boolean
expressions in conjunctive normal form or disjunctive normal form.

We assume that an and-or tree is strictly alternating, namely that the parent of each internal and-node
is an or-node, and vice versa, since any and-or tree can be converted into an equivalent tree of this form by
collapsing any or-node (and-node) child of an or-node (and-node) as shown in Figure 3(a). Similarly we
obtain an equivalent tree by collapsing an internal node with only one child. For this reason we will assume
that any internal node of and-or tree has out-degree at least two. Any strategy of the original tree is a strategy
of the collapsed one, with identical expected cost.

2.1 Other Notation
In a rooted tree, a node with no child is a leaf, while a node with at least one child is internal. We also use
the following less standard terms, each of which is defined with respect to a given rooted tree T :

8



Definition 5
• leaf-parent: an internal node whose children include at least one leaf,
• leaf-siblings (aka siblings): leaves with the same parent,
• sibling class: the set of all children of a leaf-parent that are leaves. 2

For the and-or tree T1 in Figure 1, the leaves are L, J, B and U; the leaf-parents are i#1, i#2 and
DiseaseX; and the sibling classes are {L}, {J}, and {B, U }.

For any tree T , we let n refer to the number of nodes and g(T ) to the largest out-degree of any internal
node. Notice that g(T ) bounds the number of siblings in any sibling class.

We will later define important notions like “R-ratio” (Definition 8), “contiguous” and “depth-first”
(Definition 9), “linear strategies” (Definition 16), as well as some special types of and-or trees, such as
“parameter-uniform” and “balanced” (Definition 14). The appendices also provide some additional nota-
tion, including the use of /.

3 The depth-first algorithm DFA

To help define the depth-first algorithm DFA, we first consider depth one and-or trees. A rooted tree is one-
path if every internal node has at most one internal child; a strategy is one-path if the associated strategy
tree is one-path.

Observation 6 [SK75] Let TO be a depth one tree whose root is an or-node and whose children correspond
to tests A1, . . . , Ar with success probabilities Pr( +Ai ) and costs c(Ai). Then the optimal strategy for TO is
the one-path strategy Aπ1 , . . . , Aπr , shown in Figure 3(b) where π is defined so that Pr

(

+Aπj

)

/c(Aπj
) ≥

Pr
(

+Aπj+1

)

/c(Aπj+1) for 1 ≤ j < r.

Proof: For a depth 1 or-rooted and-or tree, a successful test terminates a (nonredundant) strategy. Thus we
may assume that every strategy has the form Aρ(1), Aρ(2), . . . , Aρ(r), where Aρ(j+1) is the test performed if
Aρ(j) fails.

Let ξTO
be an optimal strategy for TO with tests relabeled so that ξTO

= A1, A2, . . . , Ar . For each j,
let pj = Pr(+Aj) and cj = c(Aj). Towards a contradiction, suppose that there exists x < r such that
px/cx < px+1/cx+1. Let ξ′ be the strategy A′

1, . . . , A
′
r obtained from ξTO

by interchanging the order of
tests Ax and Ax+1, namely A′

x = Ax+1, A′
x+1 = Ax, and A′

j = Aj for j /∈ {x, x + 1}.
Let Pj be the probability that Aj is performed by ξTO

. Thus P1 = 1, Pt =
∏t−1

j=1(1 − pj), and the
expected cost of ξTO

is C[ξTO
] =

∑r
j=1 Pjcj . A straightforward computation shows that

C[ξ′] − C[ξTO
] = Px (pxcx+1 − px+1cx) < 0 ,

so ξ′ has a lower expected cost than an optimal strategy, contradiction. 2

An analogous proof shows . . .

Observation 7 Let TA be a depth 1 tree whose root is an and-node, defined analogously to TO in Observa-
tion 6. Then the optimal strategy for TA is the one-path strategy Aφ1 , . . . , Aφr

, where φ is defined so that
Pr
(

−Aφj

)

/c(Aφj
) ≥ Pr

(

−Aφj+1

)

/c(Aφj+1
) for 1 ≤ j < r. 2

9
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Figure 4: Intermediate results of DFA on T1 (a) after 1 iteration (b) after 2 iterations.

As this relation holds in general, we will simplify our notation by defining . . .

Definition 8 For any test X of an and-or tree, define the R-ratio as:

R (X) =
pr (X)

c (X)
, (3)

where c (X) is the cost of X and pr (X) is the probability that X alone resolves its parent node, namely

pr (X) =

{

Pr(+X ) if the parent node of X is or,
Pr(−X ) if the parent node of X is and.

2

Then for any depth-1 tree (either “and” or “or”), there is an optimal one-path strategy whose variables are
in non-increasing R-ratio.

Now consider a depth-s alternating tree. The DFA algorithm will first deal with the bottom tree layer,
and order the children of each final internal node according to their R-ratios. Consider an or-node (the
and-node case is analogous). For example, if dealing with Figure 1’s T1, DFA would compare R(B) =
Pr(+B ) /c(B) = 0.2/1 with R(U) = Pr(+U ) /c(U) = 0.7/1, and order U first, as 0.7 > 0.2.

DFA then replaces this penultimate node and its children with a single mega-node; call it A, whose
success probability is

Pr( +A ) = 1 −
∏

i

Pr(−Ai )

and whose cost is the expected cost of dealing with this rooted subtree:

c(A) = c(Aπ1) + Pr(−Aπ1 ) × [c(Aπ2) + Pr(−Aπ2 ) × (. . . c(Aπr−1) + Pr
(

−Aπr−1

)

× c(Aπr) ) ]

Returning to T1, DFA would replace the i#2-rooted subtree with the single AUB-labeled node, with
success probability Pr( +AUB ) = 1 − (Pr(−B ) × Pr(−U )) = 1 − 0.8 × 0.3 = 0.76, and cost c(AUB) =
c(U) + Pr(−U ) × c(B) = 1 + 0.3 × 1 = 1.3; see Figure 4(a).

Now recurse: consider the and-node that is the parent to this mega-node A and its siblings. DFA inserts
this A test among these siblings based on its R(A) = Pr(−A ) /c(A) value, and so forth.

On T1, DFA would then compare R(J) = Pr(−J ) /c(J) = 0.2/1 with R(AUB) = Pr(−AUB ) /c(AUB) =
0.24/1.3 and so select the J-labeled node to go first. Hence, the substrategy associated with the i#1 rooted
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subtree will first perform J, and return − if unsuccessful. Otherwise, it will then perform the AUB mega-
test: Here, it first performs U, and returns + if U succeeds. Otherwise this substrategy will perform B, and
return + if it succeeds or − otherwise.

DFA then creates a bigger mega-node, AJUB , with success probability Pr(+AJUB ) = Pr(+J ) ×
Pr(+AUB ) = 0.8×0.76 = 0.608, and cost c(AJUB) = c(J)+Pr( +J )×c(AUB) = 1+0.8×1.3 = 2.04;
see Figure 4(b).

Finally, DFA compares L with AJUB, and selects L to go first as R(L) = Pr(+L ) /c(L) = 0.3/1 >
0.608/2.04 = Pr( +AJUB ) /c(AJUB) = R (AJUB). This produces the ξ〈LJUB〉 strategy, shown in Fig-
ure 2. Figure 5 shows the DFA algorithm, in general.

DFA( and-or tree T ): returns 〈cT , pT , LT 〉
% cT = C[ξT ] is expected cost of executing the DFA-strategy for T, ξT

% pT = Pr( T ) is probability that T evaluates to true
% LT is sequence of tests from T

% encoding the linear order of performing tests by ξT

if T is single test x
return 〈c(x ), Pr(+x ) , x〉

% Else
For each immediate rooted subtree Ui of T, i ≤ k

〈 ci, pi, Li 〉 := DFA( Ui )

pr
i :=

{

pi if root of T is “or”
1 − pi if root of T is “and”

Set order π s.t.
pr

π(i)

cπ(i)
≥

pr
π(i+1)

cπ(i+1)
for 1 ≤ i < k

cT :=
k
∑

i=1

cπ(i)

i−1
∏

j=1

(1 − pr
π(j))

pT :=

{

∏k
i=1 pi if root of T is “and”

1 −
∏k

i=1(1 − pi) if root of T is “or”
LT := Lπ(1)Lπ(2) . . . Lπ(k)

return 〈cT , pT , LT 〉
end DFA

Figure 5: DFA (Depth First Algorithm)

Observe first that DFA is very efficient: indeed, as it examines each node only in the context of comput-
ing its position under its immediate parent, which requires sorting that node and its siblings, DFA requires
only O(

∑

v d+(v) ln d+(v)) = O(n ln g(T )) time, where n is the total number of nodes in the and-or tree,
and d+(v) is the out-degree of the node v, which is bounded above by g(T ) < n, the largest out-degree of
any internal node.

Notice also that DFA keeps together all of the tests under each internal node, which means it is producing
a depth-first strategy. To state this more precisely,

Definition 9
• A strategy ξT is contiguous with respect to a set A of tests (of T ) if and only if on any root-to-leaf

path of ξT , whenever a test from A is performed, no test not in A will be performed until either the

11



value of the least common predecessor of all tests in A has been determined or all tests in A have
been performed.

• A strategy ξT is depth-first if and only if, for every rooted subtree f of T , ξT is contiguous with
respect to the set of all tests from f . 2

The strategy ξ〈LJUB〉, shown in Figure 2(a), is depth-first as every time U appears it is next to its sibling
B (so all of the children of i#2 appear in a contiguous region); similarly, there is a contiguous region that
contains all and only the tests under i#1 — J, B and U. By contrast, the strategy ξ〈LUJB〉 is not depth-first,
as there is a path where U is not next to its sibling B; similarly ξnl (Figure 2(b)) is not depth-first.

3.1 DFA Results
First observe that DFA is optimal over a particular subclass of strategies:

Observation 10 DFA produces a strategy that has the lowest cost among all depth-first strategies.

Proof: By induction on the depth of the tree. Observations 6 and 7 establish the base case, for depth-1
trees. Given the depth-first constraint, the only decision to make when considering depth-s + 1 trees is how
to order the strategy rooted subtree blocks associated with the depth-s and-or rooted subtrees; here we just
re-use Observations 6 and 7 on the mega-blocks. 2

Observations 6 and 7 show that DFA produces the best possible strategy, for the class of depth-1 trees.
Moreover . . .

Theorem 11 DFA produces the optimal strategies for depth-2 and-or trees. 2

Recall that depth-2 and-or trees are also known as read-once DNF or CNF formulae.
The proof (in Appendix B) shows that Theorem 11 holds for arbitrary costs; i.e., the proof does not

require unit costs for the tests.
It is tempting to believe that DFA works in all situations. However . . .

Observation 12 DFA does not always produce the optimal strategy for depth 3 and-or trees, even in the
unit cost case.

We prove this by just considering T1 from Figure 1. As noted above, DFA will produce the ξ〈LJUB〉

strategy, whose expected cost (using Equation 2 with earlier results) is C[ξ〈LJUB〉] = c(L) + Pr(−L ) ×
c(AJUB) = 1 + 0.7× 2.04 = 2.428. However, the ξnl strategy, which is not depth-first, has lower expected
cost C[ξnl] = 1 + 0.7[1 + 0.2× 1] + 0.3[1 + 0.7× (1 + 0.2× 1)] = 2.392. In fact, the reader can verify
that ξnl is the unique optimal strategy. 2

Still, as this difference in cost is relatively small, and as ξnl is not linear, one might suspect that DFA
returns a reasonably good strategy, or at least the best linear strategy. However, we show below that this
claim is far from being true.

In the unit-cost situation, the minimum cost for any non-trivial n-node tree is essentially 1, and the
maximum possible is n; hence a ratio of n/1 = n over the optimal score is the worst possible, in that no
algorithm can be off by a factor of more than n over the optimum.

Theorem 13 There are unit-cost and-or trees with n nodes for which the best depth-first strategy costs
Θ(n1−o(1)) times as much as the best strategy. 2

12



Figure 6: Balanced and-or tree, assuming each test has unit cost and success probability p.

There is one other interesting special case, dealing with arbitrary depth balanced trees. Here we need to
define:

Definition 14 A tree T is
• parameter-uniform: if and only if every test has unit cost and same success probability
• balanced: if and only if it is parameter-uniform and all nodes at each depth have same out-degree. 2

Figure 6 presents a balanced and-or tree.

Theorem 15 [Tar83] For any balanced and-or tree, any depth-first strategy is optimal. 2

4 Linear Strategies
As noted above (Definition 9), we can write down each of these DFA-produced strategies in a linear fashion;
for example, ξ〈LJUB〉 can be viewed as test L, then if necessary test J, then if necessary test U and if
necessary test B. This motivates a large natural class of strategies: those that can be compactly written as a
linear sequence of tests. Stated more precisely:

Definition 16 A strategy is linear if it performs the tests in fixed linear order, with the understanding that
the strategy will skip any test that will not help resolve the tree, given what is already known. 2

Hence, ξ〈LJUB〉 will skip all of J, U, B if the L test succeeds; and it will skip the U and B tests if J fails, etc.
While it is not clear that an optimal strategy can always be expressed in poly(n) space (let alone de-

termined in poly(n) time), these linear strategies can always be expressed very efficiently. Moreover, the
obvious algorithm can evaluate any such strategy on an instance in time linear in the number of tests. This
section therefore considers this subclass of strategies.

As any permutation of the tests corresponds to a linear strategy, there are of course n! such strategies.
One natural question is whether there are simple ways to produce strategies from this class. The answer

here is “yes”:

Observation 17 The DFA algorithm produces a linear strategy.

Proof: Argue by induction on the depth k. For k = 1, the result holds by Observations 6 and 7. For k ≥ 2,
use the inductive hypothesis to see that DFA will produce a linear ordering for each rooted subtree (as each
rooted subtree is of depth ≤ k − 1). DFA will then form a linear strategy by simply sequencing the linear
strategies of the rooted subtrees. 2

Using Theorem 11, this means the optimal strategy for depth 2 and-or trees is linear. Moreover, we can
use Observation 10 to note there is always a linear strategy (perhaps that one produced by DFA) that is
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Figure 7: (a) A simple 3-level and-or tree, Tv . The 〈p, c〉 notation means the test’s probability is p and cost
c. We will later encode this tree as (2, 5, 2). (b) Part of a strategy contiguous on {b1, b2, b3}.

at least as good as any depth-first strategy. Unfortunately the converse is not true — the class of strategies
considered in the proof of Theorem 13, showing the sub-optimality of depth-first strategies, are in fact linear.
This shows that the best depth-first strategy can cost O(n1−o(1)) times as much as the best linear strategy.

The next natural question is whether this class of linear strategies is effective in general. Is there always
a linear strategy whose expected cost is near-optimal? Unfortunately . . .

Theorem 18 There are unit-cost and-or trees with n nodes for which the best linear strategy costs Θ(n1/3−o(1))
times as much as an optimal strategy. 2

5 The Dynamic Programming Algorithm DYNPROG

The most natural strategies to consider are depth-first strategies, but as shown above, they can be arbitrary
bad for some and-or trees. This section presents an algorithm, DYNPROG, that is guaranteed to produce an
optimal strategy for any and-or tree. DYNPROG resembles DFA in that it too builds strategies that respect
an ordering on the leaf-sibling nodes — in fact, the same one, based on Observations 6 and 7. However,
while DFA insisted that these siblings appear contiguously in the strategy (i.e., the strategy always per-
forms enough of these tests to resolve their common parent), DYNPROG allows these tests to be separated;
moreover, DYNPROG only imposes this ordering of the leaf nodes, not on rooted subtrees higher in the tree.

Our DYNPROG computes an optimal strategy in time O
(

d2 (r + 1)d
)

where r is the largest number of
leaf-siblings (i.e., tests under a common parent) and d is the number of leaf-parents. For trees with bounded
number of internal nodes (which means d is bounded by a constant), it runs in time polynomial in r. It
follows that, for example, if we are given a fixed structure of internal nodes (and- or or-nodes) than we can
resolve quickly any and-or tree obtained by adding an arbitrary number of tests to this structure.

Subsection 5.1 presents the “Siblings and Twins Theorem” (Theorem 20) which leads to our main result:
the DYNPROG algorithm, which appears in Section 5.2. Subsection 5.3 concludes this section by presenting
other ramifications of the of the ”Twins” part of Theorem 20, namely a way to simplify and-or trees in
general and an algorithm for resolving parameter-uniform depth-3 and-or trees.

5.1 Siblings and Twins Theorems
Given any and-or tree, the DFA algorithm would begin by ordering the leaf-siblings under a common leaf-
parent (Definition 5) — e.g., given Tv (Figure 7(a)), it would order a1 before a2 and c1 before c2 (and not
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care about b1 versus b2). We know this ordering is optimal in isolation — i.e., if the entire tree was just the
leaf nodes under α (resp., δ). The fact that DFA is, in general, not optimal, may make us doubt whether these
partial orderings are appropriate. The following theorem, however, partially refutes this concern, proving
that there is an optimal strategy for Tv that respects this ordering, by always performing a1 before a2 and c1

before c2. We are not guaranteeing that they will appear contiguously; just that no part in this strategy will
perform a2 before a1. Moreover, we see that identical tests — such as b1 and b2 — will always be performed
together by an optimal strategy.

We now formalize these findings, using the notion of R-ratio defined in Definition 8.

Definition 19 Tests x1 and x2 are R-equivalent if they are leaf-siblings and R(x1 ) = R(x2 ).
An R-class is an equivalence class with respect to the relation of being R-equivalent. 2

In Tv (Figure 7(a)), the set {b1, b2, b3} forms an R-class. Figure 7(b) shows a portion of a possible
strategy, that is contiguous with respect to this R-class (Definition 9).

If an optimal strategy ξ is contiguous with respect to some R-class W then the order of performing tests
from W is arbitrary, in the sense that any strategy obtained from ξ by changing the order of performing the
tests from W has the same expected cost (see Observation 26(ii) stated and proven in the Appendix B).

The following theorem specifies two conditions satisfied by an optimal strategy. The first one (1) deals
with the best order of performing sibling tests; we will refer to it as to the Siblings Theorem. The sec-
ond one (2), called the Twins Theorem, specifies the optimal way of performing sibling tests that are R-
equivalent. The proof of the theorem, given in Appendix B, extends the approach taken in [Tar83].

Theorem 20 (The Siblings and Twins Theorem) For any and-or tree T , there is an optimal strategy ξT

that satisfies both of the following conditions:
1. for any sibling tests x and y such that R( y ) > R(x ), x is not performed before y on any root-to-leaf

path of ξT

2. for any R-class W , ξT is contiguous with respect to W . 2

5.2 Dynamic Programming Algorithm for PAOTR

The ordering of sibling-tests described by the Siblings Theorem (Theorem 20(1)) allows us to construct a
dynamic programing algorithm for PAOTR that runs in time O(d2(r + 1)d), where r is the largest number
of leaf-siblings and d is the number of leaf-parents in the input and-or tree; see Definition 5.

For an and-or tree T , let d be the number of leaf-parents in T and {L1, L2, . . . , Ld} be the sibling-
classes of T . Assume that ξT is an optimal strategy for T that fulfills the conditions of Theorem 20. While
evaluating T using ξT , we gradually reduce the tree (viz., after performing any test, we obtain a new reduced
and-or tree to evaluate) until we obtain the empty tree, at which point the evaluation of T is completed.
Consider any reduced and-or tree I that we encounter while using ξT . Assume that I still contains mi tests
from the sibling-class Li. If mi < |Li|, then we know the other |Li| − mi tests from Li have been already
performed. Since we always query tests with higher R-ratio before sibling tests with lower R-ratio (and it
does not matter in which order we query tests with the same R-ratios), the mi tests still present in I must
have the lowest R-ratios among all tests from Li.

This means that, for any d-tuple (m1,m2, . . . ,md), 0 ≤ mi ≤ |Li|, there is only one (up to permutation
of tests within one R-class; recall that the order of performing tests from one R-class is arbitrary) reduced
tree that we may encounter that has exactly mi tests from the set Li, for any i: this tree contains the mi tests
with the lowest R-ratios among all tests from Li. In this way we may identify a reduced and-or tree with
such a d-tuple.
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Figure 8: The reduced tree I = (0, 2, 1) obtained from Tv , and the reduced trees obtained from I when b4

succeeds and when b4 fails.

For example, recall the Tv tree shown in Figure 7(a). We can represent this initial tree by the 3-tuple
(2, 5, 2), as there are 2 children of the leaf-parent α, 5 of leaf-parent β, and 2 of δ. (Note we are only
considering the leaf-children of δ, and not its other branch, to γ.) Figure 8 shows the (0, 2, 1) tree; here
we know that the α tree has resolved successfully (e.g., perhaps a1 succeeded), and all three of b1, b2 and
b3 have been processed (and all failed), and that c1 has been attempted and failed. (We know the α-rooted
subtree was successful, as otherwise there is no reason to continue with its β sibling; moreover, all 3 of b1,
b2 and b3 must have failed for us to be considering b4 and b5.)

In general, there are (|L1| + 1) × (|L2| + 1) × . . . × (|Ld| + 1) different reduced trees to consider,
including the original tree. This number is at most (r + 1)d where r = maxd

i=1 |Li|. Below we will identify
each such tuple with the corresponding and-or tree.

Notice also that for any tree we need consider only d tests in order to find the first test to perform, namely
a test with maximum R-ratio from each of the d sibling-classes.

We assume that the input tree T for the algorithm is strictly alternating, and that each internal node has
out-degree at least two. Our algorithm needs a data structure that stores all internal nodes of the tree T ,
such that each internal node points to its parent and to all its internal node children. Additionally, for each
sibling class (a set of test siblings) we need an array of the tests and their parameters; each sibling class has
an associated index in d-tuples, and there is a link between a sibling class and its leaf parent.

Now assume that we are given a reduced tree I (obtained from T ) encoded by a d-tuple. We now discuss
how, for each sibling class L, we can calculate the d-tuples I+

L (resp., I−L ) corresponding to the reduced trees
obtained from I when the test with maximum R-ratio from L in I succeeds (resp., fails).

For each sibling class L, let xL be the test with maximum R-ratio from L in I .
If the sum of the numbers of tests in all sibling-classes of the d-tuple I is one, then xL is the only test in

the tree and both I+
L and I−L will be the empty tree. So in this case we need time linear in d to find I+

L or
I−L .

Otherwise, we need to find the parent node of xL in the collapsed I , using the structure of internal nodes
of the original tree T . To do this, we first need to find the last internal node v on the path from the root of T
to the parent of xL, such that the sum of the number of tests in the sibling-classes inside the subtree rooted
at v is greater than one.

The parent node of xL is the last internal node yL on the path from the root of T to v such that yL has
the same label (“or”, “and”) as v and yL is the root of T , or yL is a child node of the root of T , or the subtree
rooted at the parent node of yL contains at least one sibling-class with non-zero number of tests outside the
subtree rooted at yL.

Given the parent node yL of xL in I , we can easily modify the d-tuple I in order to obtain I+
L or I−L . If xL

resolves its parent yL, the required modification is setting to zero the number of tests for each sibling-class
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inside the subtree rooted at yL. Otherwise, the modification is to decrement the number of tests associated
with the sibling-class L by one.

Notice that the operation of finding the parent yL as well as setting the tests’ numbers of the correspond-
ing sibling-classes to zero deal only with internal nodes and sibling-classes (not with particular tests) and
can be performed in time linear in the number of internal nodes, and so also linear in d, since the number of
all internal nodes is not greater than 2d.

Thus the time required to find I+
L or I−L is in O(d).

To illustrate this, consider again the I = (0, 2, 1) reduced tree (Figure 8) obtained from the tree Tv from
Figure 7(a). In I the test xLβ

(associated with the 2nd index, which are leaf children of β) with maximum
R-ratio in Lβ is b4. We want to find I+

Lβ
and I−Lβ

. Using the algorithm described above, we first find the
node v, which is β. Then we find the parent node yL, which is δ, an or-node. If xLβ

succeeds, it resolves its
parent node, thus we need to set to 0 the number of tests in all sibling-classes inside the subtree rooted at δ;
this means we set I+

Lβ
= (0, 0, 0). If xLβ

fails, we just need to decrement the number of tests in Lβ by one:
I−Lβ

= (0, 1, 1). See Figure 8(b).
We now describe Dynamic Programing Algorithm (DYNPROG) for PAOTR. This algorithm enumerates

all possible (|L1| + 1) × (|L2| + 1) × . . . × (|Ld| + 1) reduced trees, identifying each with an associated
d-tuple. That is, we identify each reduced tree with one entry in a d-dimensional matrix of size (|L1| + 1)×
(|L2| + 1) × . . . × (|Ld| + 1). The tree (|L1| , |L2| , . . . , |Ld|) is the input tree, containing all the tests, the
tree (0, 0, . . . , 0) is the empty tree indicating that nothing remains to evaluate.

For each reduced tree I , we compute and store the following attributes:
Cost[I]: the expected cost of the optimal strategy for I ,
FirstTest[I]: a first test performed by the optimal strategy for I ,
TrueArc [I]: the pointer to the reduced tree obtained if the first test succeeds,
FalseArc[I]: the pointer to the reduced tree obtained if the first test fails.
These attributes, over the set of all reduced trees, encode an optimal strategy for the input tree T . The

strategy starts with performing the test FirstTest[T ] and then depending on the value of this test, follows
either TrueArc [T ] or FalseArc [T ]; each points to a reduced tree, which is then evaluated. We follow
the procedure until reaching the empty tree: if it is reached by a TrueArc, the value of the tree is true,
otherwise its value is false.

Figure 9 presents the Dynamic Programing Algorithm for PAOTR. As shown, it incrementally deals
with the set of reduced trees, in the order of the number of tests, starting with the empty tree.

Theorem 21 DYNPROG produces an optimal strategy for and-or trees. The time complexity of the algo-
rithm is in O

(

d2(r + 1)d
)

and the space complexity is in O
(

(r + 1)d
)

, where r is the largest number of
leaf-siblings of a tree and d is the number of leaf-parents in a tree.

For the special case when d is fixed, the time complexity is in O(r ln r) if d = 1 and in O
(

rd
)

for any
fixed d ≥ 2, while the space complexity is in O

(

rd
)

for any fixed d ≥ 1. 2

The corollary below follows immediately from the previous theorem.

Corollary 22 Probabilistic and-or tree resolution for and-or trees with a bounded number of internal nodes
is in P . 2
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DYNPROG( and-or tree T ): returns optimal strategy for T
% optimal strategy for T is encoded by the parameters
% 〈FirstTest, TrueArc, FalseArc〉 for all reduced trees
% parameter Cost for all reduced trees gives expected costs
% of optimal strategies for all reduced trees, including T

(1) For each sibling-class L of T
(2) order tests of L by R ratio
(3) For each reduced tree d-tuple I
(4) Cost[I]:=∞
(5) Cost[empty tree]:=0
(6) FirstTest[empty tree]:=NIL
(7) For M = 1 to # of tests in T
(8) For each reduced tree d-tuple I with M tests
(9) For each sibling-class L of T that is not empty in I

(10) xL:=test from L in I with maximum R
(11) I+

L :=d-tuple of tree obtained from I if xL succeeds
(12) I−L :=d-tuple of tree obtained from I if xL fails
(13) C := c (xL) + Pr( +xL )×Cost

[

I+
L

]

+ Pr(−xL )×Cost
[

I−L

]

(14) If C <Cost[I]
(15) Cost[I] := C
(16) FirstTest[I] := xL

(17) TrueArc[I] is pointer to I+
L

(18) FalseArc[I] is pointer to I−
L

(19) return 〈Cost, FirstTest, TrueArc, FalseArc〉 for all reduced trees
end DYNPROG

Figure 9: Dynamic Programming Algorithm (DYNPROG) for PAOTR

5.2.1 Example

As an example consider again the and-or tree Tv shown in Figure 7(a). Assume that we already processed
all reduced trees with less than three tests. The calculated parameters for each of these trees are given in
Table 2.

We now want to calculate the optimal strategy for the reduced tree I = (0, 2, 1) with three tests; see
Figure 8. The sibling-class Lα is empty in I . Now consider the sibling-class Lβ . The test xLβ

with
maximum R ratio from Lβ in I is the test b4 and I+

Lβ
= (0, 0, 0), I−Lβ

= (0, 1, 1). Thus we now have

C = c (b4) + Pr( +b4 ) · Cost
[

I+
Lβ

]

+ Pr(−b4 ) · Cost
[

I−Lβ

]

=

= 2 + 0.8 · 0 + 0.2 · 2.5 = 2.5 .

Thus we set Cost[I] to 2.5 and FirstTest[I] to b4, we point TrueArc [I] to (0, 0, 0) and FalseArc[I]
to (0, 1, 1). Now we proceed to the sibling-class Lγ . We have xLγ = c2 and I+

Lγ
= (0, 0, 0), I−Lγ

= (0, 2, 0).
Thus

C = c (c2) + Pr(+c2 ) · Cost
[

I+
Lγ

]

+ Pr(−c2 ) · Cost
[

I−Lγ

]

=

= 1 + 0.5 · 0 + 0.5 · 2.6 = 2.3 .

Since this cost is lower than current Cost[I], we set Cost[I] to 2.3 and FirstTest[I] to c2, we point
TrueArc [I] to (0, 0, 0) and FalseArc[I] to (0, 2, 0). These parameters, together with the parameters
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reduced tree I Cost[I] FirstTest[I] TrueArc[I] FalseArc[I]
points to points to

(0, 0, 0) 0 NIL NIL NIL
(0, 0, 1) 1 c2 (0, 0, 0) (0, 0, 0)
(0, 1, 0) 3 b5 (0, 0, 0) (0, 0, 0)
(1, 0, 0) 1 a2 (0, 0, 0) (0, 0, 0)
(0, 0, 2) 1.3 c1 (0, 0, 0) (0, 0, 1)
(0, 1, 1) 2.5 c2 (0, 0, 0) (0, 1, 0)
(0, 2, 0) 2.6 b4 (0, 0, 0) (0, 1, 0)
(1, 0, 1) 1.5 c2 (0, 0, 0) (1, 0, 0)
(1, 1, 0) 1.9 a2 (0, 1, 0) (0, 0, 0)
(2, 0, 0) 1.6 a1 (0, 0, 0) (1, 0, 0)

Table 2: Parameters of reduced trees obtained from the and-or tree Tv from Figure 7(a) with less than three
tests — see Figure 8.
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Figure 10: The optimal strategy for the tree I shown in Figure 8.

from Table 2, encode the optimal strategy for the reduced tree I . This strategy is presented as a binary tree
in Figure 10.

5.3 Simplifying And-Or Trees Using the Twins Lemma
The Twins Theorem (Theorem 20(2)) provides a way of simplifying an and-or tree. Since all tests from an
R-class are performed together by an optimal strategy, it only matters whether any of them resolves their
common parent node. Thus we may replace each R-class containing more than one test, by a single meta-test
with the effective cost and probability corresponding to performing all tests from the R-class.

By simple calculations we obtain the parameters of such a meta-test:

Observation 23 Let W be an R-class and let R be the value of the R-ratio of the tests from W . In the search
for an optimal strategy, we can replace W by a single meta-test w with the following parameters:

Pr(+w ) =

{

1 −
∏

x∈W Pr(−x ) if the parent of W is or,
∏

x∈W Pr( +x ) if the parent of W is and, (4)

c (w) =

{ Pr( +w )
R if the parent of W is or,

1−Pr( +w )
R if the parent of W is and.

(5)

2
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Figure 11: (a) A parameter-uniform and-or tree Tu; each test has unit cost and success probability 0.2; W
and V denote entire depth 1 rooted subtrees. (b) The unique optimal strategy ξopt for the and-or tree Tu

(nodes labeled by W and V denote evaluation of the corresponding rooted subtrees).

Observe that the R-ratio of a meta-test is the same as the R-ratio of each test from the class.
The simplification described above allows us to prove that the efficient DFA produces an optimal strat-

egy for depth 3 parameter-uniform and-or trees. (Recall from Definition 14 that an and-or tree is parameter-
uniform if and only if all tests have unit cost and the same success probability.)

Observation 24 DFA produces an optimal strategy for depth three parameter-uniform and-or trees.

Proof: Let T be a depth three parameter-uniform and-or tree. By Observation 10 DFA produces a strategy
with minimum expected cost among all depth-first strategies. Thus it suffices to show that some optimal
strategy for T is depth-first.

Let T ′ be the simplified tree obtained from T by replacing each R-class by a single meta-test. Observe
that in T ′ each internal node at depth two has only one child: a single meta-test. Thus T ′ collapses to depth
two. By Theorem 11 for any depth two and-or tree there is an optimal depth-first strategy. If we evaluate
entire replaced subtrees in place of meta-tests, the strategy is depth-first for T and by the Twins Theorem
(Theorem 20(2)) it is optimal for T . 2

Unfortunately, this property does not hold for deeper parameter-uniform and-or trees; there are depth-4
parameter-uniform and-or trees for which the best depth-first strategy is not optimal: The strategy ξopt in
Figure 11(b) is the unique optimal strategy for the tree Tu shown in Figure 11(a), but ξopt is not depth-first.

6 Examples and Counterexamples
This section illustrates some of the subtleties of this PAOTR task, by presenting a number of seemingly plau-
sible conjectures each followed by a counterexample. ([Jan03] presents several other plausible hypotheses
and counterexamples.)

6.1 Best Test of a Rooted Subtree
The DFA algorithm uses only completely local properties to determine each part of the strategy; in par-
ticular, the substrategy ξf for the rooted subtree f is based only on f . While DFA does not produce the
optimal strategy, one might ask whether this basic idea — that local properties are sufficient — applies. In
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Figure 12: (a) An and-or tree Tc with all costs unit; p denotes success probability of a test. (b) The unique
optimal strategy for Tc if Pr( +c ) = 0.05, encoded by the fixed order of tests, starting with a1. (c) The
unique optimal strategy for Tc if Pr( +c ) = 0.1, starting with b1.

particular, is there a generalization of the Siblings Theorem (Theorem 20(1)) that allows the identification,
for each rooted subtree f , of which of its tests should be performed first, based only on properties of this
subtree?

Unfortunately, this is not possible in general. Consider the and-or tree Tc shown in Figure 12(a). Tests
a1, a2, b1 and b2 are grand-children of the same and-node, but the relative order in which these tests are
queried by an optimal strategy, varies with the success probability of a test outside of that rooted subtree
c: If Pr(+c ) = 0.05, the unique optimal strategy starts by testing a1 and then follows the linear strategy
shown in Figure 12(b). However if Pr(+c ) = 0.1, the unique optimal strategy is the strategy shown in
Figure 12(c), which starts by testing b1; notice that this strategy is not linear.

Hence, given a rooted subtree f of T , the “first” test of the f -tests to perform in ξf depends on informa-
tion that is not in f .

6.2 Resolving Rooted Subtrees
A depth-first strategy, which is optimal for depth-2 and-or trees, does not leave a given rooted subtree until
determining its value. We saw that this approach is not necessary optimal for deeper trees; does some weaker
property hold for optimal strategies?

After a test from an and-or tree is performed, let “the highest resolved node” in the tree be the root of
the maximal rooted subtree whose value has been determined. Consider for example the x1 test in the Tc

tree of Figure 13(a).4 If this test evaluates to true, then we have resolved the subtree rooted in γ; if it is
false, then we have only resolved the singleton rooted subtree x1.

Is it the case that, after performing a test x, an optimal strategy would at least in one case (when x is
true, or if x is false) perform after x a test from the subtree rooted at the parent of the highest resolved
node? If true, this would mean either

• if x1 is true, perform some relevant test under β — viz., x0 — or
• if x1 is false, perform some relevant test under γ — viz., x2,

4We gratefully acknowledge Jon Derryberry for contributing this counterexample.
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Figure 13: (a) and-or tree Tc; here each probability is p = 0.5. (b) Optimal strategy ξTc .
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or perhaps both. (Note that any depth-first-strategy necessarily does both.)
The answer is no. The only optimal strategy ξTc for Tc appears in Figure 13(b); notice that the true-link

does not point to x0, and the false-link does not point to x2.

6.3 Prime Implicants and Implicates
Recall that one can view an and-or tree as a boolean expression. In general, a set W of tests is a prime
implicant of an and-or tree if W is a minimal set of tests with the property, that if all tests from W are
true, the entire tree evaluates to true. (“Minimal” means that no proper subset has this property.) A
prime implicate of an and-or tree is a minimal set of tests, such that if all tests from the set are false, the
entire tree evaluates to false. A tree evaluates to true (resp., false) if and only if there is at least one
prime implicant (resp., prime implicate) whose tests are all true (resp., false). (Proof: Assume that the
value of T is true, but each prime implicant of T contains at least one false test. Note the union of all
true tests in these implicants is sufficient to show the tree is true, which means it must include a prime
implicant for T ; contradiction.) That is, an and-or tree can only evaluate to true (for any strategy) after all
tests of some prime implicant have been performed and succeeded. Moreover, the intersection of any prime
implicant and any prime implicate is non-empty; in fact, by induction on depth of a tree, the intersection
contains exactly one test.

The purely-true path (purely-false path, respectively) of a strategy is the root-to-leaf path of the
strategy that contains only true (only false, respectively) arcs. Obviously the leaf node of the purely-
true path is labeled true, the leaf of the purely-false path if labeled false.

Is it the case that, for any and-or tree, there is an optimal strategy such that either all tests performed
on the purely-true path of the strategy are from exactly one prime implicant, or all tests performed on the
purely-false path of the strategy are from exactly one prime implicate (or both)? If so, than either after the
first test performed by an optimal strategy succeeds, the strategy performs tests from this prime implicant
as long as they are true, or after the first test fails, the strategy performs tests from this prime implicate as
long as they are false.

Again, the same Tc example (Figure 13) used above, also shows that this is not the case. The purely-
true path {x1, x3, x5} is not a prime implicant (as {x3, x5} is), and the purely-false path {x1, x5, x0}
is not a prime implicate (as {x0, x5} is).

7 Conclusions
Future Work: There are a few obvious extensions to our work. One question is whether there is an efficient
algorithm for computing the optimal linear strategy for arbitrary and-or trees. Even though this can be
n1/3−o(1) inferior to the optimal strategy, at least we know this strategy can be expressed succinctly, which
is not true in general.

A second question is whether there is an efficient algorithm for computing the optimal strategy, of any
form, for arbitrary and-or trees. While this optimal strategy may be exponentially large, note that we never
need to write it down; instead it is sufficient to simply determine, for any and-or tree, the first test to perform.
Depending on its outcome, we can quickly transform the given tree to the appropriate reduced tree, then run
this “what to do now” algorithm on the result. If this first-test algorithm is efficient, we have an efficient
algorithm for evaluating arbitrary and-or trees.

If there is such an efficient algorithm for arbitrary and-or trees — that is, for arbitrary read-once for-
mulae — we could also investigate whether there are efficient algorithms for read-k formulae, for k < 5.
(Note our hardness proof of arbitrary boolean formulae required k = 5; see [GJ79].) If not, it would be
interesting to determine if there are good approximation algorithms. While our results (Theorem 13) show
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we should not consider the DFA algorithm, there may be other algorithms, perhaps for special cases —
for example, Greiner and Orponen [GO91] provide an efficient algorithm that produces strategies within
O(lnn) of optimal, for a specified subclass of a related problem.

Contributions: This paper addresses the challenge of computing the optimal strategy for and-or trees,
focussing on algorithms that exploit “local properties”. Depth-first strategies are an extreme case of this,
as they are formed by considering only each rooted subtree, in isolation. The obvious algorithm here,
DFA, first finds the best substrategy for each penultimate rooted subtree then regards the resulting strategy
as a “mega-node”, and recurses up the tree. After confirming that DFA produces the optimal depth-first
strategies, we then prove that these strategies are in fact the optimal possible strategies for trees with depth
1 or 2. However, for deeper trees, we prove that these depth-first strategies can be arbitrarily worse than
the best possible strategies. We next consider the obvious class of “linear strategies” — strategies that
can be described as a linear sequence of tests — and show that even the best such strategy can be also be
considerably worse than the best possible strategy.

The DFA algorithm worked by providing an ordering for the leaf tests, then “gluing” them together
in this order — in that it produced a strategy in which these nodes appeared contiguously, until resolving
their common parent. We next investigated a weaker version of this constraint, which imposed the same
ordering for the leaf-children of a common parent, but did not insist that they appear contiguously in the
final strategy. Our main theorem here (Theorem 20) proves that an optimal strategy will honour this ordering;
here each “x before y” ordering of leaf-siblings means only that y will never be tested before x in an optimal
strategy; it does not mean that y will immediately follow x. We also determined the special cases when these
sibling tests should be performed together. These findings led to the design of the Dynamic Programming
Algorithm, DYNPROG, which is guaranteed to find an optimal strategy for and-or trees, and our proof that
this algorithm runs in time O(d2(r + 1)d), where d is the number of internal nodes that are leaf-parents and
r is the largest number of tests under a common parent. For and-or trees with a bounded number of internal
nodes, this time is clearly polynomial in the tree’s size.

We also used this theorem to show that the simple DFA algorithm produces an optimal strategy for
depth-3 and-or trees whose tests are all identical (have the same cost and probability of success). We show
that this claim does not hold for depth-4 and-or trees.
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Figure 14: Illustration for the proof of Theorem 25. This dag corresponds to the formula P = (x1 or ¬x3

or ¬x4) and (x1 or ¬x2 or x3).

A Theorem 25
In our proofs we will need the notion of a probability of a strategy path. Let P be a path of strategy-tree
nodes v0, v1, . . . , vk, with k ≥ 0, of a nonredundant strategy. For any i < k let xvi

be the test that labels vi.
We define the probability p (P ) of the path P as the product of the probabilities of the corresponding values
of the tests performed on P

p (P ) =

{

1 if k = 0,
∏k−1

i=0 pvi
if k ≥ 1,

where

pvi
=

{

Pr(+xvi
) if the arc (vi, vi+1) is labeled true,

Pr(−xvi
) if the arc (vi, vi+1) is labeled false.

Theorem 25 It is NP-hard to find the optimal strategy for and-or dags, even if all test have unit costs.

Our proof follows by introducing stochasticity into the construction presented in [Sah74] for a different
and-or structure problem.
Proof of Theorem 25: Consider the 3-SAT problem:

Given a boolean formula P that is the conjunction of m clauses, each of which is the disjunction
of exactly 3 distinct literals (i.e., variables or their negations), is P satisfiable?

which is known to be NP-complete [GJ79]. We will show that 3-SAT can be polynomially reduced to our
task of computing the optimal strategy for and-or dags.

For a given instance of 3-SAT let C1, C2, . . . , Cm be the clauses in the formula P and let x1, x2, . . . , xn

be all variables from the formula P . Now construct the and-or dag D in the following way: The root of D is
an and-node. It has m+n child or-nodes: the nodes C1, C2, ..., Cm correspond to the clauses of the formula
P , the nodes x1, x2, . . . , xn correspond to the variables from the formula P . Each or-node xi has exactly
two distinct child nodes: the tests xT

i and xF
i , corresponding to the respective values true and false of

the variable xi. Each test has cost 1 and the success probability q =
(

1 − 1
2n

)
1

2n+1 . These are all of the
nodes of D. Each or-node Cj has exactly 3 child nodes: if the clause Cj contains the literal xi, the test xT

i

is a child of the node, if the clause Cj contains the literal ¬xi, the test xF
i is a child of the node. Figure 14

presents an example of such a construction.
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We can construct such an and-or dag in polynomial time. Now we will show that P is satisfiable if and
only if there is a strategy for D with expected cost at most n + 1

2 .
For any strategy the single root-to-leaf path of the strategy that includes only true arcs will be called

the purely-true-path. Notice that the purely-true-path of any strategy for D has to include at least n

internal nodes, because for each i we have to perform at least one of
{

xT
i , xF

i

}

to conclude that the value of
D is true.
Now observe

P is satisfiable.
⇐⇒ There is a truth assignment σ for P such that, for any clause Cj , there is at least one literal that σ

assigns true.
⇐⇒ There is a set W of tests from D, |W | = n, such that for any i, exactly one of xT

i and xF
i belongs

to W and any node Cj has at least one child in W .
⇐⇒ There is a strategy for D whose purely-true-path contains exactly n internal nodes.

To complete the proof, we need only show. . .

A strategy ξ for D has the expected cost at most n + 1
2 if and only if the purely-true-path of

ξ contains exactly n internal nodes.

Proof: Let Q be the purely-true-path of a strategy ξ and let k be the number of the internal nodes of Q,
k ≥ n. The sum of the costs of all tests labeling nodes of Q is k and the probability of Q is qk. Notice that
for any other root-to-leaf path of ξ the sum of the costs of all tests labeling nodes of the path is at most 2n
and at least 1.

Assume that k = n. Then we obtain the following upper bound on the expected cost of ξ:

C [ξ] ≤ qnn + (1 − qn) 2n = n (2 − qn) =

= n

[

2 −

(

1 −
1

2n

)
n

2n+1

]

< n

[

2 −

(

1 −
1

2n

)]

= n +
1

2
.

Now assume that k > n. In this case we have the following lower bound on the expected cost of ξ:

C [ξ] ≥ qkk +
(

1 − qk
)

1 = qk (k − 1) + 1 ≥ qkn + 1 =

= n

(

1 −
1

2n

)
k

2n+1

+ 1 > n

(

1 −
1

2n

)

+ 1 = n +
1

2
.

2

B Proofs
Theorem 11 DFA produces the optimal strategies for depth-2 and-or trees.

Proof of Theorem 11:
It is sufficient to prove the theorem for DNF formulae, say of the form

ϕ ≡ (A1
1 ∧ · · · ∧ A1

n1
) ∨ (A2

1 ∧ · · · ∧ A2
n2

) ∨ · · · ∨ (Ar
1 ∧ · · · ∧ Ar

nr
) ,

since the proof is virtually identical for CNF formulae. We let Ai refer to the term Ai
1 ∧ · · · ∧ Ai

ni
.

For any term Ai the probability that the term evaluates to true is given by the formula Pr
(

+Ai
)

=
∏ni

k=1 Pr
(

+Ai
k

)

.
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Figure 15: Form for of an optimal strategy ξφ for ϕ.

Let ξφ be an optimal strategy. By Observation 10, it suffices to show that ξφ is depth-first. Argue by
induction on the number of variable occurrences v =

∑

i ni, which is equal to the number of variables. In
the base case v = 1 and the only possible strategy is depth-first, so the theorem holds. Suppose then that the
theorem holds for v = ` ≥ 1 and consider a formula with v = ` + 1. By relabelling variables if necessary
we may assume that the first test in the strategy is A1

1 as indicated on the left side of Figure 15.
Let ξ− be the substrategy of ξφ that occurs when A1

1 fails; since ξφ is optimal for the subexpression
ϕ − A1 of ϕ obtained by excluding the term A1, and ϕ − A1 has only ` + 1 − n1 ≤ ` variables, ξ− is
depth-first by the inductive hypothesis.

Now consider what happens if A1
1 succeeds. If n1 = 1 then A1 ≡ A1

1 and ξφ simply returns success
and again the overall strategy is clearly depth-first. Suppose then that n1 ≥ 2. Then the A1

1 = + branch
leads to a substrategy, say ξ+. Since the associated subexpression has ` variables, we may assume, by
inductive hypothesis, that ξ+ is depth-first; in particular, it will be of the form shown on the right side of
Figure 15, namely first dealing with the s − 1 terms A2, . . . , As, then dealing with Ã1 = A1

2 ∧ . . . ∧ A1
n1,

the diminished version of A1 that omits A1
1, and then dealing with the remaining r−s terms As+1, . . . , Ar .5

By Observation 6, in ξ+ these terms appear in descending order of Pr
(

+Ai
)

/c(Ai), namely

Pr
(

+A2
)

c(A2)
≥ . . . ≥

Pr( +As )

c(As)
≥

Pr
(

+Ã1
)

c(Ã1)
≥

Pr
(

+As+1
)

c(As+1)
≥ . . . ≥

Pr( +Ar )

c(Ar)

where Pr
(

+Ã1
)

=
∏n1

k=2 Pr
(

+A1
k

)

, c(Ã1) = c(A1
2) + Pr

(

+A1
2

)

[c(A1
3) + Pr

(

+A1
3

)

× {. . .}], and for
any i ≥ 2 c(Ai) = c(Ai

1) + Pr
(

+Ai
1

)

[c(Ai
2) + Pr

(

+Ai
2

)

× {. . .}]. For each i ∈ {1, . . . , r}, the variables
5In substrategy ξ+, if Ak

nk
succeeds then the substrategy returns success. Alternatively, suppose some Ak

m fails. If k = s then
ξ+ continues with A1

2; if k 6= s and k < r then ξ+ continues with Ak+1
1 ; if k = r then ξ+ returns failure.
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{Ai
k}k are ordered in non-increasing values of Pr

(

−Ai
k

)

/c(Ai
k); that is,

Pr
(

−Ai
k

)

c(Ai
k)

≥
Pr
(

−Ai
k+1

)

c(Ai
k+1)

for all k ∈ {2, . . . n1 − 1} when i = 1, and all k ∈ {1, . . . ni − 1} when i ≥ 2.
Now observe that the other substrategy ξ− will include essentially the same terms as ξ+ and in the same

order, differing only by not including Ã1.
If s = 1 then Ã1 ≡ A1

2..n1
is the first term of ξ+, thus the overall strategy ξφ is depth-first and we are

done. Then towards a contradiction, suppose that s ≥ 2.
Now define

σ1 =
s
∑

i=2

c(Ai) ×
i−1
∏

j=2

Pr
(

−Aj
)

,

σ2 =
r
∑

i=s+1

c(Ai) ×
i−1
∏

j=2

Pr
(

−Aj
)

,

ρ =
s
∏

j=2

Pr
(

−Aj
)

.

The expected cost of ξφ is

C[ξφ] = c(A1
1) + Pr

(

+A1
1

)

[σ1 + ρ × c(Ã1) + Pr
(

−Ã1
)

× σ2] + Pr
(

−A1
1

)

[σ1 + σ2]

= c(A1
1) + σ1 + [Pr

(

+A1
1

)

× Pr
(

−Ã1
)

+ Pr
(

−A1
1

)

] × σ2 + Pr
(

+A1
1

)

× ρ × c(Ã1)

= c(A1
1) + σ1 + Pr

(

−A1
)

× σ2 + Pr
(

+A1
1

)

× ρ × c(Ã1) .

Now let ξ′ be a different strategy for ϕ, namely the depth-first strategy that deals with the terms in the
order A2, . . . , As, A1, As+1, ..., An, that is the strategy obtained from ξ+ by inserting A1

1 before A1
2. Notice

that the variables of A1 appear in ξ′ in the following order: A1
1, A

1
2, . . . , A

1
n1

, thus the cost of dealing with
A1 is given by the formula c(A1) = c(A1

1) + Pr
(

+A1
1

)

c
(

Ã1
)

.
The cost of the ξ′ strategy is

C[ξ′] = σ1 + ρ × c(A1) + Pr
(

−A1
)

× σ2 .

Now observe that

C[ξφ] − C[ξ′]

= [c(A1
1) + σ1 + Pr

(

−A1
)

× σ2 + Pr
(

+A1
1

)

× ρ × c(Ã1)] − [σ1 + ρ × c(A1) + Pr
(

−A1
)

× σ2]

= c(A1
1) + ρ [Pr

(

+A1
1

)

× c(Ã1) − c(A1)]
= c(A1

1) + ρ [−c(A1
1)] = c(A1

1) [1 − ρ] > 0

since ρ is a product of probability values less than 1 and c(A1
1) is nonnegative.

This implies that ξ′ has a lower expected cost than the optimal strategy ξφ, contradiction. 2

Theorem 13 There are unit-cost and-or trees with n nodes for which the best depth-first strategy costs
Θ(n1−o(1)) times as much as the best strategy.
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Figure 16: A problematic instance for DFA; Theorem 13

Proof of Theorem 13: To simplify the proof (here and for Theorem 18), we will allow some tests to be true
with probability 1. However, a strategy must still perform the test, to confirm that it is true, before using the
fact that it is true to evaluate the tree. This convention allows for a more easily presentable construction. If
the reader is uncomfortable with this rule, then by replacing each probability 1 with a value that is a negli-
gible distance away from 1 (e.g. 1 − 2−2n ), it is easy to prove the theorem using a construction in which all
probabilities are strictly between 0 and 1.

We use the unit-cost strictly alternating and-or tree with n nodes suggested by Figure 16: the root is an
or-node with r identical children, #1 through #r, each of which has 2 children (#i.a and #i.b), each of
which has 2 children (#i.*.X and #i.*.Y, where * is one of {a,b}). Each *.X is a leaf node that is
true with probability 1 − q where q = 1

2(n/2r)−1/r . Each *.Y node has D = (n − 7r − 1)/2r children,
each of which is true with probability 1. Thus the total number of nodes is n and the tree evaluates to
true, although it may be expensive to perform the evaluation.

A good strategy is to carry out all the *.X nodes first, 〈#1a.X,#1b.X, . . . ,#ra.X,#rb.X〉, and
then, if necessary, carry out the children of two *.Y “cousins”. If i is the index of the first, if any, pair
(#ia.X,#ib.X) to both evaluate to true, then the cost is 2i. The probability of this occurring is α i−1(1−
α), where α = q + (1 − q)q = 2q − q2 and 1 − α = 1 − (2q − q2) = (1 − q)2. If none of these pairs both
evaluate to true, then the total cost is at most 2r + 2D.

We are free to choose relative values for r and D; for now, we assume r ≤ D, so 2r + 2D ≤ 4D. Thus
this strategy has an expected total cost of at most

(
∑r

i=1 2iαi−1(1 − α)
)

+ αr4D = 2(1 − α)
(

1−αr(1+r(1−α))
(1−α)2

)

+ αrO(D) <

2/(1 − α) + (2q)rO(D) < 2/(1 − α) + (n/2r)−1O(n/2r) = O(1) .

However, the optimal depth-first strategy (produced by DFA) has expected cost greater than qD =
Θ((n/2r)1−1/r). To see this, assume by symmetry that the strategy evaluates rooted subtree #1a first. With
probability at least q, it will have to evaluate rooted subtree #1a.Y at a cost of D. Setting r = log n yields
the theorem. 2

Theorem 18 There are unit-cost and-or trees with n nodes for which the best linear strategy costs
Θ(n1/3−o(1)) times as much as an optimal strategy.

Proof of Theorem 18: We consider the following strictly alternating unit-cost tree, suggested by Figure 17.
The root is an or-node which has r = bn1/3/ log nc identical children. Each level 1 node is an and-node with
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Figure 17: A problematic instance for Linear Strategies; Theorem 18

r + 1 children: #ia, #ib1, . . .#ibr. Each #ibi is truewith probability 1. The node #ia has 2 children:
the leaf node #ia.X that is true with probability q = log2 n/(n1/3); and the internal node #ia.Y that
has D children, each of which is true with probability 1, where D ≈ r/q − r ≈ n2/3/ log3 n − r is the
solution to r(r + D + 4) + 1 = n. Thus the total number of nodes is n and the tree evaluates to true,
although it may be expensive to perform the evaluation.

A good strategy is to start by evaluating all the #ia.X nodes, until one of them turns out to be true.
Then evaluate the #ibi nodes that are the uncles of the true #ia.X node. In the unlikely chance that all
the #ia.X nodes are false, evaluate a #ia.Y node and then the corresponding #ibi nodes. The probability
that one has to do this is (1−q)r < 1

n < q. The expected cost of this strategy is at most r+r+(1−q)r×D <
r + r + qD ≈ 3r.

We will prove that every linear strategy has expected cost at least min(D, r/q). Since D ≈ r/q, the
ratio between the expected cost of the strategy from the previous paragraph and the expected cost of the best
linear strategy is ≈ (r/q)/(3r) = n1/3−o(1)

Consider an optimal linear strategy. Thus the strategy can be represented by an ordering of the leaves,
which we denote by ξ. We test the leaves in this order, skipping a leaf if and only if by the time we get to
it, it will not help resolve the tree, meaning that the value of one of its ancestor nodes in the and-or tree is
already known.

We start by proving a few basic properties about ξ.
Claim 1: For any i, we can assume that ξ is contiguous with respect to the set of nodes #ia.Y.1, ...,
#ia.Y.D.

Proof: Suppose that this is not a case, that is that #ia.Y.1, ..., #ia.Y.D do not form a consec-
utive subsequence in the linear ordering encoding ξ. Then there is some #ia.Y.j1 occurring before some
#ia.Y.j2 such that there is a non-empty sequence of leaves between them, none of which are equal to
some #ia.Y.j3. Consider moving #ia.Y.j1 ahead in the sequence to the spot just before #ia.Y.j2,
thus creating a new sequence ξ ′. It is easy to see that no leaf will be evaluated in ξ ′ but not in ξ. This is
because evaluating #ia.Y.j1 cannot cause any ancestor to be evaluated until all the #ia.Y.j leaves are
evaluated. Therefore, this operation does not increase the expected cost of the strategy. Repeating this opera-
tion enough times will produce a strategy in which all #ia.Y.j leaves occur as a consecutive subsequence.
2

The same reasoning proves:
Claim 2: For any i, we can assume that ξ is contiguous with respect to the set of nodes #ib1, ..., #ibr.

Thus, we can collapse these two sets of leaves into the “superleaves” #ia.Y and #iB, which are each
true with probability 1 and which have costs r and D respectively.
Claim 3: For any i, we can assume that #iB occurs immediately after either #ia.X or #ia.Y.

Proof: Carrying out #iB cannot cause any ancestor to be evaluated unless we also know the result of
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either #ia.X or #ia.Y. Furthermore, carrying out #ia.X or #ia.Y cannot cause #i to be evaluated
unless we also know the result of #iB. The rest of the argument is similar to the proof of Claim 1. 2

Claim 4: For any i, we can assume that #ia.X either occurs immediately before either #iB or #ia.Y, or
occurs after both of them.

Proof: Carrying out #ia.X cannot cause any ancestor to be evaluated unless we also know the result of
either #ia.B or #ia.Y. The rest of the argument is similar to the proof of Claim 1. 2

The same argument yields:
Claim 5: For any i, we can assume that #ia.Y either occurs immediately before either #iB or #ia.X, or
occurs after both of them.

This establishes that each #iB is the end of one of the following consecutive subsequences: #ia.X,
#ia.Y, #iB; #ia.Y, #ia.X, #iB; #ia.X, #iB; or #ia.Y, #iB. If it is one of the last two,
then #ia.Y (respectively #ia.X) occurs later in ξ. Note that if it is the last choice, then #ia.X will
always be redundant, and so its exact location in ξ is irrelevant.

Let ξi denote the particular consecutive subsequence described above ending with #iB. If #i.Y is in ξ i,
then the expected cost of carrying out ξi (if it is carried out) is at least (1 − q)D ≈ D, and with probability
1, this will successfully evaluate the root. Otherwise, the expected cost is at least r and with probability q
this will successfully evaluate the root.

By symmetry, we can assume that ξ1, ξ2, . . . , ξr occur in that order in ξ. Let i∗ be the first i such that
either #i.Y is in ξi or some #j.Y precedes ξi. (Note that in the latter case, #j.Y comes after ξj .) If there
is no such i, then we set i∗ = r + 1. Then the expected total cost is at least

(

i∗−1
∑

i=1

r × (1 − q)i−1

)

+ (1 − q)i∗−1 × D =
1 − (1 − q)i∗−1

q
× r + (1 − q)i∗−1 × D.

This is a linear combination of D and r/q ≈ D, and so is at least min(D, r/q), as required. 2

Theorem 20 — Siblings and Twins Theorem For any and-or tree T , there is an optimal strategy ξT

that satisfies both of the following conditions:
1. for any sibling tests x and y such that R( y ) > R(x ), x is not performed before y on any root-to-leaf

path of ξT

2. for any R-class W , ξT is contiguous with respect to W .

Proof of Theorem 20: Our proof uses the following notation and observation:
We write p(x) (resp., p̄(x)) as a shorthand for Pr( +x ) (resp., Pr(−x )).
For strategies ξ1, ξ2 and a test x

x : + (ξ1) ;− (ξ2)

denotes the strategy whose root is labeled x and whose substrategies rooted at the root’s children, entered
by true and false arcs are respectively ξ1 and ξ2.

For a strategy ξ that has disjoint substrategies ξ1, . . . , ξm , m ≥ 1, and for strategies ξ ′1, . . . , ξ
′
m

ξ
(

ξ1 / ξ′1, . . . , ξm / ξ′m
)

denotes the tree that is obtained from the strategy ξ by replacing the rooted subtree ξk by the tree ξ′k for each
k = 1, 2, . . . ,m.
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Observation 26 Let tests x and y be child tests of the same or-node in an and-or tree T . Let ξxy be a
nonredundant strategy for T of the following form: x : + (ξ+) ;− (y : + (ξ+) ;− (ξ−)), for some strategies
ξ+ and ξ−.

By switching the labels y and x in ξxy we obtain another strategy ξyx that is nonredundant and
i) if R (y) > R (x) then ξyx has the lower expected cost than ξxy,
ii) if R (y) = R (x) then ξyx has the same expected cost as ξxy.

Proof of Observation 26: The correctness and nonredundancy of ξyx are obvious. For the expected cost of
ξxy we have:

C [ξxy] = c (x) + p̄ (x) c (y) + p̄ (x) p̄ (y)C [ξ−] + [1 − p̄ (x) p̄ (y)]C [ξ+] .

Using a similar expression for C [ξyx] we obtain

C [ξyx] − C [ξxy] = p (x) c (y) − p (y) c (x) .

The observation follows immediately.

We prove Theorem 20 by induction on the number of tests in an and-or tree. The theorem holds for the
base case of a tree with only one test. Now assume that it holds for any and-or tree that has fewer tests than
the tree T has.

Let ξ be an optimal strategy for T . Thus ξ is nonredundant. Let x be the first test performed by ξ.
Assume that x is a child of an or-node. (the proof for the “and” case is symmetric). Let ξ+x (ξ−x) be the
substrategy of ξ that is followed when x is true (false). By induction, we may assume that ξ+x and ξ−x

are contiguous on any R-class and preserve “the right order” of sibling tests (i.e., never perform a sibling
test before its sibling test with higher R-ratio).

Now assume that ξ does not fulfill the conditions of the theorem. That means that x has at least one
sibling test with the same or higher R-ratio. We will show that, in this case, there is another optimal strategy
that satisfies the conditions of the theorem. To construct such a strategy, we will use the technique of
changing the order of parts of the original strategy.

Let Y be the set of all and only sibling tests of x with R-ratio higher than or equal to R(x). Let y be the
test with minimum R-ratio among all tests from Y . Observation 26ii implies that the order of performing
tests from one R-class is arbitrary in a strategy that is contiguous on this class. Thus we may assume that y
is always performed as the last test from Y by the substrategy ξ−x.

Now let M ≥ 1 be the number of nodes of ξ−x labeled by test y, let ξy1 , ξy2 , . . . , ξyM
be the rooted

subtrees of ξ−x rooted at nodes labeled by y, and for k = 1, 2, . . . ,M , let ξ+yk
, ξ−yk

be the substrategies of
ξyk

followed in the case when y is true, y is false, respectively. Also let ξr denote the (possibly empty)
part of ξ−x that contains all nodes outside ξy1 , ξy2 , . . . , ξyM

(see Figure 18(a)).
Consider the tree ξ (x → y) = ξ−x (ξy1 / ξx1 , . . . , ξyM

/ ξxM
), where for k = 1, 2, . . . ,M , ξxk

= x :
+ (ξ+yk

) ;− (ξyk
), shown in Figure 18(c) (we query x just before y). To show that it is indeed a strategy, we

need to check that for each leaf node L of ξ (x → y), the label of L (true or false) is the correct value of
T for all assignments of tests that correspond to the path PL from the root of ξ (x → y) to L. This obviously
holds if PL contains a node labeled by test y, since in ξ the corresponding root-to-leaf path differs from PL

only in the order of performing tests. Knowing that, we see that the label of L is correct if PL contains a
node labeled by x and the arc labeled true that leaves this node (because after x succeeds, we do exactly
the same as what we do if x fails but its sibling test y succeeds). The only remaining case is when neither x
nor y is performed on PL. Let σL be any assignment of tests that correspond to PL. In ξ we follow the path
identical to PL after x fails. And so for any σL in which x is false the label of the leaf L is correct. To see

33



..

.

..

.

. ..
...

x

y

ξ+x

ξr

y
ξ−y1

x y
ξ+yM y

ξ+yM

x
ξ+yM

ξ−yM

ξ+y1
ξ+y1

ξ−y1

y x

a) b)

c) d)

ξ+x

y

ξ−x

ξr

x y
ξ+y1

ξ−yM

ξr

ξ+y1

ξ−y1

ξ+yM

ξ−yM

ξr

ξ+y1

ξ−y1

ξ+yM

ξ−yM

ξ

ξ′−x

ξ (x → y) ξT
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that it is also correct if x is true, consider any two assignments of tests σ1 and σ2, that may differ only in
the values of x and y, assume that x is true in σ1, x is false in σ2, and that y is true, and then observe
that the value of the tree T is the same for σ1 and σ2. And so the correctness of the label of the leaf node of
PL in this case follows from the fact that in ξ we do not test y on the corresponding root-to-leaf path. It is
obvious that ξ (x → y) is nonredundant.

Now let ξT be obtained from ξ (x → y) by switching the labels x and y of its neighbour nodes (Fig-
ure 18(d)). By Observation 26 ξT is indeed a strategy for T (i.e. it evaluates T correctly).

If the R-class containing x also includes other tests, then it has to contain y, so ξT is contiguous on this
class. Note that ξT is also contiguous on any R-class that does not include x; for the R-class including y (if
R(x) 6= R(y)) this follows from the fact that y is performed as the last test from Y . Also, since x is tested
just after y, when y is false, ξT preserves the right order of sibling tests of T .

Observation 26 implies that ξT does not have higher expected cost than ξ (x → y). Thus to complete
the proof it is enough to show that ξ (x → y) is optimal.

Let Cr denote the expected cost of dealing with ξr, that is Cr =
∑

v∈ξr
pvc (xv), where the sum is over

all nodes of ξr, pv is the probability of the path from the root of ξ−x to node v, and c (xv) is the cost of the
test that labels node v . For any k, let pyk

be the probability of the path from the root of ξ−x to the labeled
by y root node of ξyk

.
Then we can express the expected costs of ξ in the following way:

C [ξ] = c (x) + p (x) C [ξ+x] + p̄ (x)C [ξ−x] ,

where

C [ξ−x] = Cr +
M
∑

k=1

pyk
[c (y) + p (y)C [ξ+yk

] + p̄ (y) C [ξ−yk
]] ,

while for the expected cost of ξ (x → y) we have:

C [ξ (x → y)] = Cr +
M
∑

k=1

{

pyk

[

c (x) + p (x)C [ξ+yk
] +

+p̄ (x) [c (y) + p (y) C [ξ+yk
] + p̄ (y)C [ξ−yk

]]
]

}

.

Towards a contradiction, assume that the expected cost of ξ (x → y) is higher than ξ. Then using the
notation D = Cr +

∑M
k=1 pyk

C [ξ+yk
] − C [ξ+x] and P r = 1 −

∑M
k=1 pyk

, we obtain

p (x) D > P rc (x) .

Notice that
∑M

k=1 pyk
is the total probability of reaching any node labeled by y after entering the strategy

ξ−x, so P r ≥ 0. That implies that D > 0 and so

p (x)

c (x)
>

P r

D
. (6)

We will show that it follows from (6) that we can replace the substrategy ξ−x of the original strategy by a
substrategy with strictly lower expected cost, which contradicts the optimality of ξ−x.

Consider ξ′−x = y : + (ξ+x) ;− (ξ−x (ξy1 / ξ−y1 , . . . , ξyM
/ ξ−yM

)); see Figure 18(b). It is not difficult
to see that ξ′−x is indeed a strategy for the reduced tree obtained from T when x is false and that it is
nonredundant. We have the following expression for the expected cost of ξ ′

−x:

C
[

ξ′−x

]

= c (y) + p (y) C [ξ+x] + p̄ (y)

[

Cr +
M
∑

k=1

pyk
C [ξ−yk

]

]

.
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Using the same notation as before, we obtain

C [ξ−x] − C
[

ξ′−x

]

= p (y) D − P rc (y) .

But then from (6) and the fact that
p (y)

c (y)
≥

p (x)

c (x)
,

it follows that C [ξ−x] − C
[

ξ′−x

]

> 0, contradiction. 2

Theorem 21 DYNPROG produces an optimal strategy for and-or trees. The time complexity of the
algorithm is in O

(

d2(r + 1)d
)

and the space complexity is in O
(

(r + 1)d
)

, where r is the largest number
of leaf-siblings of a tree and d is the number of leaf-parents in a tree.

For the special case when d is fixed, the time complexity is in O(r ln r) if d = 1 and in O
(

rd
)

for any
fixed d ≥ 2, while the space complexity is in O

(

rd
)

for any fixed d ≥ 1.

Proof of Theorem 21:
The correctness of the algorithm follows from Theorem 20, as discussed in the description of the algo-

rithm. We have also shown before that the total number of reduced trees is at most (r + 1)d.
Lines (1)–(2) order tests inside each sibling class, so the time required to perform them is in O (dr ln r),

and for any fixed d this time is in O (r ln r).
Lines (3)–(4) take time O

(

(r + 1)d
)

; for any fixed d this time is in O
(

rd
)

.
The loop (9)–(18) has at most d iterations. Since each parent node of a sibling-class is associated with

an array of leaf children, ordered by R-ratio, it takes constant time to find xL (line 10). As we have shown
before, we can calculate I+

L or I−L in time O (d) (lines (11) and (12)). Also, since we identify trees with
d-tuples, we may find data for trees I+

L and I−L (line 13) in O (d) time, as entries of a d-dimensional matrix.
And so the time required by the entire loop (9)–(18) is in O

(

d2
)

.
For a given number M , the time required to calculate a next d-tuple I with the property that the sum of

all elements of I is M , and to move to the corresponding entry in the d-dimensional matrix, is in O (d). In
total, the above mentioned operations, as well as the loop (9)–(18), are performed once for each reduced tree.
Thus the time required by lines (7)–(18) is in O

(

d2(r + 1)d
)

, and for any fixed d this time is in O
(

rd
)

.

Thus the time complexity of the algorithm is in O
(

dr ln r + d2(r + 1)d
)

, that is in O
(

d2(r + 1)d
)

.

For any fixed d the time complexity is in O
(

r ln r + rd
)

. Thus if d = 1 the time complexity is in O (r ln r),

for fixed d ≥ 2 it is in O
(

rd
)

.
The number of internal nodes of the input tree is at most 2d (as each internal node has out-degree at least

2), the number of leaves of the input tree is at most dr. Thus the size of the input tree is in O (dr), and for
any fixed d it is in O (r). This is also the space required for ordering tests inside each sibling class (lines
(1)–(2)). In the remaining of the algorithm, we store a constant amount of data for each reduced tree, and
we need an additional O (d) space for the calculations. Thus the space complexity is in O

(

(r + 1)d
)

, and

for any fixed d the space complexity is in O
(

rd
)

.
2
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