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While a doctor may have the option of using a wide vari-
ety of medical tests (including MRI scans, blood work, etc.)
to diagnose a patient, each of these tests has some (typi-
cally known) costs.1 There are also penalties for misdiag-
noses; typically one value for false positives and another
(here, larger) value for false negatives. Of course, the physi-
cian should prefer a diagnostic process that minimizes the
total (expected) cost+penalty of diagnosis. If we know the
underlying probabilistic distribution, relating test outcomes
to one another and to the diagnosis, we can view this as a
Markov decision process (MDP), and the diagnostic process
as a “policy”: at each stage (“state”) we know the outcomes
of a subset of the tests and must decide whether to return
a diagnosis (and accept the penality if wrong) or obtain the
value of some other test (at cost). In the simplest model,
when the costs of the tests are independent, this corresponds
to a decision tree, called an “active classifier” in [GGR02].

There are many computational challenges in finding the
best such tree; e.g., [GGR02] shows that it is NP-hard in
general. That paper also shows, however, that this task can
be solved efficiency (via Dynamic Programming, DP) if we
consider only “bounded-horizon” policies — i.e., policies
that can perform only a fixed number of tests. These are
“bounded active classifiers”. This special case is quite rele-
vant, as it corresponds directly to many standard examples,
including capitation costs of health care — e.g., where the
physician can spend only $100 per patient visit.

Of course, this assumes the research team (who is design-
ing the optimal policy) knows the complete probabilistic dis-
tribution. [GGR02] shows that one can efficiently get a suf-
ficient approximation to (PAC-)learn these bounded active
classifiers, by observing a polynomial number of complete
instances. However, this learning framework is also prob-
lematic: if the physican applying the treatment has to pay
to observe each feature, one would expect the researcher to
also have to purchase each feature used to compute the clas-
sifier. This motivates the “Budgeted Learning” model: The
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1In general, this can involve many components: financial, time
delays, suffering, etc. We will assume these can all be accumulated
into a single scalar value for each test.

learner BL begins with a fixed budget (e.g., $1000) and ac-
cess to a set of instances, but initially knows only the class
label (“diagnosis”) of each, but none of their test values. At
each step, BL will also know the values of only the already-
purchased specified features of specified instances, and can
then purchase the value of some specified feature of some
instance (e.g., can run blood-test#7 on instance#31, at some
cost(blood-test#7, instance#31)∈ <+. This process contin-
ues until BL has spent its entire budget, at which point BL
returns a classifier, that can then return labels for novel in-
stances.

[LMG04] explores a simple version of this task, “active
model selection” (AMS), in the context of the “coins prob-
lem”: Given a set of n coins (each with a known prior dis-
briution) and a total budget of k flips, sequentially decide
when to flip which coin to determine the coin that has the
highest head probability. (While this task is clearly related
to standard bandit problems [BF85], it has significant dif-
ferences — enough that the standard methods do not apply.
Moreover, that paper also shows how our task is different
from standard experimental design, on-line learning, stan-
dard active learning, and so forth.) It shows that this task
(when worded in a Bayesian framework) corresponds to an
MDP, and so can be solved using DP, albeit using expen-
tial time and space. It then provides this task is NP-hard
in general, and considers a variety of obvious heuristics, in-
cluding “round robin” (flip each coin ≈ n/k times), “ran-
dom”, and greedy look ahead, as well as novel algorithms,
based on Gittins sets, interval estimation, “play-the-winner”
(PTW) and single-feature-look-ahead (SFLA). After show-
ing that none of these algorithms is an approximation algo-
rithm (i.e., the “expected expected regret” of each can be ar-
bitrarily worse than optimal), it provides empirical evidence
that PTW and SFLA perform well in general, and that PTW
is significanly more efficient.

[LMG03] then returns to the task of actually learning a
classifier — here a Naı̈ve Bayes classifier. We ran variants
of those AMS algorithms, on UCIrvine datasets, and found
that the same heuristic algorithms continue to work well.

However, the framework in that paper is problematic, as
it assumed that the researcher, learning the distribution, had
to pay for information, but the physician, who would use
that learned classifier, would not. We come full-circle in
[KG05], which considers the situation where there are hard



budgetary constraints on both the learner and the classifier:
e.g., the learner can spend at most bL = $1000 to learn the
best bC = $30/patient classifier.

This task can be solved using a “double dynamic pro-
gram”: We can view this BL task (what to purchase, when)
as a fixed-depth MDP: At any point, the “state” corresponds
to the remaining budget b′

L
and the set of 〈 instance, feature〉

probes performed and their results, typically encoded as a
posterior distribution over features and labels. The set of
actions correspond to the (remaining) 〈 instance, feature〉
probes. The rewards are all 0 for all internal states; when
the budget reaches b′

L
= 0, we use a DP to compute the

policy that is optimal for the resultant distribution over test
outcomes and diagnoses; the reward then is (the negative
of) the expected regret of this policy. That is, we use a DP
to traverse the possible purchases for ≈ bL steps (assum-
ing unit-cost features), then use a DP to compute the reward
associated with each final state.

The resulting policy will be a (fixed-depth) decision tree
with minimum expected regret, of the form: E.g., first probe
〈 i#21, f#2〉. If the response is +, then probe 〈 i#4, f#7〉,
otherwise probe 〈 i#21, f#5〉, and so forth, until reaching the
prescribed depth.

Of course, the obvious implementation here is too slow to
be practical for any but the smallest of problems. (This is not
suprising, given that this task inherits the NP-hardness of the
simpler AMS task.) We therefore explore a variety of heuris-
tic approaches for determining which 〈 instance, feature〉 in
each situation, and observed empirically that PTW and ran-
domized SFLA were consistently among the best.

Value of Information issues
There are issues related to VOI in both of these tasks:
Active Classifier: Here we are trying to find the “decision-
theoretic best” classification for an instance, given complete
information about the distribution over feature values and
classification labels. We consider the challenges of identify-
ing (i) the best such “active classifier” in general, and (ii) the
best of the set of active classifiers constrained to purchase at
most a fixed number of features. In both cases, it is critical
to determine how much information about the class label is
associated with each feature, which VOI computations can
provide.
Budgeted Learning: Here we are trying to determine what
sequence of 〈 instance, feature〉 information we need to ex-
tract at learning time, to produce the best classifier, focus-
ing on the situation where we have only a limited budget
to spend acquiring this information. At each stage, it is
critical to determine how much additional information each
〈 instance, feature〉 provides about the feature-to-label clas-
sifier, which again corresponds to VOI.
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