
University of Alberta

Library Release Form

Name of Author: Aloak Kapoor

Title of Thesis: Learning and Classifying under Hard Budgets

Degree: Master of Science

Year this Degree Granted: 2005

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarlyor scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

Aloak Kapoor
1101 10th Street
Cold Lake, AB
Canada, T9M 1J1

Date:

University of Alberta

LEARNING AND CLASSIFYING UNDER HARD BUDGETS

by

Aloak Kapoor

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree ofMaster of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2005

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies
and Research for acceptance, a thesis entitledLearning and Classifying under Hard Budgets
submitted by Aloak Kapoor in partial fulfillment of the requirements for the degree ofMaster of
Science.

Russell Greiner
Supervisor

Dale Schuurmans

Peter Hooper
External Examiner

Date:

Abstract

When learning a classifier for a functionY = f(X), the features,X, often have an associated cost.

Since resources for feature acquisition are usually finite,learners and classifiers must be able to act

intelligently under hard budgets. In this thesis, the goal is a learner that spends its fixed learning

budgetbL acquiring features of labelled training instances so as to produce the most accurate “ac-

tive classifier” that spends at mostbC per instance. To produce this fixed budget classifier, the fixed

budget learner must sequentially decide which feature values to collect to learn the relevant infor-

mation about the distribution. We explore several approaches the learner can take, ranging from

Reinforcement Learning techniques, to the obvious “round robin” strategy that spends equally on all

features. We show empirically that round robin is problematic (especially for smallbL), and provide

alternate learning strategies that achieve superior performance on a variety of datasets.

Acknowledgements

I would like to thank my supervisor, Russell Greiner, for hisconstant support, guidance, and seem-

ingly endless supply of good ideas. I am a better person for having worked with Russ the last year.

As well, this thesis could not have been written without the generous financial support provided

by NSERC and iCORE throughout my graduate career. Finally, Iwish to thank the three most

outstanding people I know: my mother, father, and sister.

Table of Contents

1 Introduction 1

2 Active Model Selection 3
2.1 Introduction and Motivation 3
2.2 Formal Description 4

2.2.1 Simplifying Assumptions .. . 6
2.2.2 An Example Policy . 6
2.2.3 Mapping to Budgeted Learning .. . 7

2.3 The Markov Decision Process Formulation 7
2.3.1 Value Functions . 8
2.3.2 Simple Results . 8

2.4 Existing Algorithms 9
2.4.1 The Optimal Policy . 9
2.4.2 Round Robin (RR) . 9
2.4.3 Biased Robin (BR) . 9
2.4.4 Single Coin Lookahead (SCL) .. . 10

2.5 Reinforcement Learning Background 11
2.5.1 Overview . 11
2.5.2 Learning versus Planning 11
2.5.3 Learning the Optimal Value Function Using Temporal Differences 11
2.5.4 The Need for Function Approximation 13
2.5.5 Tile Coding: a Linear Function Approximator 14

2.6 Adapting RL for Active Model Selection 15
2.7 Empirical Results 16
2.8 Unsuccessful Approaches 19

2.8.1 Supervised Learning of a Classifier 19
2.8.2 Search . 19
2.8.3 Optimal Two Coin (OTC) . 19

2.9 Summary . 20

3 Budgeted Learning a Bounded Active Classifier 21
3.1 Introduction .. . 21

3.1.1 A Motivating Example .21
3.1.2 Objective and Outline .. 21

3.2 Background: Bounded Active Classifiers 22
3.2.1 Definition of an Active Classifier 22
3.2.2 Bounding Active Classifiers 22

3.3 Formal Description 24
3.3.1 Simplifying Assumptions .. . 24
3.3.2 Complexity Results .. 25

3.4 The MDP Formulation .. 25
3.4.1 The Optimal Learning Policy 27

3.5 Heuristic Learning Policies 28
3.5.1 Round Robin (RR) . 28
3.5.2 Biased Robin (BR) . 29
3.5.3 Single Feature Lookahead (SFL) 29
3.5.4 Randomized SFL (RSFL) . 29

3.6 Loss Functions .. 30
3.7 Experimental Results 31
3.8 Summary . 33

4 Related Literature 34
4.1 Introduction .. . 34
4.2 Budgeted Learning a Bounded Active Classifier 34
4.3 Active Model Selection 36

5 Conclusions 37
5.1 Contributions .. . 37
5.2 Research Directions 38

Bibliography 40

A Proofs 42
A.1 Proposition 1 .. 42
A.2 Proposition 2 .. 43
A.3 Proposition 3 .. 44
A.4 Proposition 4 .. 44
A.5 Proposition 5 .. 45

B Features for RL Function Approximation 47
B.1 Feature Groups .. 47
B.2 Alternate Features 48

List of Tables

2.1 Free parameters inε–greedy, tile coding TD(λ) 15
2.2 Feature sets used for approximating the value function 16
2.3 Expected regret of various policies 16
2.4 Resources used by each policy on n=10, b=20 18

3.1 Reduction in computation time using Proposition 5 28

B.1 Other features tested for RL function approximation 49

List of Figures

2.1 An example of a policy forb = 2, n = 2, and uniform priors 7
2.2 A problematic state for the SCL policy 10
2.3 An example of tile coding in two dimensions 14
2.4 Various values of lambda — SCL still superior to RL 17
2.5 Various amounts of training — simple policies still superior to RL 18

3.1 An example of an active classifier when the features and class label are binary . . . 23
3.2 Identical costs and some irrelevant features — RSFL and BR outperform RR . . . 31
3.3 Identical costs, no irrelevant features — RR still suboptimal 32
3.4 Different feature costs — RSFL and BR dominate RR 32

4.1 Active learning versus budgeted learning 35

Chapter 1

Introduction

In classification learning, the goal is to learn a classifier for an unknown functionY = f(X) such

that the classifier can predict the class label,Y , when given the features,X. In many practical

applications, the features are initially unknown to both the learner and the classifier, and must be

acquired at a cost. In these cases, anactive classifier, that can actively purchase the values of

unknown features before making a classification, should be produced by the learner. Unfortunately,

resources are seldom infinite; real-world tasks typically have finite budgets for both the learner and

the classifier that limit the total value of features that canbe collected. Thus, when feature costs

exist, the machine learning researcher is faced with the following budgeted learning problem:

Given a pool of training instances with known class labels but unknown feature values, decide

how to spend the fixed learning budgetbL purchasing features of training instances so as to produce

the most accurate active classifier that can spend at mostbC per instance.

We refer to this problem as “budgeted learning a bounded active classifier”. In this thesis, we

investigate the aforementioned problem in detail. We concentrate on developing strategies for the

learner that sequentially select which feature to purchasegiven the remainingbL budget and the

results of the previous purchases. Developing an effectivespending strategy can be challenging

because the true utility of the learner’s purchases is not known until thebL budget is exhausted and

the final bounded active classifier is learned and applied. Although the topic of budgeted learning is

not entirely new [17, 18], our work is unique because it places bounds on both the learner and the

classifier and thus incorporates costs at training and testing time. By contrast, the previous budgeted

learning research considers only costs at training time, and allows the classifier to see all feature

values for free. The dual budget framework we consider in this thesis is a better model of many

real-world problems.

We begin our investigation in the next chapter, in which we take a simplified version of our

problem and allow the learner to use Reinforcement Learning(RL) techniques to learn a purchasing

policy. We demonstrate empirically that despite extensivetraining, the RL methods that we employ

are inferior to simple, heuristic policies. In Chapter 3, weexplore the full problem of budgeted

learning a bounded active classifier. We provide empirical evidence that the obvious round robin

1

spending policy (purchasing every feature of every instance until thebL budget is exhausted) is

problematic, particularly when the budget is small relative to the number of features. We describe

alternate learning strategies, and show that they significantly outperform round robin on a variety

of real-world datasets. Finally, Chapter 4 provides a survey of related literature, while Chapter 5

summarizes contributions and discusses future work. We note that versions of Chapter 2, 3, and 4

have been published [15, 14].1

1ACM and co-author Russell Greiner kindly grant permission toreuse material in [15]. The use of material in [14] is
granted with kind permission of Springer Science and Business Media and co-author Russell Greiner.

2

Chapter 2

Simplified Budgeted Learning:
Active Model Selection

2.1 Introduction and Motivation

To gain insight into the budgeted learning issue, we consider a simpler problem known asactive

model selection.1 Loosely speaking, active model selection involves finding the best object among

a set ofn, given a finite budget of probes with which to freely explore and test the objects, where

a probe of an object returns a sample value drawn from that object’s distribution. After the budget

is exhausted, a single object must be selected, and a one-time reward is received that represents the

expected value of the chosen object. This formulation allows for pure exploration of the objects

with the budget, and delays all reward until the final time step. Notice that this problem corresponds

to the training phase of budgeted learning, in which features of labelled training instances can be

purchased in any way, with a single one-time reward (i.e., the classification accuracy) being received

once the budget is exhausted and the final learned classifier is applied. In both the active model

selection problem and the budgeted learning problem, the goal is to decide how to spend a finite

number of probes in order to get the information required to make the best decision when the budget

is exhausted.

In addition to the above relationship, previous research [17] has shown that algorithms which

perform well on active model selection are also effective ona variant of our budgeted learning

problem. As a result, we use active model selection as a low-dimensional testbed to prototype the

performance of strategies for budgeted learning.

In the remainder of this chapter, we give the formal description of active model selection, and

show that the problem can be viewed as a Markov Decision Process (MDP). The MDP framework

allows us to describe the (intractable) optimal algorithm,and derive some new results about the

problem. The main contribution of the chapter is to investigate the performance of standard algo-

rithms from Reinforcement Learning on active model selection. We perform a variety of tests using

1We also refer to active model selection as the “coins problem” for reasons that will become clear during the formal
problem statement in Section 2.2.

3

Reinforcement Learning techniques, and show that better performance is achieved with less com-

putational effort using simpler, existing policies. In closing, we discuss other approaches to active

model selection that appear promising, but are also inferior to the existing heuristic policies.

2.2 Formal Description

The input to the active model selection problem is:

• A set ofn independent Bernoulli random variables{C1, . . . , Cn}with unknown success prob-

abilities. For simplicity of exposition, we can think of theseCi as a set of coins, where the

unknown success probability is the probability of the coin turning up heads when flipped.

• A set ofn prior distributions (i.e., density functions), indicating the uncertainty over the true

head probability of each of then coins. That is, thehead probabilityof each coinCi is

itself treated as a random variableZi, and a prior density functionfi(Zi) is provided as a

distribution over the possible head probabilities of coinCi.

• A set ofn (known) costs{S(C1), . . . , S(Cn)} for flipping the coins, whereS(Ci) ∈ <
+.

• A finite (known) budgetb ≥ 0 that can be spent flipping the coins.

Given these inputs, the active model selection problem proceeds as follows. Any coinCi can be

flipped at any time, as long as the remaining budget, denoted by b′, satisfiesb′ ≥ S(Ci). We use the

outcome of each coin flip to update the density function for the flipped coin. For example, if coinCi

is flipped and turns up heads, then its density function is updated tofi(Zi|Ci = heads); of course, a

similar update occurs for a tails outcome. (We describe the exact format of the density function and

the updates in our simplifying assumptions below.) Coin flips and density updates continue until the

budget is exhausted (b′ = 0). We can view the sequence of flips and updates as a learning period, in

which we improve our information about the true head probabilities of the coins. Once the budget

is exhausted, the learning period is over, and a single coin must be chosen — this coinC∗ (and only

this coin) will be used in all future flips, for which we will receive rewards for head outcomes. Of

course, even whenb′ = 0, we will still not knowthe true head probability for this (or any) coin, and

so will not know whether coinC∗ actually has a better head probability than the other coins.The

best we can do given the observed coin flip outcomeso, is to choose the coin that minimizes our

future regret of selecting it. To do this, we define a new random variableZmax to be the maximum

head probability over all of the coins:Zmax = maxi(Zi), and now the Bayesian regret of choosing

coinCi given coin flip outcomeso is:

Regret(Ci) =

∫

~Z

(Zmax − Zi)

n
∏

j=1

fj(Zj |o) d~Z (2.1)

4

Notice that we minimize regret by choosing the coin whose mean (posterior) head probability is

largest [19]. Let this maximum mean coin beC∗(o) = arg maxCi
E[Zi|o]. Thus, when the budget

is exhausted and coin flip outcomeso have been observed,C∗(o) shouldbe selected.

Before introducing the overall (regret-related) objective function we wish to minimize, we must

first introduce the notion of a policy. A policyπ for active model selection specifies which coin to

flip at each time step. Formally, a policy is a mappingπ : 〈 b′, f1(Z1), ... , fn(Zn) 〉 → [1, n] that

specifies the index of the coin to flip, given the current statedefined by the remaining budget and

the posterior distributions over the coins. Since the result of every coin flip is stochastic, a policy for

flipping the coins can result inseveraldifferent “outcome” states in which the budget is exhausted.

Thus, a policyπ for active model selection is scored based on its expected regret:

ER(π) =
∑

o∈outcomes(π)

P (o) Regret(C∗(o)) (2.2)

where the sum is over the various “outcomes” of the policy when the budgetb′ has been exhausted.

The objective of active model selection is to find the optimalpolicy π∗ that minimizes Equation 2.2.

As mentioned earlier, since regret can be minimized by choosing the coin with the highest ex-

pected head probability, an alternate (equivalent) way to score a policyπ is to calculate the expected1

maximum expected2 head probability (EMEHP) of the chosen coin:

EMEHP(π) =
∑

o∈outcomes(π)

P (o) max
i
{E(Zi|o)} . (2.3)

Note that both “expected” are required as the first expectation1 is over possible outcomes of the

policy, while the second expectation2 is over the head probability distribution of the chosen coin.

Under this EMEHP score, the objective of active model selection is to find the optimal policyπ∗

that maximizes Equation 2.3. Since maximizing head probability is more intuitive than minimizing

Bayesian regret, maximizing Equation 2.3 is usually an easier objective to remember for active

model selection.

The two objective functions, Equations 2.2 and 2.3, consider the probability of reaching an

outcome state in which the budget has been exhausted. Each outcome state corresponds to seeing

some non-negative number of heads and tails on the coins in the set. A benefit of using the Bayesian

formulation is that the probability of reachinganystate is well defined. Specifically, the probability

of reaching a state can be computed using the prior density functions over the coins and the posterior

densities that result after each coin flip outcome. For example, if we let fi(Zi|ph, qt) denote the

posterior density over coinCi’s head probability after observingp heads andq tails onCi, then the

probability of seeing the outcome where coinCi turns up heads twice followed by a tail on coinCj

is:

E(Zi|fi(Zi)) × E(Zi|fi(Zi|1h)) × [1− E(Zj |fj(Zj))] (2.4)

Thus, at any point in time, we use the expected head probability of a coin as a point estimate

of the current probability of that coin turning up heads whenflipped. Calculating transitions in

5

this way, we can compute the probability of reaching any state using strictly the density functions

{f1(Z1), . . . , fn(Zn)}.

2.2.1 Simplifying Assumptions

Coin Ci’s head probability is represented as a random variableZi ∈ [0, 1]. We assume thatZi

is a Beta random variable with density functionfi(Zi) = W (α, β) (Zi)
α−1(1 − Zi)

β−1 (here

W (α, β) is a normalizing constant andα andβ are two positive hyperparameters that define the Beta

distribution). For a Beta(α, β) distribution, the mean isµ = α
α+β

while the variance isσ2 = µ(1−µ)
α+β+1 .

Loosely speaking, whenα (β) is much larger thanβ (α), it means that a coin is likely to have a

high (low) head probability. On the other hand, when bothα andβ are 1, the distribution over head

probabilities is uniform. As we have an independent Beta distribution for each coin, we useαi and

βi to denote the specific hyperparameters for coinCi.

One attractive property of the Beta distribution is that it is computationally simple to calculate

posterior densities. If coinCi’s initial head probability distribution isBeta(αi, βi), then after ob-

servingp heads andq tails on coinCi, its posterior density is justfi(Zi|ph, qt) = Beta(αi +p, βi +

q). Thus, the Beta hyperparameters can be viewed as simple frequency counts for a random variable

with two possible outcomes.

Although the formal description allows for any coin costs, we will assume that the costs are

uniform: S(Ci) = 1 ∀ i, and that the budgetb is a positive integer. Finally, as we are studying

active model selection because of its relationship to budgeted learning, we are typically interested in

values ofb that are not much greater thann (typically b = n× k, with k a small positive integer), as

most budgeted learning algorithms will act reasonable whenb is much larger thann. In fact, in the

case whereb is very large relative ton, even a simple policy (e.g. purchasing every feature of every

instance) will yield a training set that can produce an accurate classifier, and so these scenarios are

not of great interest from a budgeted learning point of view.

2.2.2 An Example Policy

Figure 2.1 shows an example of a policy for a two coin problem with identical Beta(1,1) priors, a

budget of two, and uniform coin costsS(Ci) = 1. Each transition in the policy is labelled with

its probability of occurrence, and the Beta densities over the coins are updated after each transition.

Here left branches correspond to head outcomes and right branches correspond to tail outcomes.

Notice that the policy is contingent, as the coin that is flipped on the second time step depends on

the outcome of coinC1’s initial flip. The policy in Figure 2.1 has four outcome states corresponding

to the leaves of the tree, and has an EMEHP of7
12 , which can be verified using Equation 2.3.

6

1/2 1/2

2/3 1/3 1/2 1/2

C
1

C
2
 C

1

(3,1),(1,1)

 Choose C
1

(2,2),(1,1)

 Choose C
1

(1,2),(1,2)

 Choose C
2

 Choose C
2

(1,2),(2,1)

(2,1),(1,1) (1,2),(1,1)

(1,1),(1,1)

Figure 2.1: An example of a policy forb = 2, n = 2, and uniform priors

2.2.3 Mapping to Budgeted Learning

As mentioned in Section 2.1, active model selection is highly related to budgeted learning because

it mimics the pure exploration phase (i.e., purchasing features of labelled training data), followed

by the one-time reward phase (i.e., the classification accuracy of the final learned classifier). In

addition to this relationship, we can also show that optimalactive model selection is equivalent to

optimal budgeted learning of a bounded active classifier, with some assumptions. Specifically, given

a binary class Y andn binary features{Ri}i=1..n for a classification task, assumeP (Ri = 1|Y =

0) = 0 ∀i, let all features have unit cost, and assume the bounded active classifier can collect

only one feature (i.e.,bC = 1). Then the best feature to use for the bounded active classifier is:

arg maxRi
P (Ri = 1|Y = 1). Set coinCi to be featureRi, Zi to beP (Ri = 1|Y = 1), and let

flipping coinCi be equivalent to purchasing featureRi on a randomY = 1 instance. Then a policy

π∗ that maximizes the expected head probability of the chosen coin (Equation 2.3) also maximizes

the expected accuracy of the chosen bounded active classifier.

2.3 The Markov Decision Process Formulation

Active model selection can be formulated as a finite Markov Decision Process [25] consisting of

a set of statesS, a set of actionsA, a reward functionR, and a transition functionT . Specif-

ically, we identify a states ∈ S of the MDP by the remaining budgetb′, and by the collection

of Beta hyperparameters over the coins. That is, a state is a2n + 1 element vector of the form:

〈b′, α1, β1, . . . , αn, βn〉. The complete set of reachable states corresponds to all thepossible pos-

terior Beta distributions that can occur over then coins by spending some portionm of the original

budgetb, with m ≤ b. Since no more actions can be taken once the budget is exhausted, the terminal

states are those in whichb′ = 0. In general we denote the starting state bys0, and denote the state

encountered on theith time step bysi.

The set of actions in the MDP corresponds to then different coins that can be flipped, where

7

actionaci
∈ A denotes flipping coinCi. The reward functionR(s, a, s′) specifies the reward of

taking actiona from states and reaching states′. For the coins problem, the reward received when

reaching any non-terminal state (i.e. where the remaining budget is positive) is zero, while the

reward at a terminal state is the maximum expected head probability over the coins.2 We useri to

denote the immediate reward received on theith time step.3

In many MDPs, the reward at future time steps is valued less than immediate reward, and so a

discount factorγ ≤ 1 is used to multiply future rewards to reduce their value. In the coins problem,

future rewards are no less valued than immediate rewards (infact theonly reward that matters is

the one received on the last time step), and so we haveγ = 1 in our MDP formulation. Finally,

the transition functionT (s, a, s′) specifies the probability of reaching states′ after taking action

a from states. Due to our Bayesian formulation,T (s, a, s′) is conveniently given by the Beta

distributions over the coins. For example,T (Beta(4, 2), aCi
, Beta(5, 2)) is just the probability of

coin Ci turning up heads:P (Ci = heads) = E(Zi) = 4/6. As the transition function specifies

probabilities, we often useP (s, a, s′) in place ofT (s, a, s′).

2.3.1 Value Functions

An advantage of the MDP formulation is that the true long-term value of states can be quantified

using avalue function. Specifically, a value functionV π : S → < for a policyπ measures the total

expected reward accumulated from any statest when followingπ:

V π(st) = E

(

∞
∑

i=0

(γiri+t+1|π, st)

)

. (2.5)

With the value function notation, we know that a states is preferable to a states′ if we can achieve

greater expected reward froms when following an optimal policy:V π∗

(s) > V π∗

(s′). Given this

relationship, we often use the value function notation to compare values of different states.

2.3.2 Simple Results

Using the value function notation of the previous section, we can derive the following intuitive

properties concerning active model selection. Both results can be obtained using induction on the

budget (and proofs can be found in Appendix A). These resultsare helpful because they can be used

to establish an upper or lower bound on the optimal value of a states using the optimal value of a

related states′. In addition, these results can be used as starting points for deriving more complex

properties of the coins problem (e.g., Proposition 2 can be extended to relate states that have fewer

thann− 1 matching coins).

2This choice of reward function assumes we are using the EMEHP objective as in Equation 2.3. We could also use the
expected regret objective in Equation 2.2, and this would change our reward function to give Regret(C∗(o)) at the terminal
states. Since it is easier to think of maximizing rather than minimizing rewards, our EMEHP-based reward function is usually
more intuitive than the regret version.

3With the understanding thatri = 0 for any time stepi that is past a terminal state, since such a state can never be
reached.

8

Proposition 1 A head is always better than a tail.Assume all coins have unit cost, lets be any

non-terminal state, and assume some coinCi is flipped ins. If s+hi denotes the next state in which

a head outcome is observed, ands+ti denotes the next state in which a tail outcome is observed,

thenV π∗

(s+hi) ≥ V π∗

(s+ti) .

Proposition 2 The more heads the better.Given any states: (b′, α1, β1, . . . αi, βi, . . . αn, βn),

consider another statês : (b′, α1, β1, . . . αi + 1, βi, . . . αn, βn) which is identical tos except that

one additional head has been observed on coinCi. Then,V π∗

(ŝ) ≥ V π∗

(s) .

2.4 Existing Algorithms

2.4.1 The Optimal Policy

Since the coins problem is an MDP, several techniques can be used to solve for the optimal policy

exactly [28]. For example, a bottom-up dynamic program can use the Bellman optimality equation

to learnV π∗

, the expected value of each state under an optimal policy:

V π∗

(s) = max
a

∑

s′

P (s, a, s′)[R(s, a, s′) + γV π∗

(s′)] (2.6)

Beginning at the next-to-end states in whichb′ = 1 and performing a backward sweep toward the

initial state whereb′ = b, the optimal value functionV π∗

can be completely determined. With

the known transition and reward functions, the optimal policy π∗ then follows immediately via

greedy one-step lookahead. Unfortunately, the state spaceof active model selection grows exponen-

tially with b andn, making it intractable to compute the optimal policy using exact methods such

as dynamic programming. A natural alternative is to performapproximate dynamic programming

via Reinforcement Learning, which we consider in detail in Section 2.6. Although Reinforcement

Learning has not been applied to the coins problem previously, [18] has considered some simple

heuristic policies which we review next.

2.4.2 Round Robin (RR)

The most intuitive spending policy is to allocate flips evenly over the coins, proceeding in a round-

robin fashion. Whenb = n×k for an integerk, and all coins have unit cost, RR will flip each of the

n coinsk times. Despite its fair distribution of flips, the ratio of RR’s expected regret to the optimal

policy’s expected regret can be made arbitrarily large [19]. Fortunately, more effective policies than

RR are known.

2.4.3 Biased Robin (BR)

The BR algorithm repeatedly flips a coinCi until a tail outcome occurs. Once a tail is observed,

BR moves to the next coin,Ci+1, and repeats the process. (Of course when the last coinCn turns

up tails, BR moves back to the first coinC1.) This simple algorithm is well known in statistics as

9

C
1

C
2
 C

1

〈b=3, (5,1), (4,1), (2,1), (2,1)〉

C
1
 C

2
 C

2
 C

3

Figure 2.2: The optimal policy for the state〈b = 3, (5, 1), (4, 1), (2, 1), (2, 1)〉 under unit coin
costs. Notice that the optimal policy involves interactions between three of the four coins (e.g., coin
C2 should be flipped afterC1 turns up tails, and coinC3 should be flipped afterC2 turns up tails).
Since the SCL score forC1 does not consider how flippingC2 orC3 could helpC1, it underestimates
the value of flippingC1, and SCL takes a suboptimal action from this state.

“Play the Winner” [23] and has been previously studied as a sampling method for clinical trials [13].

Its performance on the coins problem has been very strong in the case of identical starting priors.

Despite its competitive performance, BR is a suboptimal policy. In fact, we can show that the

number of states from which BR takes a suboptimal action can be made arbitrarily large:4

Proposition 3 Given any positive integerg ≥ 1, there exists a problem withn=(g+2) Beta(1, 1)

coins, and budgetb=(2n+3) such that the BR policy takes a suboptimal action from at least g states.

2.4.4 Single Coin Lookahead (SCL)

The SCL algorithm computes the EMEHP (Equation 2.3) of the policy that devotesall remaining

flips in the budget to a single coinCi. The coin that yields the policy with highest EMEHP is

flipped once, and then SCL repeats the previous calculation with its reduced budget (and updated

density functions) to choose the next coin to flip. Like BR, SCL has strong performance, but is

still suboptimal. In particular, SCL suffers in situationswhere multiple coins must interact heavily

to produce the optimal policy. This occurs because SCL computes a score for coinCi without

considering how the remainingn − 1 coins could interact withCi to improve its policy. To make

this concrete, Figure 2.2 provides an example of a state where SCL takes a suboptimal action because

it does not consider interactions among its coins. These deficiencies in the simple strategies offered

by RR, BR and SCL motivate the need for a more robust policy that we consider next.

4Although such a result may help in proving the non-approximability of BR, it does not show non-approximability by
itself. The reason is that the number of suboptimal actions is made arbitrarily large, but the probability of reaching states in
which these actions occur is not considered.

10

2.5 Reinforcement Learning Background

The MDP formulation of the coins problem brings with it the possibility of using Reinforcement

Learning techniques to develop effective spending policies. This section provides a brief introduc-

tion to RL, with a focus on the RL techniques that we employ later in this chapter when attempting

to learn low-regret policies. We direct the interested reader to [28] for more details on any of the

techniques discussed here.

2.5.1 Overview

Reinforcement Learning is a collection of techniques for learning (optimal) behaviour in sequential

decision problems. In RL, an agent interacts directly with its environment and receives signals of

reward as it takes actions. The goal is to develop a policy fortaking actions that maximizes expected

reward. The key characteristic that distinguishes RL from other learning methods (e.g. supervised,

semi-supervised) is that the agent learnson its ownby taking actions and directly observing the

resulting rewards that are produced by the environment. With no explicit teacher or labelled training

examples required, Reinforcement Learning is bounded mainly by the amount of environmental

interaction available to the agent.

2.5.2 Learning versus Planning

A common distinction made in RL is betweenlearningmethods andplanningmethods. Planning

methods require a known environment model (i.e. known transition and reward functions) and

operate on simulated experience from this model. On the other hand, learning methods do not know

the true environment model. Instead, they learn from “real”experience that they observe while

acting in real-time in their environments. (Since the transition probabilities and the rewards are

known in the active model selection task, we are faced with anRL planning problem.) An advantage

of the planning problem is that experience is inexpensive togenerate. Using only the model, large

amounts of training episodes can be generated for the RL agent to test actions in. Furthermore, since

the optimal policy can be defined in terms of the optimal valuefunction:

π∗(s) = arg max
a

∑

s′

P (s, a, s′)[R(s, a, s′) + γV π∗

(s′)] (2.7)

the RL agent only needs to learn the optimal value function — with the known environment dy-

namics (P (s, a, s′) andR(s, a, s′)), it can then calculate the optimal policy using greedy one-step

lookahead.

2.5.3 Learning the Optimal Value Function Using Temporal Differences

There are many methods for learning the optimal value function, including value iteration, Monte

Carlo methods, and temporal difference learning [28]. We focus on temporal difference learning

11

[27] in this thesis. Temporal difference learning is applicable to multi-step prediction problems in

which the target value to be learned is observed gradually, as partial values comprising the target

become available over time (just as rewards gradually accumulate in an MDP). The basis of temporal

difference learning in an MDP is to shift the existing value estimate for a states toward the newly

observed values that occur over time. For example, suppose we take actiona from statesi, reach

statesi+1 and produce an immediate rewardri+1. In this case, a particular temporal difference

learner, known as TD(0), uses the learning rule:

V (si)← V (si) + α(ri+1 + γV (si+1)− V (si)) (2.8)

to adjust its estimate ofV (si), with α a parameter controlling the learning rate. The TD(0) rule ad-

justs its estimate toward the one-step return, observed onestep after leaving statesi. By contrast, the

general temporal difference algorithm, known as TD(λ), considers allj-step returns (forj ∈ [1,∞))

that are observedj-steps after leaving statesi. To incorporate allj-step returns in a simple, on-line

fashion, TD(λ) augments the one-step return in Equation 2.8 with aneligibility trace. Specifically,

TD(λ) maintains a positive, real-valued eligibility tracegs for each states that indicates how re-

centlys was visited. (Intuitively, at the beginning of an episode, all eligibility traces are initialized

to zero). By maintaining this eligibility trace, TD(λ) retains a record of which states have been vis-

ited previously and are therefore eligible to receive some credit for the current one-step return. Thus,

after taking actiona from statesi and observing next statesi+1 and rewardri+1, TD(λ) performs

the following learning sequence forall statess ∈ S:

gs ← gs + 1 if s = si (2.9)

V (s)← V (s) + α(ri+1 + γV (si+1)− V (si))gs (2.10)

gs ← λγgs (2.11)

Hereλ ∈ [0, 1] is a real-valued parameter that controls how the variousj-step backups are averaged

together. Notice that whenλ = 0, all weight is assigned to the one-step backup, and the TD(λ)

equations reduce to the simpler TD(0) learning rule. On the other hand, settingλ to an intermediate

value such as 0.7 will assign some weight to each of the observedj-step returns, so that at the end

of an episode, the value estimate for an observed state will have been adjusted toward a weighted

sum of allj-step returns observed after that state.

To learn the value function for a policyπ, an RL agent can use temporal difference learning

while it experiences episodes of the MDP. For example, an RL agent can take actions according to

π, and update its value function using a temporal difference learning rule after each state transition.

This process of updates continues over multiple episodes ofthe MDP, gradually improving the value

function estimate forπ.

Under appropriate technical assumptions [28], the TD(0) rule (and the general TD(λ) algorithm)

will converge toV π for any policyπ given that an RL agent chooses its actions according toπ. In

12

particular, to learn the value function forπ, the TD learning updates should be distributed according

to the states that would be encountered while followingπ. As stated previously, we are interested

in learning the value function for the optimal policyπ∗. Since this policy isunknown, an RL agent

cannot act with it directly to generate the appropriate distribution of TD updates. However, it can

still learn the optimal value function by acting according to a policy that is greedy in the limit of

infinite exploration (GLIE) [25]. A GLIE policy performs every action from every state an infinite

amount of times but reduces to a greedy policy in the limit. Since all actions are explored from

every state, when a GLIE policy gets greedy in the limit, it isguaranteed to be an optimal policy

π∗. Thus, an RL agent following a GLIE policy and using TD(λ) is guaranteed to learn the optimal

value functionV π∗

in the limit. Fortunately, a temporal difference learner with a GLIE-type policy

can converge toV π∗

in a finite number of episodes in practice (see [28] for examples).

2.5.4 The Need for Function Approximation

The TD rules discussed so far assume that the value function is tabular, permitting exact representa-

tion of the value of every state in the state space. When state spaces are extremely large, however,

it is impractical computationally to assume the RL agent canproperly explore all states, and store a

full tabular value function in memory. The standard solution is to utilize a function approximator to

represent the value function, thereby allowing for an update to the value of states to affect the value

of other similar states. With a well-constructed function approximator, a value function over a large

state space may be learned by visiting only a fraction of the total number of states in the space. The

tabular temporal difference rules (from the previous section) can be re-derived to specify an update

to a parameterized function rather than to a single tabular value. For instance, consider the popular

linear function approximator:

V (s) = ~θ · ~ds (2.12)

where~θ is a vector of (learnable) parameters, and~ds is a vector of features for states. For this linear

function approximator, the TD(0) learning rule is

~θ ← ~θ + α[ri+1 + γV (si+1)− V (si)]~dsi
. (2.13)

On the other hand, the general TD(λ) algorithm maintains a vector of eligibility traces~g (one trace

for each learnable parameter), and its learning sequence for the linear function approximator is:

~g ← λγ~g + ~dsi
(2.14)

~θ ← ~θ + α[ri+1 + γV (si+1)− V (si)]~g (2.15)

Just as in the tabular case, these TD learning rules are applied after each transition from the current

statesi to the next statesi+1. We next describe a specific linear function approximator that is often

used in RL.

13

Figure 2.3: An example of tile coding over a two dimensional feature space. The feature space is
outlined in bold, and two different tilings cover the space,with the position of each tiling offset by
a small amount.

2.5.5 Tile Coding: a Linear Function Approximator

In tile coding, a group of tilings (i.e., grids) are laid overa feature space, with each tiling consisting

of a set ofh cells. The tilings are identical in size, but each tiling’s position is offset by a small

amount, so that each tiling covers the feature space in a different way (see Figure 2.3). Each cell

hi contains a real-valued (learnable) parameterθi. The value of a states is formed by a linear

combination over all the cells:

V (s) =
∑

i

θidsi
(2.16)

where the coefficientdsi
for cell i is 1 if states is located in the cell, and 0 otherwise. Since the

feature vector~ds for states consists entirely of ones and zeros, the value ofs is just the sum of the

cell-valuesθi for all cellsi which contains.

The cell-values are modified by learning rules (such as Equation 2.13) as the RL agent acts in its

environment. Moreover, since states that are nearby in feature space will occupy some of the same

cells, these learning rules will adjust the value function estimate for several related states at once.

As we expect states which are nearby in feature space to have similar value function estimates, this

generalization can greatly speed up learning in large statespaces.

An advantage of tile coding is that there is great degree of flexibility in controlling how general-

ization occurs. For example, generalization can be controlled by the set of features used to represent

the states, the number of different tilings laid over the space, as well as the shape and size of the in-

dividual cells. One can even choose to use several differentfeature sets for tile coding, and thus have

a separate tile coding for each feature set. This requires laying a separate group of tilings over each

one of these feature spaces. In this case, the value of a stateis formed by summing all cell-values

that contain the state, across all the different tile codings.

14

Table 2.1: Free parameters inε–greedy, tile coding TD(λ)

Parameter Description

α step-size for learning
ε exploration probability
λ weighting of n-step returns
γ discount factor

α–sched schedule to decreaseα
ε–sched schedule to decreaseε

~ds features in function approximation
tile–shape dimensions of each tile

num–tilings density of tiles

2.6 Adapting RL for Active Model Selection

To apply RL to the coins problem, we attempt to learn the optimal value function with several sep-

arate RL agents. Each agent uses a unique set of features for function approximation (described in

detail below), and gains the necessary experience by actingin a large number of simulated episodes

generated from the known environment model. Each agent usestile coding as its function approx-

imation method, and employs a TD(λ) learner using an epsilon-greedy (GLIE-type) policy. Com-

bining TD(λ) with a linear function approximator (such as tile coding) is attractive because upper

bounds have been established on the mean squared error of thelearned value function, under ap-

propriate assumptions [29]. As noted in the RL background sections, the number of free variables

that must be manually set for a TD(λ) tile coding agent is extensive. Table 2.1 contains a complete

listing of these free variables. When designing our RL agents, we explored a wide range of values

for the variables, including various choices for the probability of exploration (ε), the weight of n-step

backups (λ), and the features (~ds).

To collect features for function approximation, we gathered the obvious candidates (e.g. the Beta

hyperparameters, the remaining budget, the means and standard deviations of the coins), along with

some more subtle attributes (e.g. confidence intervals, budget based confidence intervals, modified

lookaheads, variation among the coins, security of the bestlooking coin). We found these features

to be relevant because they affected the optimal coin decision when we studied the optimal policy

for small versions of the coins problem. Although we tested numerous combinations of features, we

focus on five feature sets that are representative of the general trends observed. For each one of the

five sets, Table 2.2 gives the names of the differentfeature groupsthat are included in the set. (The

interested reader should refer to Appendix B.1 to see exactly which featuresare included in each

feature group.) For our experiments of the next section, we trained five different TD(λ) tile coding

agents, where each agent used one of the five feature sets for its function approximation.

15

Table 2.2: Feature sets used for approximating the value function

Set Number Feature Groups Included In Set

1 Budget, Beta hyperparameters
2 Budget, Means and Standard Deviations
3 Budget, Confidence Interval Stats
4 Budget, Mean Stats, Confidence Interval Stats
5 Budget, Lookahead Stats, Confidence Interval Stats

Table 2.3: Expected regret of various policies

Policy (n=5, b=15) (n=8, b=16) (n=10, b=20)

BR 0.05669 0.07544 0.07210
SCL 0.05413 0.07342 0.07211

RL(set1) 0.05747 0.07830 0.07473
RL(set2) 0.05791 0.07896 0.07390
RL(set3) 0.05555 0.07528 0.07385
RL(set4) 0.05545 0.07464 0.07248
RL(set5) 0.05537 0.07507 0.07280

2.7 Empirical Results

To test the effectiveness of our RL agents on active model selection, we conducted experiments

on three problems of increasing difficulty, where each initial coin prior was a uniform Beta(1, 1).

Our five RL agents were given 1.8 million training episodes for the two smaller problems, and 2.8

million for the larger problem. The expected regret (Equation 2.2) was calculated for BR, SCL, and

the policies learned using our RL agents. For this first set ofexperiments, we used TD(0) agents.

The results are shown in Table 2.3.

The results indicate that for all problems considered, either BR or SCL produced the smallest

expected regret. In fact, no RL policy is able to beat either of the heuristic policies in the case of

ten coins and a budget of twenty, and no RL policy is able to beat SCL onanyof the problems. We

have observed that on even larger problems (e.g. ten coins and a budget of thirty), BR beats SCL

and RL policies easily. The results of the experiments reveal that despite the extensive number of

states observed during training, the RL policies are not generalizing well enough between states to

beat the simpler policies.

In our next set of experiments, we tested the effect of varying λ for the TD(λ) learner. Figure 2.4

shows the results of varyingλ when using the fifth set of features for function approximation on the

n = 8, b = 16 problem. For all values ofλ considered, the policies learned by RL do only slightly

better than BR and are inferior to SCL. The difference between the various TD(λ) learners is not

dramatic, but the expected regret is lowest with an intermediate value ofλ = 0.5.

16

0 0.25 0.50 0.75 1.0
0.073

0.0735

0.074

0.0745

0.075

0.0755

0.076
Expected Regret Comparison (n=8,b=16)

Lambda

E
xp

ec
te

d
R

eg
re

t

RL(set 5)
BR
SCL

Figure 2.4: Various values of lambda — SCL still superior to RL

A possible explanation for the lower performance of RL is that not enough training episodes

are being experienced. Additional training should permit an RL agent to increase its exploration

of the state space, and yield a better policy. To test the effect of increased training, we conducted

experiments on then = 10, b = 20 problem in which we varied the number of training episodes

from two and a half million up to an even more generous four anda half million. Learning took place

with a TD(0.5) learner, using one of the strongest RL featuresets we tested, set number five. The

downward sloping trend of Figure 2.5 suggests that increased training does improve the resulting

policy; however, even after four million episodes, the expected regret of the RL policy is still larger

than BR’s or SCL’s.

For further comparison, we consider the training time and memory required by BR, SCL, and

the RL policy after four and a half million training episodes. The memory considered is only the

policy specific storage (i.e., above and beyond the basic elements such as the Beta hyperparameters

and the budget, that are generally required by all policies). Examining Table 2.4, we see that even

using almost 800 MB of main memory, RL does not gain a significant advantage over the virtually

memoryless BR and SCL routines.

As these experiments show, the performance, speed, and low memory requirements make the

simper BR and SCL policies preferable to the use of Reinforcement Learning. Although it should be

possible for an RL agent to do better than these heuristic policies, the experimental results indicate

that (at least) more cleverly designed features or a better type of function approximator will be

required to achieve this.

17

2.5 3 3.5 4 4.5
0.072

0.0721

0.0722

0.0723

0.0724

0.0725

0.0726

0.0727

0.0728
Expected Regret Comparison (n=10,b=20)

Number of RL Training Episodes (in millions)

E
xp

ec
te

d
R

eg
re

t

RL(set5)
BR
SCL

Figure 2.5: Various amounts of training — simple policies still superior to RL

Table 2.4: Resources used by each policy on n=10, b=20

Policy Training time (mins) Memory Used (MB)

BR 0 0
SCL 0 0

RL(set 5) 630 760

Perhaps the clearest argumentagainstusing RL for active model selection (and hence general

budgeted learning) is the opportunity cost of conducting the necessary training. That is, although

experience is easy to generate, the time and memory used to train RL agents could be equally well

spent running a bottom-up dynamic program (as in Section 2.4.1) that solves for the optimal value

of states. The dynamic program could compute the optimal policy from some select set of states in

the same amount of time it takes a Reinforcement Learning agent to complete training. In effect, the

optimal actions from this select set of states could be easily combined with the BR or SCL policies to

lower their regret even further, and make it yet more difficult for RL methods to compete with these

heuristic policies on active model selection. Overall, in the absence of better features for function

approximation, these results suggest that the more tractable heuristic policies should be used instead

of RL when considering the higher-dimensional and even morecomplicated problem of budgeted

learning.

18

2.8 Unsuccessful Approaches

We have experimented with several other algorithms for active model selection which have not

performed particularly well. We collect these negative results in this section, and briefly describe

the algorithms and their shortcomings so that future research on active model selection can avoid

these approaches and focus on more promising techniques.

2.8.1 Supervised Learning of a Classifier

It is possible to apply standard supervised learning techniques to learn a classifier for active model

selection. Here the classifier implements a policy for active model selection by taking the Beta hy-

perparameters and the remaining budget as input, and returning the index of the best coin to flip as

output. We used a dynamic program to generate the training data required for learning. Unfortu-

nately, the dynamic program can only generate labelled datawhen the budget and number of coins

is small, making it difficult to learn a classifier that can be applied to the more interesting (large)

problems. In our experiments, we used training data to learnaxis-parallel and oblique decision trees

[10] and found that even on small problems, the learned classifiers had higher expected regret than

simple policies such as BR.

2.8.2 Search

Blind search algorithms such as depth-first search can clearly find the optimal solution to the coins

problem, albeit with time complexity on the order of(2n)
b. Nevertheless, we tested a depth-first

search in the obvious way: truncating the lookahead depth toa reasonable level, and backing up

heuristic estimates ofV π∗

(s) for all statess at the search horizon. The implementation was used

in an on-line manner (similar to standard two player game tree search [25]) where a new search

was conducted to the horizon level after each action was taken and the resulting next state observed.

The search experiments confirmed that one does not require full lookahead to achieve reasonable

performance. In fact, on the small and medium size problems tested, a lookahead ofb/2 steps was

fairly competitive with SCL. Of course, when the number of coins grows large, lookaheads become

increasingly expensive and cannot be done to any effective depth, limiting the use of blind search

for active model selection.

2.8.3 Optimal Two Coin (OTC)

In addition to search, we experimented with the optimal two coin algorithm. The OTC algorithm

breaks up a large problem into several smaller, abstract problems that it can solve optimally. It then

uses the solution to these abstract problems to choose an action for the original problem. Specifically,

givenn coins and a budget ofb, OTC considers several abstract problems, each of which retain the

budgetb, but have only two coins from the original set ofn. As there are

(

n
2

)

possible pairs of

19

coins, OTC computes an optimal policy for

(

n
2

)

abstract problems. It then selects the abstract

problemAbest whose optimal policyπ∗
Abest

has the highest EMEHP, and it takes the first action of

policy π∗
Abest

. After observing the outcome of the action, the Beta distributions and the budget are

updated, and a new set of

(

n
2

)

abstract problems are solved to determine the next action totake.

To make the algorithm efficient,all possible two coin problems that can be encountered in the

originaln coin, budgetb problem are solved optimally off-line (prior to running OTC) by a dynamic

program. With only two coins involved, the dynamic program is quite fast and can typically compute

the solutions to all abstract problems in a few seconds. Unfortunately, performance of OTC falls be-

hind BR, particularly on problems with a large number of coins. Whenn is large, the optimal policy

often involves interactions between many of the coins, and OTC is unable to consider interactions

of more than2 coins. Although using abstraction for active model selection may hold promise, our

experiments with OTC show that a more clever type of abstraction will be required to be effective.

2.9 Summary

In this chapter, we explored the problem of active model selection. From a machine learning stand-

point, active model selection is interesting because it is asimpler version of budgeted learning. The

tight relationship between active model selection and budgeted learning has been described in pre-

vious research [17, 18], and also highlighted in this chapter. A particularly interesting property is

that both problems have finite, episodic MDP formulations. As a result, Reinforcement Learning (a

collection of techniques for developing intelligent behaviour in MDPs) appears to hold promise for

solving budgeted learning. This chapter takes a first step toward testing this hypothesis, by exten-

sively training several RL agents using different featuresfor function approximation on the active

model selection task. Our experiments demonstrate that simple heuristic policies are able to achieve

lower expected regret with far less computation than the learned RL policies. Our results provide

empirical evidence to the machine learning researcher thatin the absence of more sophisticated func-

tion approximation (i.e., without better features or a better type of function approximator), applying

RL techniques to the higher dimensional and more complex problem of budgeted learning will prove

ineffective. Moreover, the experimental results reinforce the effectiveness of simple, heuristic poli-

cies for budgeted learning. We thus concentrate on heuristic approaches in the next chapter, when

we consider budgeted learning a bounded active classifier.

20

Chapter 3

Budgeted Learning a Bounded
Active Classifier

3.1 Introduction

3.1.1 A Motivating Example

Consider a doctor using a classifier to diagnose patient disease. The features of the classifier will

typically be the results of medical tests such as X-rays, MRIs, or blood work on the patient. Due to

the costs associated with running these tests, it is unrealistic to assume that the classifier will know

the value of all features during classification. Instead, the doctor may be given a budget of $100 to

treat each patient, and the classifier can actively spend this $100 to collect some features on which

to base its classification. Since this classifier actively collects features and operates under a hard

budget, we refer to it as a “bounded active classifier” (BAC) [9].

Learning this $100 BAC will be an expensive proposition, because a complete training instance

requires running all medical tests on a patient with a known disease. Here, the hospital may have

only $10 000 to allocate tolearn the best $100 classifier. That is, only $10 000 are available to

collect the features for labelled training instances. Faced with these dual budget constraints on the

learner and the classifier, how should the machine learning researcher spend the $10 000 collecting

features of labelled training instances so as to learn the most accurate $100 BAC?

3.1.2 Objective and Outline

The previous example demonstrates the real-world problem of budgeted learning a bounded active

classifier. This chapter considers the problem in detail. More precisely, we study classification tasks

in which feature values are initially unknown to the learnerand classifier, and can be acquired at a

cost. The learner is given a pool of labelled but otherwise unknown training examples, and it must

decide how to spend its fixed learning budgetbL acquiring features of training instances so as to

produce the most accurate active classifier that spends at most bC per instance.

Before investigating our problem, we provide some background material on active classifiers in

21

Section 3.2. Following this review, we present the formal problem description for budgeted learning

a bounded active classifier, as well as some complexity results. We also place our problem in the

MDP framework, which allows us to describe the (intractable) optimal algorithm and to improve its

running time (Section 3.4). The main contribution of the chapter is the description and empirical

comparison of several tractable purchasing algorithms that the learner can employ. Sections 3.5

and 3.6 describe the details of these purchasing algorithms. Our experimental results (Section 3.7)

demonstrate that when the learning budget is small, the obvious “round robin” algorithm (purchasing

every feature of every instance until thebL budget is exhausted) is problematic. As well, we show

that our alternate learning strategies are able to outperform round robin on a variety of real-world

datasets.

3.2 Background: Bounded Active Classifiers

3.2.1 Definition of an Active Classifier

An active classifier (AC) is a classifier that can actively purchase the value of unknown features be-

fore making its classification decision. Given some partially specified instance (e.g.〈x1, ?, ?, x4〉),

an active classifier can either output a class labely, or it can choose to gather more information by

requesting the value of an unspecified feature (e.g.X2 or X3). In general, the active classifier can

recur indefinitely, continually purchasing unknown features for its current instance (as long as it can

afford to pay for these features). Let us assume that we have abinary classification task in which

there arer total features{Xi}i=1..r and two classes (Y= + and Y= −), with the domain of feature

Xi denoted bydom(Xi), and with an unknown feature value denoted by “? ”. Then, formally, an

active classifier is a function:

AC : {dom(X1) ∪ {?} × dom(X2) ∪ {?} × . . .× dom(Xr) ∪ {?}} → {+,−, 1, . . . r} (3.1)

where an integer outputi indicates the request for the unknown featureXi, and an output of

+ or− indicates a (final) classification decision. Contrast an AC with the traditional passive classi-

fier (PC) that cannot request additional information. Sincea PC can only output a class label based

on the given feature values, it is poorly suited to tasks where features are initially unknown but can

be acquired for a cost. To represent an AC, we can use a decision tree as in Figure 3.1. Notice that

each interior node of the tree corresponds to a purchase of some feature, while a terminal (leaf) node

corresponds to the AC’s classification decision. As an example, if a test instance descends down

the leftmost branch of the AC in Figure 3.1, then the AC must pay Cost(X2) + Cost(X7) for the

features it acquires before returningY = +.

3.2.2 Bounding Active Classifiers

Many real-world tasks place a hard budget on the value of features that can be collected at classifi-

cation time (e.g., a doctor who must diagnose patients usingat most $100 worth of tests). In these

22

X
2

X
7

X
1
 Y=+

Y = _

Y=+ Y = _

X
2
 = + X

2
 = _

X
7
 = + X

7
 = _

X
1
 = + X

1
 = _

Figure 3.1: An example of an active classifier when the features and class label are binary

cases, aboundedactive classifier (BAC) is required. A BAC with boundbC is an active classifier

that spends at mostbC for any test instance.

To score a BACB, we consider its expected misclassification error over the distribution of

labelled instances:

Q(B) =
∑

x,y

P (x, y) L(B(x), y) (3.2)

whereL(i, j) denotes the misclassification error of classifying an instance asi when its true class

is j. Let All(bC) denote the set of all bounded active classifiers that spend atmostbC per instance.

We will typically be interested in the optimal bounded active classifier fromAll(bC), which is the

one that minimizes the expected misclassification error:

BAC∗ = arg min
B∈All(bC)

Q(B) . (3.3)

In fact, when we present our formal problem description for budgeted learning a bounded active

classifier in Section 3.3, the ultimate goal is to produce this BAC∗. Previous research [9] has shown

that it is possible to PAC-learn this BAC∗ by using a straightforward dynamic program that has

sufficiently accurateestimates of the following distributions:

P (Y = y|X = x
∗) (3.4)

P (Xi = xi|X = x
∗) (3.5)

wherex
∗ is any partially specified feature vector with at mostbC dollars worth of feature values

specified. As we describe formally in the next section, our problem involves learning BAC∗ when

we have only alimited learning budgetwith which to estimate the two aforementioned sets of

distributions.

23

3.3 Formal Description

The “budgeted bounded-active-classifier learner”,BBACL, is given the (non-negative) costC(Xi) ∈

<+ of acquiring each individual featureXi of any single specified instance1 and the loss matrix

L = [`i,j] whose(i, j) element specifies the penalty for returning the classyi when the true class is

yj ; by convention we assumèi,i = 0 and`i,j > 0 for i 6= j. BBACL also knows the total amount

the learner can spendbL ∈ <
+, and how much the resulting active classifier can spend per instance

bC ∈ <
+.

At any time, theBBACL can see the currentm× (r+1) “tableau”, whose rows each correspond

to an instancei ∈ {1, . . . ,m} and whose firstr columns each correspond to a feature, and whose

r + 1st column is the class label. Initially, only the class labelis specified; the otherm × r entries

are all unknown. In general, we will letx(j)
i refer to the initially unknown value of theith feature

of the jth instance. At any point,BBACL can perform thex(j)
i “probe” to determine the value

of x
(j)
i , at costC(Xi). This also reducesBBACL ’s remaining budget frombL to bL − C(Xi).

Once this budget reaches zero,BBACL stops collecting information and returns a bounded active

classifier which corresponds to a decision tree of bounded depth [6]. Our goal is to produce BAC∗,

the bounded active classifier that has minimal expected misclassification error and spends at most

bC collecting features per instance (see Equation 3.3).

3.3.1 Simplifying Assumptions

Recall from Section 3.2.2 that in order to PAC-learn BAC∗ we require accurate estimates of distribu-

tions 3.4 and 3.5. In order to tractably estimate these distributions under our finite learning budget,

we will make some simplifying assumptions. Firstly, the obvious frequentist approach of maintain-

ing simple frequencies for probabilities is problematic, because many conditioning events will not

occur given the sparsity of data. Instead, we will take a Bayesian stance by assuming that there

is a prior distribution over labelled instances before seeing any data. In addition to this Bayesian

approach, we will make the Naı̈ve Bayes assumption, which meansP (x
(j)
i) is independent ofx(j)

k

(for k 6= i) as we know the value of the classY = yj .2

Hence, if instancej is labelled with class+, and featureXi has domain size|Xi| = w, we

will model the distribution of thew multinomial parameters forx(j)
i as a Dirichlet distribution [11]:

Dir(α
(i)
1,+, . . . , α

(i)
w,+), with Dirichlet parametersα(i)

j,+ > 0. (Although technically it is thew multi-

nomial parameters that are Dirichlet distributed, we will still write x
(j)
i ∼ Dir(α

(i)
1,+, . . . , α

(i)
w,+) to

simplify notation.) These Dirichlet parametersα
(i)
j,+ are unrelated to the ones for negatively labelled

instancesα(i)
j,− and also unrelated to the Dirichlet parameter values for other featuresXh, for h 6= i.3

1We assume that these costs are independent of each other, bothwithin and across instances. Moreover, if any test costs
C(Xi) = 0, we can simply gather that information for each instance and then consider the resulting reduced problem where
C(Xi) > 0 for all remainingXis.

2Note that Näıve Bayes models often produce good classifiers even for datasets that violate this assumption.
3Thus, we maintain a single Dirichlet distribution for each〈 feature, class-value〉 pair.

24

Initially, we will assume that each such distribution is uniform Dir(1, . . . , 1). If we later see a sam-

pleT with 29 Y = + instances withXi = + and14 Y = + instances withXi = −, the posterior

distribution forx(j)
i for a newY = + instance would be Dir(1+29, 1+14). The mean probability

for Xi = + here would beP (Xi = +|T) = 30/(30 + 15) = 2/3.

In general, if a variableX ’s prior distribution isX ∼ Dir(α1, . . . , αw), then

P (X = i) =
αi

∑

k αk

(3.6)

If we then observe a sampleT that includesai instances ofX = i, thenX ’s posterior distribution

remains a Dirichlet, with new parameters

X|T ∼ Dir(α1 + a1, . . . , αw + aw) . (3.7)

In the formal description given earlier in this section, a learning probe of the formx(j)
i specifies

the feature to probe (Xi) and the specific instance in the tableau (instance j) on which to perform

the probe. However, because of our Naı̈ve Bayes assumption, we can treat all instances with the

same class label identically. Thus, rather than querying specific instances, we only consider learning

probes of the form(i, y) that request theith feature of a randomly chosen instance in the tableau

whose class label isy.4 (By convention, this process selects the value of an(i, y) feature value that

has not been seen before.) Finally, for our work we will assume a constant misclassification cost

`ij = 1 for i 6= j and`ii = 0.

3.3.2 Complexity Results

Unfortunately, the problem of budgeted learning a bounded active classifier is NP-hard in general.

In fact, the reduction follows from the active model selection task we studied in Chapter 2. More

precisely, Madani et al. [19] proves the following (active model selection) task is NP-hard: given a

set of coins with known prior distributions and a fixed total number of flips, decide when to flip which

coin to decide which coin has the highest head probability. Our framework inherits this negative NP-

hardness result. (Identify each coinCi with a binary featureXi, where the head probability of coin

Ci corresponds to the probability the class is true givenXi is true,P (Y = +|Xi = +); we also

let P (Y = +|Xi = −) = 0 for all features.) In addition, [9] shows that computing thebest active

classifier is NP-hard in general, even if we know the entire distribution. Our framework inherits that

negative result as well.

3.4 The MDP Formulation

Budgeted learning a bounded active classifier is a sequential decision making problem: the learner

sequentially specifies which feature-class pair to purchase from the tableau, and receives a one-time

4In other words, to make a purchase the learner only has to select a feature and a class – not a specific instance in the
tableau.

25

reward (the expected misclassification error of the learnedBAC) once the learning budget has been

exhausted and the final learned BAC is applied. The task can becompletely described as a finite,

episodic Markov Decision Process with a (finite) set of statess ∈ S, a (finite) set of actionsa ∈ A, a

reward functionR(s), and a transition functionT (s, a, s′). In fact, the mapping is very similar to the

one described in Chapter 2. Each state of the problems ∈ S is identified by the remaining learning

budget (denoted byb′L), and by the posterior Dirichlet distributions over all thefeature-class pairs.

This representation of a state encapsulates all the information that has been learned so far about the

various feature-class pairs. We identify the initial states0 as the one with full remaining learning

budget (b′L = bL), and with the Dirichlets set to the (given) prior distributions. On the other hand,

the terminal states are those in which the remaining learning budget is insufficient to make any more

purchases (b′L < C(Xi) ∀i), and has thus resulted in a final set of posterior Dirichlet distributions.

As in Chapter 2, we usesi to denote the state encountered on theith time step.

The space of possible actions corresponds to every distinctfeature-class pair that the learner can

purchase from the tableau. For the reward function, we useR(s) to denote the immediate reward

received in states.5 R(s) is zero whenevers is a non-terminal state (i.e. no intermediate reward).

On the other hand, ifs is a terminal state, the reward received is the expected misclassification error

of the best BAC that can be learned from the posterior Dirichlet distributions ins:

R(s) = min
B∈All(bC)

∑

x,y

P (x, y|s) L(B(x), y) iff s is a terminal state (3.8)

Since all reward is delayed until the final time step, our problem has a discount factor ofγ = 1. In

terms of notation, we will useri to denote the immediate reward accrued on theith time step.

Finally, the transition functionT (s, a, s′) specifies the probability of a particular feature pur-

chase taking on a particular value. These transition probabilities are given by thecurrent Dirich-

let distributions over the feature-class pairs. For instance, suppose we purchase featureXi on

an instance whereY = +, and our current Dirichlet distribution for that feature-class pair is

Xi|+ ∼ Dir(1, 4, 3). Then the probability of transitioning to the next state which hasXi|+ ∼

Dir(1, 5, 3) is the probability ofXi taking on its second value (xi2) given a positive class label:

P (Xi = xi2 |Y = +) = 4/(1 + 4 + 3) = 1/2. With S, A, R, andT specified, we have a complete

MDP formulation for budgeted learning a bounded active classifier. The MDP formulation allows us

to use the notation of policies and value functions. In our case, a policyπ : S → A specifies which

action the learner should take (i.e., which feature-class pair the learner should purchase) given the

current state. As well, the value functionV π(st) specifies the expected reward accrued from state

st when following policyπ. In this chapter, we define the value function for a policyπ as:

V π(st) = E

(

∑

i=0

(γiri+t|π, st)

)

. (3.9)

5This reward notation is slightly different than the one usedin Chapter 2; we make this slight notation change in this
chapter strictly to simplify the proof of some upcoming results.

26

Notice that this definition is trivially different from the definition in Chapter 2 (Equation 2.5), be-

cause here we include the immediate reward received in statest as part ofV π(st). This slightly

different value function definition simplifies the proof of some upcoming resultswithout changing

our problem in any way.

3.4.1 The Optimal Learning Policy

As our problem is a finite Markov Decision Process, there exists a deterministic optimal policy

for spending the learning budget [28]. The optimal learningpolicy is the one that minimizes

the expected1 expected2 misclassification error of the final bounded active classifier. The first

expectation1 is over the set of possible Dirichlet distributions produced by the learner’s purchases,

and the second expectation2 is over the possible labelled instances(x, y) that can occurgiven the

resulting Dirichlets. Mathematically, the optimal learning policyπ∗ is defined as:

π∗ = arg min
π

∑

i∈Outcomes(π)

P (i)
∑

x,y

P (x, y|i) L(BAC∗
i (x), y) (3.10)

where each “outcome” corresponds to a terminal state in which our learning budget has been fully

exhausted and has resulted in posterior Dirichlet distributions over the feature-class pairs. (Notice

that the optimal BAC for each outcome state is contingent upon the probabilities that have been

learned, and thus we writeBAC∗
i to denote the optimal BAC with respect to the probabilities learned

in outcomei.)

This optimal learning policyπ∗ can be computed via a bottom-up dynamic program. To see

this, note that we can compute the optimal value function (V π∗

(s)) for all possible outcome states

s where the learning budget has been exhausted, and then use these to compute the value for all

possible “predecessor” states where there is only $1 left inthe learning budget, and then continue

this backward sweep toward the initial states0. Unfortunately, the number of outcome states (and

hence the computational complexity of the naı̈ve dynamic program) has a prohibitive lower bound:

Proposition 4 Let |Xi| denote the domain size of featureXi, |Y | denote the number of classes,

t = |Y |
∑

i |Xi| − 1, and each feature has unit cost. Then the bottom-up dynamic program must

compute the value ofΩ

(

(

bL+t
bL

)bL (
bL+t

t

)t 1√
t

)

outcome states.

We improved this näıve dynamic program by reducing the number of states whose value must be

solved for. Below we show an interesting way to achieve this reduction by exploiting the equivalence

of two “permuted” states under the conditional independence assumption.

Definition 1 A proper permutationfor a featureXi with w domain values is a bijective function

f : [1, w] → [1, w] that applies the same reordering of thew parameters for every Dirichlet

distribution onXi.

Example 1 Let

(Xi|Y = 0) ∼ Dir(4, 2, 7), (Xi|Y = 1) ∼ Dir(3, 8, 5)

27

Table 3.1: Reduction in computation time using Proposition5

bL bC Features Domain Size Naı̈ve Improved

2 4 6 4 161 sec 65 sec
3 2 4 3 888 sec 432 sec
4 3 4 3 8280 sec 3360 sec

Then aproper permutationfor featureXi is:

(Xi|Y = 0) ∼ Dir(7, 2, 4), (Xi|Y = 1) ∼ Dir(5, 8, 3).

Proposition 5 Assume the Naı̈ve Bayes assumption holds, and consider any two statessa and sb

that have equal values ofbL and are such that the Dirichlets of statesa can be made equal to the

Dirichlets of statesb by specifying a set ofr proper permutations, one for each featureXi. Under

these conditions,V π∗

(sa) = V π∗

(sb), andπ∗(sa) = π∗(sb).

This proposition allows us to improve the naı̈ve dynamic program by reusing the computed value

of a statesa for properly permuted versions ofsa. The real-time improvement using Proposition 5

is shown in Table 3.1. In the last case (bL = 4, bC = 3), the näıve dynamic program ran out

of memory after more than two hours, while our improved version finished properly in under an

hour. Unfortunately such improvements are not sufficient toremove the exponential complexity of

the dynamic program (recall that this task is NP-complete);therefore, we consider more tractable,

suboptimal approaches in the next section.

3.5 Heuristic Learning Policies

This section summarizes a number of heuristic “budgeted bounded-active-classifier learners”. We

focus on only the data collection part of the algorithms; after collecting$bL worth of feature val-

ues, each of the algorithms then passes its learned (posterior) Dirichlet distributions to a dynamic

program that produces the BAC∗ in Equation 3.3. Our decision to focus on heuristic purchasing algo-

rithms is partially motivated by the results of Chapter 2, inwhich we observed that simple heuristics

were able to outperform more complex methods such as RL, and blind search on the related problem

of active model selection. We note that many of the algorithms that follow are extensions or variants

of heuristics used in other budgeted learning scenarios [17, 18].

3.5.1 Round Robin (RR)

This obvious algorithm simply purchasescompleteinstances until its budgetbL is exhausted. It

draws examples randomly, and so expects to have collected data about members of each classy

in proportion toP (Y = y). If there arer unit-cost features, we expect to know everything about

roughlybL/r instances. Notice RR implicitly assumes all features are equally valuable in learning

the target concept.

28

3.5.2 Biased Robin (BR)

A more selective approach than round robin is to purchase a single feature and test whether or not its

observed value has increased some measure of quality. The biased robin algorithm is more selective

than RR, continually purchasing featureXi as long as it improves quality, and otherwise moving

to featureXi+1 (and of course looping back toX1 after Xr). There are several choices for how

to measure quality or loss; see Section 3.6. Of course, BR must also specify a classy from which

to purchase its desired feature, and it does this by drawing from the class distributionP (Y = y)

on each purchase. As further motivation for this algorithm,[17] found it to be one of the best

approaches for budgeted learning of a passive Naı̈ve Bayes classifier, albeit with a different loss

function. This method also corresponds to the “Play the Winner” approach discussed in [23].

3.5.3 Single Feature Lookahead (SFL)

One would always like to avoid wasting purchases on poor features, especially when faced with a

limited learning budget. This motivates a prediction-based approach, which uses a loss function

to estimate the expected loss incurred after making a sequence of purchases of a single, specified

feature.

SFL uses this prediction based approach, and controls the level of myopia or “greediness” in-

volved by providing an additional parameter,d = the lookahead depth. With a lookahead depth

of d, SFL calculates the expected loss of spending its next$d sequentially purchasing featurei of

instances of classj. That is, if s denotes our current set of Dirichlets ands′ denotes any of the

Dirichlet sets obtained after spendingmin($d, $b′L) purchasing featureXi of Y = j instances, then

the expected loss for(i, j) is:

SFL(i, j) =
∑

s′

P (s′|s) Loss(s′) . (3.11)

SFL determines the feature-class pair(i, j) with lowest expected loss, then purchases the value

of this best(i, j) feature foroneinstance, and updates the Dirichlets based on the observed outcome

of that purchase (and reduces the available remaining budget). It then recurs, using Equation 3.11

to compute the score for all feature-class pairs in this new situation — with its updated Dirichlets

and a smaller budget. This process repeats until the learning budget is exhausted. The lookahead

depthd can be set based on the computational resources available. If only the next one purchase is

considered, then this reduces to the 1-step greedy algorithm. We note that SFL was originally used

in [17, 18] (but with a different loss function).

3.5.4 Randomized SFL (RSFL)

Our experiments show that the SFL algorithm often spends themajority of its probes purchasing a

single discriminative feature-class pair and neglects to explore other potentially good features. This

property can be problematic, particularly when a dataset contains several discriminative features

29

that can jointly yield a more accurate BAC than any single feature by itself. The randomized single

feature lookahead algorithm (RSFL) alleviates this problem by increasing exploration among the

best looking feature-class pairs. The RSFL algorithm is very similar to SFL, as it too calculates the

expected loss in Equation 3.11 for each feature-class pair.However, rather than deterministically

purchasing the pair with the best SFL score, RSFL considers the bestK feature-class pairs and for

each feature-class pair(i, j) in this set, it chooses to purchase featurei of classj with probability:

exp −SFL(i,j)
τ

∑

i,j exp −SFL(i,j)
τ

(3.12)

Here, τ is a temperature controlling exploration versus exploitation. Although we setτ to one

throughout this chapter, we include it in Equation 3.12 to show the relationship to the Gibbs distri-

bution [28]. After experimenting with various values for the number of feature-class pairs,K, we

found thatK = (number of classes) × bc seemed to perform well, particularly when the learning

budget was not much greater than the number of features.

3.6 Loss Functions

As mentioned earlier, several of our algorithms rely on a loss function

Loss : {Dirichlet distributions over feature-class pairs} → < (3.13)

that attempts to measure the quality of a given probability distribution. After experimenting with

several different choices of loss functions, we found Conditional Entropy Loss and Depth 1 BAC

Loss to be effective.6

SFL, RSFL, and the greedy algorithm all use

min
i

∑

x

P (Xi = x)min
y

(1− P (Y = y|Xi = x)) (3.14)

which calculates the expected misclassification error of the best Depth 1 BAC. Since biased robin

needs to detect small changes in a distribution, it tends to perform better with the more sensitive

conditional entropy calculation, which measures the uncertainty of the class labelY given the value

of a featureXi:

−
∑

x

P (Xi = x)
∑

y

P (Y = y|Xi = x) log2 P (Y = y|Xi = x) . (3.15)

The biased robin algorithm uses Equation 3.15 before and after the purchase of featureXi to deter-

mine whether the purchase improved the ability ofXi to predict the classY .

6The obvious loss function is just to use Equation 3.3 to compute the expected error of the optimal BAC. However,
since loss functions can be called several times to decide on asingle purchase, the computational expense of computing
Equation 3.3 is prohibitive.

30

0 10 20 30 40 50 60 70 80 90
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Glass

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

Breast Cancer

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

Figure 3.2: Identical costs and some irrelevant features — RSFL and BR outperform RR

3.7 Experimental Results

To compare the algorithms, we tested their performance on several datasets from the UCI Machine

Learning Repository [12]. We used supervised entropy discretization [8] to discretize datasets with

continuous values. Each dataset was then randomly partitioned into five folds. The algorithms were

run five times, and on each run a single fold was set aside for testing, while the remaining four

were available for purchasing. For each algorithm, we used the average value of these five runs as

the algorithm’s misclassification error on the whole dataset. We repeated this process 50 times to

reduce the variance and get a measure of the average misclassification error. Thus, each point in the

graphs that follow represents 50 repetitions of five-fold cross validation.

In the first set of experiments, all features have unit cost and the datasets contain some irrelevant

features. We set the classifier’s budget tobc = 3, as this is large enough to allow several features to

be used, but small enough to keep computations tractable. All Dirichlets parameters are uniformly

initialized to 1. For reference, each graph also includes a gold standard “All Data” algorithm, which

is allowed to see theentire dataset, and thus represents the best that one can do using the Näıve

Bayes assumption on the data.

Figure 3.2 shows the performance of the algorithms on the Glass Identification dataset: a bi-

nary class problem with nine features whose domain sizes vary between one and three. The four

features that have a domain size of one represent irrelevantinformation that any learning algorithm

(especially one under a constraining budget) should avoid.Both RSFL and BR learn better than the

obvious RR algorithm for all learning budgets considered. In fact, we found the optimalbC = 3

BAC produced by the “All Data” algorithm involves four different features, and these four features

are precisely the ones that RSFL and BR purchase heavily during learning. This is in contrast to the

RR purchasing behaviour that spends equally on all features, despite their unequal predictive power.

Finally, SFL and greedy spend their entire budget on only oneor two features during learning, which

accounts for their low accuracy BACs.

31

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

Iris

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

0 20 40 60 80 100 120 140 160

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

Vote

RR
BR
SFL (depth25)
RSFL (K=2*bc)
Greedy
All Data
RSFL (K=6*bc)

Figure 3.3: Identical costs, no irrelevant features — RR still suboptimal

0 50 100 150 200 250 300 350 400 450 500

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

Heart Disease (Cleve)

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

0 15 30 45 60 75 90 105 120 135 150
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

Pima

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

Figure 3.4: Different feature costs — RSFL and BR dominate RR

The Breast Cancer dataset contains ten features, only one ofwhich is irrelevant to the concept.

This dataset is particularly interesting because nearly all its features are good predictors, but three

features have markedly lower conditional entropy than the rest. To produce the lowest error BAC,

the learning algorithms must discover the superiority of these three features. We find RSFL does

exactly this, spending 20%, 21%, and 32% of its budget respectively on the three strong features. In

comparison, RR spends 10% of its budget on every feature which makes it much more difficult for

it to separate the top features from the rest. BR also performs better than RR for all learning budgets

considered.

The next set of experiments, shown in Figure 3.3, considers datasets without any irrelevant

features. The Iris dataset has only four features and is a three class problem. Given that all four

features are relevant, and thatbC = 3 in this experiment, the optimal BAC requests every feature at

some point in its tree. With only four features to consider, RSFL is able to test them all effectively

and produce better BACs than RR for all budgets considered. BR is also competitive with RR, except

at some of the very low budgets where BR’s exploration model prevents it from ever investigating

some of the features.

32

Figure 3.3 (right) shows another binary class problem, the Vote dataset, that contains 16 features.

Many of these features have similar (high) predictive power, and one feature in particular is nearly

perfectly correlated with the class label. Once again we seethat both RSFL and BR beat RR when

the learning budget is small. RSFL asymptotes after about 50purchases — it spends its budget

finding a few strong features quickly and outputs a fairly lowerror BAC. As expected, at larger

budgets RR collects enough information on every feature to find better candidates for its BAC than

RSFL can. In particular, RR identifies the superiority of the“near perfect” feature more consistently

than RSFL does at larger learning budgets. The graph shows that one can improve the performance

of RSFL by increasing the number of top feature-class pairs,K, that RSFL considers on this dataset

(thereby reducing the chance of RSFL skipping over the near perfect feature). We also observe that

BR’s exploration model is particularly well suited to this task because it is able to collect information

on every feature at larger budgets, which is important on a dataset such as Vote with a large number

of predictive features.

Our final set of experiments involved datasets where the features differed in cost. Both the Heart

Disease dataset and the Pima Indians dataset have known costdata [12], which we scaled (so that

costs were between $1.00 and $10.00) and then used in our tests. The scaled Heart Disease costs

range from $1 to $7, and our tests are run withbc = $7. This dataset represents the worst case for

RR, because the irrelevant features happen to be the most expensive ones. In fact, RSFL achieves

the same error rate after $100 that RR takes $500 to reach. In the Pima dataset, feature costs are

between $1 and $5, and we setbc = $5. The two irrelevant features have cost $1, and the single best

feature is $4. Once again, BR and RSFL dominate RR for all budgets considered.

3.8 Summary

Many standard learning algorithms implicitly assume the features are always available for free, to

both the learner at “training time” and later the classifier,at “performance time”. This chapter ex-

tends those systems by explicitly considering these costs (at both training and performance time),

when the learner and classifier have hard budgets that limit the total value of features that can be col-

lected. In this chapter, we introduce the formal framework for budgeted learning a bounded active

classifier, and present some complexity results for the problem. We also propose a more efficient

way to implement the optimal algorithm, which we prove workseffectively. Moreover, this chap-

ter motivates and defines a variety of tractable learning strategies and shows they work effectively

on various types of data — both with identical and with different feature costs. In particular, we

demonstrated that our proposed strategies can often do muchbetter than the obvious algorithm –

“round robin” – especially when training data is limited.

33

Chapter 4

Related Literature

4.1 Introduction

This chapter reviews some of the relevant literature from the fields of machine learning and sequen-

tial decision making. We divide the review into two parts. The first section highlights the work

related to our main problem studied in Chapter 3, while the second section focuses on work related

to the active model selection task investigated in Chapter 2.

4.2 Budgeted Learning a Bounded Active Classifier

There are a number of different senses of “costs” in the context of learning [31]. Our research

considers two of these: the costs paid by the learner to acquire the relevant information at training

time to produce an effective classifier, and also the costs paid by the classifier, at performance

time, to acquire relevant information about the current instance. We impose hard constraints on the

expenses paid by the learner, and on the total cost of tests that can be performed per instance by the

classifier.

Many existing (sub)fields, such as active learning [5] and experimental design [3] (as well as

earlier results such as [17]) focus on only the first of these costs – e.g., bounding how much the

learner can spend to produce an accuratepassiveclassifier. In addition, many of these systems

request theclass labelfor an otherwisecompletely specified instance. Thus they require only a

single quantity per instance. Our problem is the complementof this: class labels are known but

feature information must be purchased (see Figure 4.1). Unlike most of the other models, this

means our work may need to consider the correlations amongstthe many unknown properties of an

instance.

There are numerous other machine learning results that focus on reducing the sample complexity

for learning. Some of these include decision theoretic subsampling [21], on-line stopping rules [26],

progressive sampling [22], and active feature value acquisition [20]. We note that these techniques

differ from our approach because we place a firm prior budget on the learner’s ability to acquire

information, while these approaches typically allow the learner to purchase until some external

34

. . .

Class labels unknown
but can be purchased

Feature values unknown
but can be purchased

X
1
 X

2
 X

3
 X

r
 Y . . . X

1
 X

2
 X

3
 . . . X

r
 Y

Active Learning Budgeted Learning

1 1 0 1 ?

0 1 0 . . . 1 ?

1 0 0 . . . 0 ?

1 0 1 . . . 1 ?

? ? ? . . . ? 1

? ? ? . . . ? 0

? ? ? . . . ? 1

? ? ? . . . ? 1

Figure 4.1: Active learning versus budgeted learning

stopping criteria (for instance, accuracy) is satisfied.

Weiss and Provost [33] recently explored a problem related to one that we encounter in our

overall framework: how to represent the class distributionwhen only a firm budget ofn training

examples can be used. For example, if our budget allows for ten training examples, should we select

five from class one and five from class two, or draw our examplesaccording to the true (underlying)

class distribution? The results in [33] indicate that drawing from the true class distribution is the

best choice for maximizing classifier accuracy when no additional experimentation can be done.

On the other hand, when computational resources are available, Weiss and Provost suggest using a

progressive sampling algorithm to choose the best class distribution. As discussed in Section 3.5,

some of our algorithms (RR and BR) follow the results in [33] by drawing from the true class

distribution when selecting which class to probe. We do not,however, utilize progressive sampling

due to the computational expense, and the relatively small improvement reported in [33] over using

the true class distribution.

Instead of considering the costs paid at learning time, someresearch has concentrated strictly on

minimizing the costs paid by the classifier at performance time. In this vein, both [30] and [9] at-

tempt to produce a decision tree that minimizes expected total cost. However, neither work assumes

an a priori resource bound on the learner, thereby allowing for unconstrained amounts of training

data with which to build these classifiers. Again, our work makes the more realistic assumption that

if data costs money at performance time, it very likely costsmoney at learning time as well.

35

4.3 Active Model Selection

Active model selection was originally introduced in [18], although several similar problems have

been previously studied. The well-known multi-armed bandit problem [23] is concerned with finding

the best object within a set, but rewards are typically accrued throughout, without distinguishing

training from testing phases. By contrast, active model selection gives no reward until the final

coin is selected, and thus more accurately represents the pure training phase of budgeted learning.

Strategies from the adversarial bandit formulation [2] could also be adopted for our problem, but

the adversarial assumption is unnecessarily strong for ourcase, and thus less defensive algorithms

can usually perform better on active model selection. A morerecent bandit-variant, the max k-

arm bandit [4], shares our notion of maximizing asinglereward over a fixed number of sequential

decisions. However, [4] allows the single reward to occur onany time step, as opposed to strictly at

the terminal states.

Duff [7] studied the Bayesian MDP formulation in active model selection as a Bayes Adaptive

Markov Decision Process (BAMDP). That study also considersvarious RL methods to approximate

an optimal policy for BAMDPs, and chooses some of the same types of features for function approx-

imation that we consider in Chapter 2. Moreover, the experimental results concur with our findings,

as [7] also reports a gap between the reward of the learned RL policies and the optimal policy. Be-

sides RL, another potential strategy for active model selection is on-line sparse lookahead [32, 16].

Unfortunately, given the size of the state space, we have found that any tractable (truncated) looka-

head (as in [16]) usually yields a higher regret than the simple BR and SCL policies. It would be

interesting to experiment with the recent ideas from [32] tosee if a selectively grown lookahead tree

could compete with the current heuristic policies.

36

Chapter 5

Conclusions

5.1 Contributions

This thesis examines classification learning when featureshave an acquisition cost, and the learner

and classifier have only finite budgets to spend acquiring features of training and testing instances,

respectively.

Chapter 3 explores this practical problem in detail, and provides the formal problem description.

Other contributions from the chapter include a descriptionof the optimal spending policy for the

learner, as well as a method to effectively reduce the running time of the optimal algorithm. We also

extend prior complexity results to our problem to establishit as NP-hard. Our main contributions

are to propose several heuristic spending policies for the learner, and to test them empirically. The

primary result of this dissertation is two fold. First, our experiments show that the obvious round

robin purchasing policy that spends equally on all featuresis suboptimal — particularly when the

learning budget is small relative to the number of features.Second, we observe empirically that our

alternative purchasing algorithms (i.e. biased robin, randomized single feature lookahead) are able

to outperform round robin on many datasets, both with identical and with different feature costs.

We also make a contribution to general budgeted learning by addressing an open question in the

budgeted learning literature: can Reinforcement Learningtechniques be used to learn an effective

spending policy for the learner? Chapter 2 takes a first step toward answering this question by

working with a simplified budgeted learning problem: activemodel selection. We extensively train

multiple RL agents on active model selection, with each agent using a different combination of

features for function approximation. Our experiments demonstrate that simple heuristic policies

achieve lower expected regret on active model selection than the policies learned using the standard

RL techniques and features we selected. These results suggest that (at least) better features for

function approximation will be required if RL techniques are to be successfully applied to the higher

dimensional and more complex problem of budgeted learning abounded active classifier.

37

5.2 Research Directions

This dissertation has raised several interesting questions for future study. Beginning with the Re-

inforcement Learning investigation in Chapter 2, the most obvious open question is: what feature

space should be used to represent the value function? A limitation of some of the features we used

is that they do not incorporate the synergies that exist between coins (for instance, how the value of

coinC1 increases if coinC2 andC3 are also present in the current set of coins). A feature set that is

able to approximately encode these dependencies may yield more promising results. Another area

of future work is to use RL techniques to effectively learn the BR and SCL heuristic policies.1 With

some of the features we considered (in Appendix B), it istheoreticallypossible for an RL agent to

represent the BR and SCL heuristics; however, we need more than just representation power in order

to tractably learn BR or SCL. Specifically, the feature spacemustgeneralize wellso that a TD(λ)

agent only has to visit a reasonable number of states in orderto learn a complete value function

for the heuristic algorithms. Finding a feature set that canexpress the heuristics while permitting

fast generalization would make RL competitive with BR and SCL (and thus more applicable to the

full budgeted learning problem). Finally, given the low regret behaviour of BR and SCL, it would

be interesting to prove or disprove the approximability characteristics of these heuristic algorithms

under the common case of identical starting priors (this hasremained an open problem since first

posed by [19]).

We turn next to the full problem of budgeted learning a bounded active classifier. Although

some of our proposed algorithms perform well on this problem, they might still be improved using

some simple techniques. In the case of RSFL, for example, it may be better todynamicallychoose

the numberK of top feature-class pairs to randomly select from (rather than fixing this threshold a

priori). Alternatively, we might consider randomly selecting from all feature-class pairs, but with

a decreasing temperature parameterτ , as in [4]. Another research direction is to experiment with

algorithms that go beyond the “Naı̈ve Bayes” assumption, and thus allow the learner to perform

more powerful probes (e.g. requesting featureXi on an instance whereXj = + andY = −).

Related to this, we could consider maintaining additional probability estimates such asP (Xi|Y,Xj)

to incorporate dependencies among the features.

In our work, we have implicitly assumed that it is always worthwhile for the classifier to spend

more on features (up to the budgetbC) if we can reduce our misclassification error. However, in

many practical tasks, the cost of a misclassification error may be less than the cost of acquiring a

feature. In these cases, it makes more sense to build a bounded active classifier that minimizes the

expected total cost per instance2 as opposed to the expected misclassification error. Our framework

can be extended to this case by making some modifications to the dynamic program we use to build

1The motivation is that by learning the value function for these heuristics, an RL agent could then employ an exploratory
action selection policy (during planning) to try and improveupon them.

2Where the total cost per instance is defined as: total cost= (misclassification cost)+ (cost of features purchased)

38

BAC∗ (see [9]).

The cost structure we assume in this work can be quite different from the complex (linked) cost

structure that can exist in practice. For example, a linked cost structure might charge $10.00 for a

blood testXi by itself, but charge only $2.00 for the blood test if it is purchased in combination with

a bone scanXj . For these complicated cost structures, algorithms will have to consider the value of

information of a feature under multiple scenarios (e.g. when purchased by itself, when purchased at

a discount after acquiring linked featureXj , etc.). Finally, the most important direction for future

research is to build upon the empirical results herein to develop algorithms with strong theoretical

guarantees on learning performance.

39

Bibliography

[1] George E. Andrews. The theory of partitions. InEncyclopedia of Mathematics and its Appli-
cations. Addison-Wesley, 1976.

[2] Peter Auer, Nicol̀o Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gambling in a rigged
casino: the adversarial multi-armed bandit problem. InProceedings of the 36th Annual Sym-
posium on Foundations of Computer Science, 1995.

[3] Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: a review.Statistical
Science, 1995.

[4] Vincent A. Cicirello and Stephen F. Smith. The max k-armed bandit: a new model of explo-
ration applied to search heuristic selection. InThe Twentieth National Conference on Artificial
Intelligence (AAAI), 2005.

[5] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan.Active learning with statistical
models. InAdvances in Neural Information Processing Systems 7 (NIPS), 1995.

[6] D. Dobkin, D. Gunopoulos, and S. Kasif. Computing optimal shallow decision trees. In
International Workshop on Mathematics in Artificial Intelligence, 1996.

[7] Michael Duff. Optimal learning: computational procedures for Bayes-adaptive Markov Deci-
sion Processes. PhD thesis, University of Massachusetts Amherst, 2002.

[8] U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classi-
fication learning. InProceedings of the Thirteenth International Joint Conference on Artificial
Intelligence (IJCAI), 1993.

[9] Russell Greiner, Adam J. Grove, and Dan Roth. Learning cost sensitive active classifiers.
Artificial Intelligence, 2002.

[10] David G. Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision trees. In
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI),
1993.

[11] David Heckerman. A tutorial on learning in bayesian networks. In Learning in Graphical
Models. The MIT Press, 1999.

[12] S. Hettich, C.L. Blake, and C.J. Merz. UCI repository ofmachine learning databases, 1998.

[13] David Hoel and Milton Sobel. Comparisons of sequentialprocedures for selecting the best
binomial population. InSixth Berkeley Symposium on Mathematical Statistics and Probability,
1971.

[14] Aloak Kapoor and Russell Greiner. Learning and classifying under hard budgets. InThe
Sixteenth European Conference on Machine Learning (ECML), 2005.

[15] Aloak Kapoor and Russell Greiner. Reinforcement learning for active model selection. In
International Workshop on Utility-Based Data Mining (KDD), 2005.

[16] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for near-
optimal planning in large markov decision processes.Machine Learning, 2002.

[17] Daniel J. Lizotte, Omid Madani, and Russell Greiner. Budgeted learning of naive-bayes clas-
sifiers. InProceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI), 2003.

40

[18] Omid Madani, Daniel J. Lizotte, and Russell Greiner. Active model selection. InProceedings
of the Twentieth Annual Conference on Uncertainty in Artificial Intelligence (UAI), 2004.

[19] Omid Madani, Daniel J. Lizotte, and Russell Greiner. Active model selection. Technical report,
University of Alberta, 2004.

[20] Prem Melville, Maytal Saar-Tsechansky, Foster Provost, and Raymond Mooney. Active
feature-value acquisition for classifier induction. InThe Fourth IEEE International Confer-
ence on Data Mining (ICDM), 2004.

[21] Ron Musick, Jason Catlett, and Stuart Russell. Decision theoretic subsampling for induction
on large databases. InProceedings of the Tenth International Conference on Machine Learning
(ICML), 1993.

[22] Foster Provost, David Jensen, and Tim Oates. Efficient progressive sampling. InProceedings
of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), 1999.

[23] Herbert Robbins. Some aspects of the sequential designof experiments.Bulletin of the Amer-
ican Mathematical Society, 1952.

[24] Sheldon Ross.A First Course in Probability. Prentice Hall, 1997.

[25] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall,
2002.

[26] Dale Schuurmans and Russell Greiner. Sequential pac learning. InProceedings of the Eighth
Annual Conference on Computational Learning Theory (COLT), 1995.

[27] Richard S. Sutton. Learning to predict by the method of temporal differences.Machine Learn-
ing, 1988.

[28] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning. The MIT Press, 1998.

[29] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with
function approximation.IEEE Transactions on Automatic Control, 1997.

[30] Peter Turney. Cost-sensitive classification: empirical evaluation of a hybrid genetic decision
tree induction algorithm.Journal of Artificial Intelligence Research, 1995.

[31] Peter Turney. Types of cost in inductive concept learning. In Workshop on cost sensitive
learning (ICML), 2000.

[32] Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian sparse sampling
for on-line reward optimization. InProceedings of the Twenty-Second International Confer-
ence on Machine Learning (ICML), 2005.

[33] Gary M. Weiss and Foster Provost. Learning when training data are costly: the effect of class
distribution on tree induction.Journal of Artificial Intelligence Research, 2003.

41

Appendix A

Proofs

Preface to Propositions 1 and 2

To simplify the proofs of Proposition 1 and 2, we prove them under the following value function

definition:

V π(st) = E

(

∞
∑

i=0

(γiri+t|π, st)

)

. (A.1)

Note that this definition differs trivially from the one given in Chapter 2, because we include the

reward received for reaching statest as part ofV π(st). This small change in “accounting” simplifies

the proofs of Proposition 1 and 2without changing their effective meaning. Nevertheless, after

observing the way we prove the results here, it is easy to see that both propositions also hold under

the alternate value function definition of Chapter 2.

A.1 Proposition 1

Let s+hi = (b′, α1, β1, . . . αi + 1, βi, . . . αn, βn)

and s+ti = (b′, α1, β1, . . . αi, βi + 1, . . . αn, βn)

We prove the result by induction on the remaining budgetb′. For the base case, letb′ = 0.

Now V π∗

(s+ti) = max

(

α1

α1 + β1
, . . .

αi

αi + βi + 1
, . . .

αn

αn + βn

)

and V π∗

(s+hi) = max

(

α1

α1 + β1
, . . .

αi + 1

αi + βi + 1
, . . .

αn

αn + βn

)

.

Since the lattermax is term by term greater than or equal to the formermax, it follows that

V π∗

(s+hi) ≥ V π∗

(s+ti) for the base case,b′ = 0.

For the inductive step, assume the result holds forb′ ≤ (j − 1), and letb′ = j. We will use

42

s+ti +hk to denote the state resulting froms+ti after coinCk is flipped, turns up heads, and reduces

the budget tob′ = j − 1. We prove the inductive step by considering two mutually exclusive cases.

Case 1:The optimal action to take from(s+ti) is to flip some coinCk 6= Ci.

V π∗

(s+ti) = αk

αk+βk
V π∗

(s+ti +hk) + βk

αk+βk
V π∗

(s+ti +tk) (definition V π∗

(s+ti))

≤ αk

αk+βk
V π∗

(s+hi +hk) + βk

αk+βk
V π∗

(s+hi +tk) (inductive hypothesis)

≤ V π∗

(s+hi) (definition V π∗

(s+hi))

Case 2:The optimal action to take from(s+ti) is to flip coinCi.

V π∗

(s+ti) = αi

αi+βi+1V π∗

(s+ti +hi) + βi+1
αi+βi+1V π∗

(s+ti +ti) (def. V π∗

(s+ti))

≤ αi+1
αi+βi+1V π∗

(s+ti +hi) + βi

αi+βi+1V π∗

(s+ti +ti) (inductive hyp.)

≤ αi+1
αi+βi+1V π∗

(s+hi +hi) + βi

αi+βi+1V π∗

(s+hi +ti) (inductive hyp.)

≤ V π∗

(s+hi) (def. V π∗

(s+hi))

Thus, the result holds for all possible cases, completing the inductive step.

A.2 Proposition 2

The result is proved via induction on the remaining budgetb′. For the base case, letb′ = 0.

Now V π∗

(s) = max
(

α1

α1+β1
, . . . αi

αi+βi
. . . αn

αn+βn

)

and V π∗

(ŝ) = max
(

α1

α1+β1
, . . . αi+1

αi+βi+1 . . . αn

αn+βn

)

.

Since the latter max is term by term greater than or equal to the former max, the base case holds.

For the inductive step, assume the result holds forb′ ≤ (j − 1) and letb′ = j. We will uses+hk to

denote the state resulting froms after coinCk is flipped, turns up heads, and reduces the budget to

b′ = j − 1. We prove the inductive step by considering two mutually exclusive cases.

Case 1:The optimal action froms is to flip some coinCk 6= Ci.

V π∗

(s) = αk

αk+βk
V π∗

(s+hk) + βk

αk+βk
V π∗

(s+tk) (Definition of V π∗

(s))

≤ αk

αk+βk
V π∗

(ŝ+hk) + βk

αk+βk
V π∗

(ŝ+tk) (Inductive hypothesis)

≤ V π∗

(ŝ) (Definition of V π∗

(ŝ))

Case 2:The optimal action froms is to flip coinCi.

V π∗

(s) = αi

αi+βi
V π∗

(s+hi) + βi

αi+βi
V π∗

(s+ti) (Definition of V π∗

(s))

43

≤ αi

αi+βi
V π∗

(ŝ+hi) + βi

αi+βi
V π∗

(ŝ+ti) (Inductive hypothesis)

≤ αi+1
αi+βi+1V π∗

(ŝ+hi) + βi

αi+βi+1V π∗

(ŝ+ti) (Proposition 1)

≤ V π∗

(ŝ) (Definition of V π∗

(ŝ))

Thus, the result holds for both possible cases, completing the inductive step.

A.3 Proposition 3

We use a non-terminal state to obtain the result. Consider a state, Q, in whichb′ = 1, there exists

two Beta(3, 2) coins, and(n− 2) Beta(2, 2) coins. It is easy to verify (using Equation 2.3) that the

optimal action in Q is strictly to flip a Beta(3, 2) coin. To prove the proposition, we show that BR

encounters at leastg different variants of Q in which it chooses to flip a Beta(2, 2) coin.

Let there ben = g + 2 coins, and a budget ofb = 2n + 3. Notice the budget is such that state Q

is guaranteed to occur under BR’s strategy. In fact, Q occursmultiple times because there are

(

n
2

)

distinct ways to place the two Beta(3, 2) coins. We also note that since the number of tails on alln

coins is equal, we are guaranteed that BR will be currently flipping the first coin in the set. Thus,

BR will make a suboptimal decision whenever it reaches stateQ with the first coin being one of the

Beta(2, 2)s. Observe that there are

(

n− 1
2

)

distinct versions of state Q in which the first coin is a

Beta(2, 2). Now the proposition follows from the fact that:

(

n− 1
2

)

= (n−1)(n−2)
2 = (g+1)g

2 ≥ g

for all g ≥ 1.

A.4 Proposition 4

We use two lemmas to aid in the proof. The first is a standard result from the theory of partitions [1]:

Lemma 1 There are

(

n− 1
b− 1

)

ways to express an integern ≥ 1 as the sum of exactlyb positive

integers.

while the second lemma can be derived from the first [24]:

Lemma 2 There are
∑b

j=1

(

n− 1
j − 1

)(

b
j

)

=

(

n + b− 1
b− 1

)

ways to express an integern ≥ 1 as

the sum ofb nonnegative integers.

Let d = |Y |
∑

i |Xi|. Working from the bottom-up, the dynamic program (dp) must begin by calcu-

lating the value of all possible terminal states. Using our Näıve Bayes assumption and the unit cost

of features, each unique terminal state corresponds to a complete allocation of the learning budget

bL over thed Dirichlet parameters. Thus, the number of distinct terminal states (that the dynamic

program has to solve) is equal to the number of ways to expressthe learning budgetbL as the sum

of d nonnegative integers. Using Lemma 2, the dp computes the value of

(bL + d− 1)!

(bL)!(d− 1)!
(A.2)

44

states at the bottom level; using Stirling’s formula on eachfactorial, we get

(bL + d − 1)!

(bL)!(d − 1)!
>

(

bL+d−1
bL

)bL
(

bL+d−1
d−1

)d−1√

2π(bL + d − 1)
√

2πbL

√

2π(d − 1)(1 + 1
11bL

)(1 + 1
11(d−1)

)
>

(

bL+d−1
bL

)bL
(

bL+d−1
d−1

)d−1

2
√

2π
√

d − 1
∈

Ω

(

(

bL + d − 1

bL

)bL
(

bL + d − 1

d − 1

)d−1

(d − 1)
−1

2

)

and the result follows usingt = (d− 1).

A.5 Proposition 5

To prove Proposition 5, the following lemma is required.

Lemma 3 Let the Näıve Bayes assumption hold, and consider any setD of Dirichlets over the

feature-class pairs and a bounded active classifierBACD (with boundbC) constructed fromD.

Given any set of DirichletsD′ whereD′ can be made equal toD by specifying exactly one proper

permutation for each feature, there exists a bounded activeclassifierBACD′ (also with boundbC)

constructed fromD′ such that the expected error ofBACD is equal to the expected error ofBACD′ .

We prove this lemma first, before moving on to Proposition 5. LetP (.)D denote a probability under

D, andP (.)D
′ denote a probability underD′. Let b be a branch ofBACD, which, without loss of

generality, specifies some feature values(Xi = xi,Xj = xj), and has classification labelY = y.

Then the expected accuracy of branchb is

P (Xi = xi,Xj = xj , Y = y)
D

=

P (Xi = xi|Y = y)DP (Xj = xj |Y = y)
D

P (Y = y) =

P (Xi = x′
i|Y = y)D

′ P (Xj = x′
j |Y = y)

D
′ P (Y = y)

wherex′
i is the image ofxi under the proper permutation forXi. Thus we have converted a

branchb of BACD into a new branchb′, where the expected accuracy ofb′ underD′ is the same as

the expected accuracy ofb underD. We can repeat this conversion for each branch ofBACD to get

a set of new branches which, when summed together, have the same expected accuracy asBACD.

Of course, since the expected misclassification error is1−(expected accuracy), the new branches

have the same expected misclassification error asBACD as well.

All that remains to be shown is that the set of new branches forms a valid BAC with boundbC .

To see this, note that we can apply our transformation by doing a preorder traversal ofBACD, where

at each non-leaf node specifying featureXk, we reorder its subtrees using the proper permutation

for featureXk. A reordering of subtrees cannot invalidate the BAC, nor canit increase the bound

45

bC . Once the entire tree has been traversed, we are guaranteed to have applied our transformation to

each feature of each branch, ensuring that each branch has been fully converted. The converted tree

is the desiredBACD
′ .

This completes the proof of the lemma. Now we can prove the original proposition.

Let us adopt the notation thatDsa
denotes the Dirichlets of statesa. Further, letDsa

+ (ijd)

denote the Dirichlets of statesa after observingXi = d on aY = j instance. Finally, letfi denote

the proper permutation for featureXi, anddom(Xi) denote the domain of featureXi.

The proof follows from induction onbL. In the base case,bL = 0. Since no learning budget

remains in statesa or sb, there is no action to take, and hence trivially statesa andsb have the

same (null) optimal action. WhenbL = 0 the value of statesa under an optimal policy is simply

the expected misclassification error of theBAC∗ constructed from statesa’s Dirichlets. By Lemma

3, statesb must have a corresponding BAC with exactly the same expectedmisclassification error.

Furthermore, the value of statesb under an optimal policy cannot be any less, for if it were, then

Lemma 3 implies that statesa must have a corresponding BAC with lower expected error, which

is a contradiction to the definition of BAC∗. Thus statessa andsb have identical values under the

optimal policy for the base case.

For the inductive step, assume the result holds forbL = n − 1, and let statessa andsb have

bL = n. Now consider takingany initial action from statesa, and then following an optimal policy.

Let V π∗

(sa|Xi, Y = j) denote the value of purchasing featureXi on a randomY = j instance

from statesa, and then following an optimal policy. We have:

V π∗

(sa|Xi, Y = j) =

∑

d∈dom(Xi)
P (Xi = d|Y = j)Dsa

V π∗

(Dsa
+ (ijd), bL = n− 1) =

∑

d∈dom(Xi)
P (Xi = fi(d)|Y = j)Dsb

V π∗

(Dsa
+ (ijd), bL = n− 1) =

∑

d∈dom(Xi)
P (Xi = fi(d)|Y = j)Dsb

V π∗

(Dsb
+ (ijfi(d)), bL = n− 1) =

V π∗

(sb|Xi, Y = j)

where the second to last equality follows by an application of the inductive hypothesis, sinceDsa
+

(ijd) can be made equal toDsb
+(ijfi(d)) by using ther proper permutations, one for each feature.

Thus, we have just shown that the value of an action in statesa is equal to the value of the same

action from statesb, when the action is followed by an optimal policy. This implies that the value of

the two states under an optimal policy is equal, and that the two states have identical optimal actions.

This completes the inductive step.

46

Appendix B

Features for RL Function
Approximation

B.1 Feature Groups

The following list describes the features that were used to approximate the value function for our

RL agents in Chapter 2.

Budget

• remaining budget(b′)

Beta Hyperparameters

• αi ∀i = 1..n

• βi ∀i = 1..n

Means and Standard Deviations

• µi ∀i = 1..n

• σi ∀i = 1..n

Mean Stats

• maxi µi

• mini µi

•
∑

i µi

Lookahead Stats

• maxi
αi+b′

αi+βi+b′

•

∑

i

(

αi+b′

αi+βi+b′

)

n

47

Confidence Interval Stats

• maxi (µi + 1.96σi) (95% interval)

• maxi (µi + 1.28σi) (80% interval)

• maxi (µi + 0.67σi) (50% interval)

• maxi (µi + 0.126σi) (10% interval)

•
∑

i(µi + 1.96σi)

•
∑

i(µi + 0.126σi)

• maxi (µi + b′ × σi)

•
∑

i(µi + b′ × σi)

B.2 Alternate Features

This section describes several other features that we experimented with when trying to approximate

the value function for our RL agents. Similar to the results of Chapter 2, these alternate feature were

unable to consistently beat the simple heuristic policies.

48

Table B.1: Other features tested for RL function approximation

Feature Comments

maxi σi

mini σi
∑

i σi

standard dev. of greedy coin
standard dev. of max mean coin

max SCL score on any coin helps simulate SCL
max # of flips on any coin helps simulate RR
min # of flips on any coin helps simulate RR

max # of heads on any coin
min # of heads on any coin
max # of tails on any coin helps simulate BR
min # of tails on any coin helps simulate BR

max |µi − µj |
min |µi − µj |
max |σi − σj |
min |σi − σj |
max |αi − αj |
min |αi − αj |
max |βi − βj |
min |βi − βj |

maxi
αi

βi

mini
αi

βi

max # of identical coins
maxi µi ×maxi σi
∑

i µi ×
∑

i σi

maxi
αi+b′

αi+βi+b′
×maxi σi

∑

i
αi+b′

αi+βi+b′
×
∑

i σi

min # of tails for the max mean coin to lose its max mean spot
min # of heads for a non-max mean coin to become max mean coin

49

