University of Alberta

Library Release Form

Name of Author: Aloak Kapoor
Title of Thesis: Learning and Classifying under Hard Budgets
Degree Master of Science

Year this Degree Granted 2005

Permission is hereby granted to the University of Albertarary to reproduce single copies of this
thesis and to lend or sell such copies for private, schotaricientific research purposes only.

The author reserves all other publication and other rightssisociation with the copyright in the

thesis, and except as herein before provided, neither gsstimor any substantial portion thereof
may be printed or otherwise reproduced in any material fotmatever without the author’s prior

written permission.

Aloak Kapoor
1101 10th Street
Cold Lake, AB
Canada, T9M 1J1

Date:

University of Alberta

LEARNING AND CLASSIFYING UNDERHARD BUDGETS

by

Aloak Kapoor

A thesis submitted to the Faculty of Graduate Studies anaédek in partial fulfillment of the
requirements for the degree Miaster of Science

Department of Computing Science

Edmonton, Alberta
Fall 2005

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recomnwetiget Faculty of Graduate Studies
and Research for acceptance, a thesis entitlattning and Classifying under Hard Budgets
submitted by Aloak Kapoor in partial fulfillment of the regeinents for the degree dMaster of
Science

Russell Greiner
Supervisor

Dale Schuurmans

Peter Hooper
External Examiner

Date:

Abstract

When learning a classifier for a functidgh= f(X), the featuresX, often have an associated cost.
Since resources for feature acquisition are usually filegners and classifiers must be able to act
intelligently under hard budgets. In this thesis, the gead iearner that spends its fixed learning
budgetb;, acquiring features of labelled training instances so agdadyce the most accurate “ac-
tive classifier” that spends at mdst per instance. To produce this fixed budget classifier, the fixe
budget learner must sequentially decide which featureegala collect to learn the relevant infor-
mation about the distribution. We explore several appreache learner can take, ranging from
Reinforcement Learning techniques, to the obvious “rowtin” strategy that spends equally on all
features. We show empirically that round robin is probléan@specially for smalb;), and provide

alternate learning strategies that achieve superior peénce on a variety of datasets.

Acknowledgements

I would like to thank my supervisor, Russell Greiner, for bismstant support, guidance, and seem-
ingly endless supply of good ideas. | am a better person f@ngavorked with Russ the last year.
As well, this thesis could not have been written without tle@eyous financial support provided
by NSERC and iCORE throughout my graduate career. Finallyish to thank the three most

outstanding people | know: my mother, father, and sister.

Table of Contents

1

Introduction 1
2 Active Model Selection 3
2.1 Introduction and Motivation e 3
2.2 FormalDescription 4
2.2.1 Simplifying Assumptions o e 6
222 AnExamplePolicy 6
2.2.3 MappingtoBudgetedLearning 7
2.3 The Markov Decision Process Formulation 7
23.1 ValueFunctions. 8
232 SimpleResults 8
2.4 Existing Algorithms e 9
241 TheOptimalPolicy 9
242 RoundRobin(RR) e 9
243 BiasedRobin(BR) 9
2.4.4 Single Coin Lookahead (SCL) 0. 10
2.5 Reinforcement Learning Background 0oL 11
251 OVerview e 11
252 LearningversusPlanning. oo 11
2.5.3 Learning the Optimal Value Function Using Tempordfddences 11
2.5.4 The Need for Function Approximation. 13
2.5.5 Tile Coding: a Linear Function Approximator 14
2.6 Adapting RL for Active Model Selection 15
2.7 EmpiricalResults e 16
2.8 Unsuccessful Approaches e 19
2.8.1 Supervised Learning of a Classifier 19
2.8.2 Search. e 19
2.8.3 OptimalTwo Coin (OTC) it e i 91
2.9 SUMMAry . ..o e 20
Budgeted Learning a Bounded Active Classifier 21
3.1 Introduction 21
3.1.1 AMotivatingExample o 21
3.1.2 Objectiveand Outline 21
3.2 Background: Bounded Active Classifiers 22
3.2.1 Definition of an Active Classifier. 22
3.2.2 Bounding Active Classifiers 22
3.3 FormalDescription 24
3.3.1 Simplifying Assumptions e 24
3.3.2 ComplexityResults 25
3.4 TheMDP Formulation 25
3.4.1 The Optimal Learning Policy 27
3.5 Heuristic Learning Policies, 28
351 RoundRobin(RR) 28
3.5.2 BiasedRobin(BR) 92
3.5.3 Single Feature Lookahead (SFL) 29
3.5.4 Randomized SFL(RSFL) 9 2
3.6 LossFunctions e 30
3.7 ExperimentalResults e 31
3.8 Summary ... 33

4 Related Literature
4.1 Introduction e e e
4.2 Budgeted Learning a Bounded Active Classifier
4.3 Active Model Selection e

5 Conclusions
5.1 Contributions e e
5.2 ResearchDIrections i i i i i e e e e

Bibliography

A Proofs
Al Propositionl
A2 Proposition2 e
A3 Proposition3
A4 Proposition 4 e e
A5 Proposition5

B Features for RL Function Approximation
B.1 Feature Groups o i e e e e
B.2 Alternate Features e

List of Tables

Free parameters irgreedy, tile coding TDY)
Feature sets used for approximating the value function.
Expected regret of various policieso
Resources used by each policyonn=10,b=20

Reduction in computation time using Proposition5

m W NNNN
= P hWNPR

Other features tested for RL function approximation

List of Figures

A WLWwWw MNP

= AWNPE ORrWNE

An example of a policy fob = 2, n = 2, and uniformpriors
A problematic state forthe SCLpolicy
An example of tile coding in two dimensions
Various values of lambda — SCL still superiortoRL
Various amounts of training — simple policies still supetoRL

An example of an active classifier when the features aastsdhbel are binary . . .

Identical costs and some irrelevant features — RSFL adBperform RR . . .
Identical costs, no irrelevant features — RR still suboal
Different feature costs — RSFL and BRdominate RR

Active learning versus budgeted learning L.

10
14
17
18

23
31
32
32

Chapter 1

Introduction

In classification learning, the goal is to learn a classiferan unknown functior” = f(X) such
that the classifier can predict the class lalié],when given the feature&. In many practical
applications, the features are initially unknown to boté kkarner and the classifier, and must be
acquired at a cost. In these cases,aative classifier that can actively purchase the values of
unknown features before making a classification, shouldrbeéyzed by the learner. Unfortunately,
resources are seldom infinite; real-world tasks typicadlyehfinite budgets for both the learner and
the classifier that limit the total value of features that bancollected. Thus, when feature costs
exist, the machine learning researcher is faced with tHevidig budgeted learning problem:

Given a pool of training instances with known class labelsunknown feature values, decide
how to spend the fixed learning budgetpurchasing features of training instances so as to produce
the most accurate active classifier that can spend at megier instance.

We refer to this problem as “budgeted learning a boundedectassifier”. In this thesis, we
investigate the aforementioned problem in detail. We cotreée on developing strategies for the
learner that sequentially select which feature to purclghgen the remaining; budget and the
results of the previous purchases. Developing an effesfpending strategy can be challenging
because the true utility of the learner’s purchases is nowvkruntil theb;, budget is exhausted and
the final bounded active classifier is learned and appliethodigh the topic of budgeted learning is
not entirely new [17, 18], our work is unique because it pdalseunds on both the learner and the
classifier and thus incorporates costs at training andhtgtne. By contrast, the previous budgeted
learning research considers only costs at training timd, adlows the classifier to see all feature
values for free. The dual budget framework we consider is thésis is a better model of many
real-world problems.

We begin our investigation in the next chapter, in which weeta simplified version of our
problem and allow the learner to use Reinforcement Learfihg techniques to learn a purchasing
policy. We demonstrate empirically that despite extens@&iming, the RL methods that we employ
are inferior to simple, heuristic policies. In Chapter 3, @lore the full problem of budgeted

learning a bounded active classifier. We provide empirigaence that the obvious round robin

spending policy (purchasing every feature of every ingamatil theb; budget is exhausted) is
problematic, particularly when the budget is small relativ the number of features. We describe
alternate learning strategies, and show that they significautperform round robin on a variety
of real-world datasets. Finally, Chapter 4 provides a sunferelated literature, while Chapter 5
summarizes contributions and discusses future work. We thatt versions of Chapter 2, 3, and 4
have been published [15, 14].

1ACM and co-author Russell Greiner kindly grant permissionetase material in [15]. The use of material in [14] is
granted with kind permission of Springer Science and Busiiedia and co-author Russell Greiner.

Chapter 2

Simplified Budgeted Learning:
Active Model Selection

2.1 Introduction and Motivation

To gain insight into the budgeted learning issue, we comsaida@mpler problem known aactive
model selectiof Loosely speaking, active model selection involves findimghest object among
a set ofn, given a finite budget of probes with which to freely explorel dest the objects, where
a probe of an object returns a sample value drawn from thattbjdistribution. After the budget
is exhausted, a single object must be selected, and a opedimard is received that represents the
expected value of the chosen object. This formulation aléww pure exploration of the objects
with the budget, and delays all reward until the final timgstéotice that this problem corresponds
to the training phase of budgeted learning, in which featwfelabelled training instances can be
purchased in any way, with a single one-time reward (i.e.cthssification accuracy) being received
once the budget is exhausted and the final learned classifaplied. In both the active model
selection problem and the budgeted learning problem, tla¢igdo decide how to spend a finite
number of probes in order to get the information required aethe best decision when the budget
is exhausted.

In addition to the above relationship, previous researéh fihs shown that algorithms which
perform well on active model selection are also effectiveaomariant of our budgeted learning
problem. As a result, we use active model selection as a lovestsional testbed to prototype the
performance of strategies for budgeted learning.

In the remainder of this chapter, we give the formal desicnipodf active model selection, and
show that the problem can be viewed as a Markov Decision Bso@®¢DP). The MDP framework
allows us to describe the (intractable) optimal algorittand derive some new results about the
problem. The main contribution of the chapter is to investtigthe performance of standard algo-

rithms from Reinforcement Learning on active model setectWe perform a variety of tests using

1we also refer to active model selection as the “coins problesn’téasons that will become clear during the formal
problem statement in Section 2.2.

Reinforcement Learning techniques, and show that bettéompeance is achieved with less com-
putational effort using simpler, existing policies. In silag, we discuss other approaches to active

model selection that appear promising, but are also infésithe existing heuristic policies.

2.2 Formal Description

The input to the active model selection problem is:

e Asetofnindependent Bernoullirandom variablgs, , . . ., C,, } with unknown success prob-
abilities. For simplicity of exposition, we can think of §eC; as a set of coins, where the

unknown success probability is the probability of the ceiming up heads when flipped.

e A set ofn prior distributions (i.e., density functions), indicajithe uncertainty over the true
head probability of each of the coins. That is, thénead probabilityof each coinC; is
itself treated as a random variabtg, and a prior density functiorf;(Z;) is provided as a

distribution over the possible head probabilities of oGjn
e Asetofn (known) cost{S(C4), ... ,S(C,)} for flipping the coins, wher&(C;) € R*.
¢ A finite (known) budgeb > 0 that can be spent flipping the coins.

Given these inputs, the active model selection problemgads as follows. Any coif; can be
flipped at any time, as long as the remaining budget, dengtéd batisfied’ > S(C;). We use the
outcome of each coin flip to update the density function ferfipped coin. For example, if coifi;
is flipped and turns up heads, then its density function istgatitof; (Z;|C; = heads); of course, a
similar update occurs for a tails outcome. (We describe xhetdormat of the density function and
the updates in our simplifying assumptions below.) Coirsfipd density updates continue until the
budget is exhausted’ (= 0). We can view the sequence of flips and updates as a learniitgl pie
which we improve our information about the true head prolitas of the coins. Once the budget
is exhausted, the learning period is over, and a single cost e chosen — this coifi* (and only
this coin) will be used in all future flips, for which we will ceive rewards for head outcomes. Of
course, even whebi = 0, we will still not knowthe true head probability for this (or any) coin, and
so will not know whether coirC* actually has a better head probability than the other coiihe
best we can do given the observed coin flip outcomeis to choose the coin that minimizes our
future regret of selecting it. To do this, we define a new randariableZ,,,.. to be the maximum
head probability over all of the coing,,.. = max;(Z;), and now the Bayesian regret of choosing

coin C; given coin flip outcomes is:

RegretCi) — /Z (Zumas — 2:) [[£5(Zil0) dZ 2.1)
j=1

Notice that we minimize regret by choosing the coin whosenr(gasterior) head probability is
largest [19]. Let this maximum mean coin 68 (o) = arg max¢, E[Z;|o]. Thus, when the budget
is exhausted and coin flip outcome$iave been observed;* (o) shouldbe selected.

Before introducing the overall (regret-related) objeetiunction we wish to minimize, we must
first introduce the notion of a policy. A policy for active model selection specifies which coin to
flip at each time step. Formally, a policy is a mapping (V', f1(Z1), ..., fn(Zn)) — [1,n] that
specifies the index of the coin to flip, given the current stifned by the remaining budget and
the posterior distributions over the coins. Since the tedvery coin flip is stochastic, a policy for
flipping the coins can result iseveraldifferent “outcome” states in which the budget is exhausted
Thus, a policyr for active model selection is scored based on its expectgétre

ER(1) = >~ P(o)RegretC*(o)) (2.2)
o€outcomes(r)
where the sum is over the various “outcomes” of the policy mihe budged’ has been exhausted.
The objective of active model selection is to find the optipwlicy 7* that minimizes Equation 2.2.

As mentioned earlier, since regret can be minimized by dngafie coin with the highest ex-
pected head probability, an alternate (equivalent) wagdoesa policyr is to calculate the expected
maximum expectedhead probability (EMEHP) of the chosen coin:

EMEHP(7) = > Plo) max {E(Zi[o)} . (2.3)

oC€outcomes(m)

Note that both “expected” are required as the first expextaiis over possible outcomes of the
policy, while the second expectatipis over the head probability distribution of the chosen coin
Under this EMEHP score, the objective of active model si&lads to find the optimal policyr*
that maximizes Equation 2.3. Since maximizing head prditais more intuitive than minimizing
Bayesian regret, maximizing Equation 2.3 is usually anezashbjective to remember for active
model selection.

The two objective functions, Equations 2.2 and 2.3, comsikde probability of reaching an
outcome state in which the budget has been exhausted. Etmmmustate corresponds to seeing
some non-negative number of heads and tails on the coins seth A benefit of using the Bayesian
formulation is that the probability of reachiramy state is well defined. Specifically, the probability
of reaching a state can be computed using the prior densittitins over the coins and the posterior
densities that result after each coin flip outcome. For exempwe let f;(Z;|pn, ¢:) denote the
posterior density over coi@;’s head probability after observingheads and tails onC;, then the
probability of seeing the outcome where céipturns up heads twice followed by a tail on caif
is:

E(Zi|fi(Z:)) x E(Zi|fi(Zi|1n)) x [1 = E(Z;]f;(Z;))] (2.4)
Thus, at any point in time, we use the expected head probabilia coin as a point estimate

of the current probability of that coin turning up heads wiiipped. Calculating transitions in

this way, we can compute the probability of reaching anyestzing strictly the density functions
{fl(Zl)a s 7f’n(Zn)}
2.2.1 Simplifying Assumptions

Coin C;'s head probability is represented as a random variable [0,1]. We assume thaf;
is a Beta random variable with density functign(Z;) = W(a, 3) (Z;)* (1 — Z;)~! (here

W («, 8) is anormalizing constant andand(are two positive hyperparameters that define the Beta

distribution). For a Beta, 3) distribution, the mean ig = e while the variance is? = i(jgﬂ
Loosely speaking, whea (3) is much larger tha® («), it means that a coin is likely to have a
high (low) head probability. On the other hand, when hetinds are 1, the distribution over head
probabilities is uniform. As we have an independent Bettibigion for each coin, we use; and
(; to denote the specific hyperparameters for ¢gin

One attractive property of the Beta distribution is thasitbmputationally simple to calculate
posterior densities. If coi;’s initial head probability distribution iBeta(«;, 5;), then after ob-
servingp heads and tails on coinC;, its posterior density is just (Z;|ps, ¢:) = Beta(a; +p, 8; +
q). Thus, the Beta hyperparameters can be viewed as simpleefiey counts for a random variable
with two possible outcomes.

Although the formal description allows for any coin cost® will assume that the costs are
uniform: S(C;) = 1 Vi, and that the budgétis a positive integer. Finally, as we are studying
active model selection because of its relationship to btedblearning, we are typically interested in
values ofb that are not much greater thar{typically b = n x k, with k& a small positive integer), as
most budgeted learning algorithms will act reasonable whermuch larger tham. In fact, in the
case wher# is very large relative ta, even a simple policy (e.g. purchasing every feature ofyever
instance) will yield a training set that can produce an aateuclassifier, and so these scenarios are

not of great interest from a budgeted learning point of view.

2.2.2 An Example Policy

Figure 2.1 shows an example of a policy for a two coin probleith vdentical Beta(1,1) priors, a
budget of two, and uniform coin costfC;) = 1. Each transition in the policy is labelled with
its probability of occurrence, and the Beta densities dvercbins are updated after each transition.
Here left branches correspond to head outcomes and righthoea correspond to tail outcomes.
Notice that the policy is contingent, as the coin that is #ign the second time step depends on
the outcome of coid; 's initial flip. The policy in Figure 2.1 has four outcome &sicorresponding

to the leaves of the tree, and has an EMEHFl%QfWhich can be verified using Equation 2.3.

(1,1),(1.1)

/\

(2,1),(1,2) (1,2),(1,2)
(3 1),(1,1) (2,2),(1,1) (1,2),2,1) (1,2),(1,2)
Choose Cl Choose C1 Choose C2 Choose C2

Figure 2.1: An example of a policy fér= 2, n = 2, and uniform priors

2.2.3 Mapping to Budgeted Learning

As mentioned in Section 2.1, active model selection is igalated to budgeted learning because
it mimics the pure exploration phase (i.e., purchasinguiest of labelled training data), followed
by the one-time reward phase (i.e., the classification acguof the final learned classifier). In
addition to this relationship, we can also show that optiawive model selection is equivalent to
optimal budgeted learning of a bounded active classifieh me assumptions. Specifically, given
a binary class Y and binary feature{ R; };—1.., for a classification task, assun®R; = 1|Y =

0) = 0 Vi, let all features have unit cost, and assume the boundeeeadtissifier can collect
only one feature (i.ebc = 1). Then the best feature to use for the bounded active classfi
argmaxpg, P(R; = 1|Y = 1). Set coinC; to be featureR;, Z; to be P(R; = 1|Y = 1), and let
flipping coinC; be equivalent to purchasing featuRe on a randont” = 1 instance. Then a policy
«* that maximizes the expected head probability of the chosen(Equation 2.3) also maximizes

the expected accuracy of the chosen bounded active classifie

2.3 The Markov Decision Process Formulation

Active model selection can be formulated as a finite MarkoeiSlen Process [25] consisting of
a set of states, a set of actions4, a reward functionR, and a transition functiofl”. Specif-
ically, we identify a states € S of the MDP by the remaining budgét, and by the collection
of Beta hyperparameters over the coins. That is, a stat®is-a 1 element vector of the form:
(', a1, B, ..., an, Bn). The complete set of reachable states corresponds to gibsble pos-
terior Beta distributions that can occur over theoins by spending some portien of the original
budgeth, with m < b. Since no more actions can be taken once the budget is eglatis terminal
states are those in whié¢h = 0. In general we denote the starting statespyand denote the state
encountered on thih time step by;.

The set of actions in the MDP corresponds to thdifferent coins that can be flipped, where

actiona,., € A denotes flipping coirC;. The reward functiomR(s, a, s") specifies the reward of
taking actiona from states and reaching stat€. For the coins problem, the reward received when
reaching any non-terminal state (i.e. where the remainimdpbt is positive) is zero, while the
reward at a terminal state is the maximum expected head lpititp@ver the coing We user; to
denote the immediate reward received onitheime step’

In many MDPs, the reward at future time steps is valued lems itmmediate reward, and so a
discount factory < 1 is used to multiply future rewards to reduce their value hi¢oins problem,
future rewards are no less valued than immediate rewardadtrtheonly reward that matters is
the one received on the last time step), and so we hawel in our MDP formulation. Finally,
the transition functior’(s, a, s’) specifies the probability of reaching stateafter taking action
a from states. Due to our Bayesian formulatiorf(s, a, s’) is conveniently given by the Beta
distributions over the coins. For exampl&,Beta(4,2), ac,, Beta(5,2)) is just the probability of
coin C; turning up headsP(C; = head$ = E(Z;) = 4/6. As the transition function specifies

probabilities, we often us&(s, a, s’) in place ofT'(s, a, s').

2.3.1 Value Functions

An advantage of the MDP formulation is that the true longrteralue of states can be quantified
using avalue function Specifically, a value functiolr™ : S — R for a policy measures the total

expected reward accumulated from any statehen following:

V™(st) = E <Z(7i7“i+t+17778t)> . (2.5)

=0
With the value function notation, we know that a staie preferable to a staté if we can achieve
greater expected reward frosnwhen following an optimal policyV ™ (s) > V™ (s'). Given this

relationship, we often use the value function notation tmpare values of different states.

2.3.2 Simple Results

Using the value function notation of the previous sectioe, ean derive the following intuitive
properties concerning active model selection. Both restdh be obtained using induction on the
budget (and proofs can be found in Appendix A). These reantt$ielpful because they can be used
to establish an upper or lower bound on the optimal value ¢&i@ s using the optimal value of a
related state’. In addition, these results can be used as starting pointdefiving more complex
properties of the coins problem (e.g., Proposition 2 candeneled to relate states that have fewer

thann — 1 matching coins).

2This choice of reward function assumes we are using the EMBEbjettive as in Equation 2.3. We could also use the
expected regret objective in Equation 2.2, and this woulthgle our reward function to give Regi@t{(o)) at the terminal
states. Since itis easier to think of maximizing rather tharimmizing rewards, our EMEHP-based reward function is usually
more intuitive than the regret version.

SWith the understanding that, = 0 for any time stepi that is past a terminal state, since such a state can never be
reached.

Proposition 1 A head is always better than a tailssume all coins have unit cost, lebe any
non-terminal state, and assume some a@jnis flipped ins. If st/ denotes the next state in which

a head outcome is observed, asitf: denotes the next state in which a tail outcome is observed,
thenV™ (sthi) > V7 (stti)

Proposition 2 The more heads the betteGiven any states: (b, a1, 51, - .- ai, Biy- - - Qn, Bn),
consider another statg : (b, a1, 61,...a; + 1,0;, ... a,, Bn) Which is identical tos except that

one additional head has been observed on ¢inThen,V™ (§) > V™ (s)

2.4 Existing Algorithms
2.4.1 The Optimal Policy

Since the coins problem is an MDP, several techniques caisdxto solve for the optimal policy
exactly [28]. For example, a bottom-up dynamic program camthe Bellman optimality equation

to learnV ™", the expected value of each state under an optimal policy:
V™ (s) = max Z P(s,a,s)[R(s,a,s") + V™ ()] (2.6)
a

Beginning at the next-to-end states in whi¢h= 1 and performing a backward sweep toward the
initial state whereéy = b, the optimal value functio’™ can be completely determined. With
the known transition and reward functions, the optimal @olt* then follows immediately via
greedy one-step lookahead. Unfortunately, the state sgaagive model selection grows exponen-
tially with b andn, making it intractable to compute the optimal policy using& methods such
as dynamic programming. A natural alternative is to perfapproximate dynamic programming
via Reinforcement Learning, which we consider in detail éct®n 2.6. Although Reinforcement
Learning has not been applied to the coins problem prewip{E8] has considered some simple

heuristic policies which we review next.

2.4.2 Round Robin (RR)

The most intuitive spending policy is to allocate flips eyeover the coins, proceeding in a round-
robin fashion. Whem = n x k for an integetk, and all coins have unit cost, RR will flip each of the
n coinsk times. Despite its fair distribution of flips, the ratio of RRxpected regret to the optimal
policy’s expected regret can be made arbitrarily large.[F@ftunately, more effective policies than

RR are known.

2.4.3 Biased Robin (BR)

The BR algorithm repeatedly flips a coir} until a tail outcome occurs. Once a tail is observed,
BR moves to the next coirt;; 1, and repeats the process. (Of course when the last(¢piturns

up tails, BR moves back to the first caify.) This simple algorithm is well known in statistics as

c =3, (5,1), (4,1), (2,1), (2,1)0
Cl CZ
c c c

1 2 2 3

Cc

Figure 2.2: The optimal policy for the staté = 3, (5,1), (4,1), (2,1), (2,1)) under unit coin
costs. Notice that the optimal policy involves interacidretween three of the four coins (e.g., coin
C5 should be flipped aftef’; turns up tails, and coif’s should be flipped aftef’; turns up tails).
Since the SCL score fa@r; does not consider how flippin@, or C5 could helpC, it underestimates
the value of flipping”;, and SCL takes a suboptimal action from this state.

“Play the Winner” [23] and has been previously studied ag@diag method for clinical trials [13].
Its performance on the coins problem has been very strorggitdse of identical starting priors.
Despite its competitive performance, BR is a suboptimalcgol In fact, we can show that the

number of states from which BR takes a suboptimal action eaméde arbitrarily largé:

Proposition 3 Given any positive integeg > 1, there exists a problem with=(g+2) Beta1, 1)
coins, and budgdi=(2n+3) such that the BR policy takes a suboptimal action from atlgagates.

2.4.4 Single Coin Lookahead (SCL)

The SCL algorithm computes the EMEHP (Equation 2.3) of thiicpahat devotesall remaining
flips in the budget to a single coit;. The coin that yields the policy with highest EMEHP is
flipped once and then SCL repeats the previous calculation with itseedlbudget (and updated
density functions) to choose the next coin to flip. Like BR,LS@&s strong performance, but is
still suboptimal. In particular, SCL suffers in situatiowbere multiple coins must interact heavily
to produce the optimal policy. This occurs because SCL cdoespa score for coi; without
considering how the remaining — 1 coins could interact with{’; to improve its policy. To make
this concrete, Figure 2.2 provides an example of a stateeM€L takes a suboptimal action because
it does not consider interactions among its coins. Theseidrfiies in the simple strategies offered
by RR, BR and SCL motivate the need for a more robust policiwiegaconsider next.

4Although such a result may help in proving the non-approxititghif BR, it does not show non-approximability by
itself. The reason is that the number of suboptimal actions denaabitrarily large, but the probability of reaching staite
which these actions occur is not considered.

10

2.5 Reinforcement Learning Background

The MDP formulation of the coins problem brings with it thespibility of using Reinforcement

Learning techniques to develop effective spending pdicighis section provides a brief introduc-
tion to RL, with a focus on the RL techniques that we emplograt this chapter when attempting
to learn low-regret policies. We direct the interested ezad [28] for more details on any of the

techniques discussed here.

2.5.1 Overview

Reinforcement Learning is a collection of techniques farméng (optimal) behaviour in sequential
decision problems. In RL, an agent interacts directly wisheihvironment and receives signals of
reward as it takes actions. The goal is to develop a polictaking actions that maximizes expected
reward. The key characteristic that distinguishes RL fraheplearning methods (e.g. supervised,
semi-supervised) is that the agent leaomsits ownby taking actions and directly observing the
resulting rewards that are produced by the environment Wdtexplicit teacher or labelled training

examples required, Reinforcement Learning is bounded lynhiy the amount of environmental

interaction available to the agent.

2.5.2 Learning versus Planning

A common distinction made in RL is betweérarning methods angblanningmethods. Planning

methods require a known environment model (i.e. known tti@nsand reward functions) and

operate on simulated experience from this model. On the bted, learning methods do not know
the true environment model. Instead, they learn from “reaiperience that they observe while
acting in real-time in their environments. (Since the titms probabilities and the rewards are
known in the active model selection task, we are faced witRlaplanning problem.) An advantage
of the planning problem is that experience is inexpensivgetwerate. Using only the model, large
amounts of training episodes can be generated for the Rl smest actions in. Furthermore, since

the optimal policy can be defined in terms of the optimal vdiuetion:
T (s) = arg maxz P(s,a,s)[R(s,a,s") + V™ (s)] (2.7)

the RL agent only needs to learn the optimal value function ih the known environment dy-
namics P(s,a, s’) and R(s, a, s")), it can then calculate the optimal policy using greedy step

lookahead.

2.5.3 Learning the Optimal Value Function Using Temporal Diferences

There are many methods for learning the optimal value fangtincluding value iteration, Monte

Carlo methods, and temporal difference learning [28]. Weu$oon temporal difference learning

11

[27] in this thesis. Temporal difference learning is apglie to multi-step prediction problems in
which the target value to be learned is observed gradualpastial values comprising the target
become available over time (just as rewards gradually aatatmin an MDP). The basis of temporal
difference learning in an MDP is to shift the existing valistimate for a state toward the newly
observed values that occur over time. For example, suppedake actioru from states;, reach
states;; and produce an immediate reward ;. In this case, a particular temporal difference

learner, known as TD(0), uses the learning rule:
V(si) < V(si) + a(rigr + 7V (si11) — V(s4)) (2.8)

to adjust its estimate df (s;), with « a parameter controlling the learning rate. The TD(0) rule ad
justs its estimate toward the one-step return, observedtepefter leaving statg. By contrast, the
general temporal difference algorithm, known as Xp€onsiders alj-step returns (foy € [1, o0))

that are observegtsteps after leaving statg. To incorporate allj-step returns in a simple, on-line
fashion, TD@) augments the one-step return in Equation 2.8 witlelagibility trace. Specifically,
TD(A\) maintains a positive, real-valued eligibility trage for each state that indicates how re-
cently s was visited. (Intuitively, at the beginning of an episodéghgibility traces are initialized

to zero). By maintaining this eligibility trace, TR retains a record of which states have been vis-
ited previously and are therefore eligible to receive soreditfor the current one-step return. Thus,
after taking actioru from states, and observing next statg,; and reward-; .1, TD(\) performs

the following learning sequence fall statess € S:

gs — gs + 1 if s=s; (2.9)
V(s) — V(s)+ alric1 + 7V (six1) — V(8:))gs (2.10)
gs < AVGs (2.11)

Here) € [0, 1] is a real-valued parameter that controls how the varjesiep backups are averaged
together. Notice that wheh = 0, all weight is assigned to the one-step backup, and the\)r'D(
equations reduce to the simpler TD(0) learning rule. On therchand, setting to an intermediate
value such as 0.7 will assign some weight to each of the obdgrstep returns, so that at the end
of an episode, the value estimate for an observed state awi#t been adjusted toward a weighted
sum of allj-step returns observed after that state.

To learn the value function for a policy, an RL agent can use temporal difference learning
while it experiences episodes of the MDP. For example, andfintcan take actions according to
m, and update its value function using a temporal differereening rule after each state transition.
This process of updates continues over multiple episodéedfiDP, gradually improving the value
function estimate forr.

Under appropriate technical assumptions [28], the TD(I&) (and the general TD{ algorithm)

will converge toV™ for any policyr given that an RL agent chooses its actions according to

12

particular, to learn the value function fer the TD learning updates should be distributed according
to the states that would be encountered while followingAs stated previously, we are interested
in learning the value function for the optimal poliey. Since this policy isinknown an RL agent
cannot act with it directly to generate the appropriateritistion of TD updates. However, it can
still learn the optimal value function by acting accordimgat policy that is greedy in the limit of
infinite exploration (GLIE) [25]. A GLIE policy performs ewg action from every state an infinite
amount of times but reduces to a greedy policy in the limitnc8iall actions are explored from
every state, when a GLIE policy gets greedy in the limit, igisaranteed to be an optimal policy
m*. Thus, an RL agent following a GLIE policy and using T{s guaranteed to learn the optimal
value functionV ™" in the limit. Fortunately, a temporal difference learnethwa GLIE-type policy

can converge t&’ ™" in a finite number of episodes in practice (see [28] for exaspl

2.5.4 The Need for Function Approximation

The TD rules discussed so far assume that the value functimbular, permitting exact representa-
tion of the value of every state in the state space. When gtates are extremely large, however,
it is impractical computationally to assume the RL agentmaperly explore all states, and store a
full tabular value function in memory. The standard soluti®to utilize a function approximator to
represent the value function, thereby allowing for an updathe value of stateto affect the value
of other similar states. With a well-constructed functi@paoximator, a value function over a large
state space may be learned by visiting only a fraction ofated humber of states in the space. The
tabular temporal difference rules (from the previous sedtcan be re-derived to specify an update
to a parameterized function rather than to a single tabalarev For instance, consider the popular
linear function approximator:

-

Vi(s)=40-d, (2.12)

wheref is a vector of (learnable) parameters, ahds a vector of features for state For this linear

function approximator, the TD(0) learning rule is

-

0 — 0+ afrizs +7V (si01) — V(s:)]ds (2.13)

P

On the other hand, the general TQ@lgorithm maintains a vector of eligibility tracggqone trace

for each learnable parameter), and its learning sequentiedinear function approximator is:

G —\g+ds, (2.14)
6 — 0+ alrisy +9V(sin) = V(s:)]g (2.15)
Just as in the tabular case, these TD learning rules aresdpgdtier each transition from the current

states; to the next state; ;. We next describe a specific linear function approximatat th often
used in RL.

13

Figure 2.3: An example of tile coding over a two dimensiomtfire space. The feature space is
outlined in bold, and two different tilings cover the spawéh the position of each tiling offset by
a small amount.

2.5.5 Tile Coding: a Linear Function Approximator

In tile coding, a group of tilings (i.e., grids) are laid owefeature space, with each tiling consisting
of a set ofh cells. The tilings are identical in size, but each tilingtsfiion is offset by a small
amount, so that each tiling covers the feature space in erdiff way (see Figure 2.3). Each cell
h; contains a real-valued (learnable) paraméter The value of a state is formed by a linear
combination over all the cells:

Vi(s) = Z 0:ds, (2.16)

where the coefficient, for cell 7 is 1 if states is located in the cell, and O otherwise. Since the
feature vectorl, for states consists entirely of ones and zeros, the value igfjust the sum of the
cell-valued; for all cellsi which contains.

The cell-values are modified by learning rules (such as Emuat13) as the RL agent acts in its
environment. Moreover, since states that are nearby inrfeapace will occupy some of the same
cells, these learning rules will adjust the value functistireate for several related states at once.
As we expect states which are nearby in feature space to maitarssalue function estimates, this
generalization can greatly speed up learning in large stsees.

An advantage of tile coding is that there is great degree xibiléy in controlling how general-
ization occurs. For example, generalization can be cdattdly the set of features used to represent
the states, the number of different tilings laid over thecgpas well as the shape and size of the in-
dividual cells. One can even choose to use several difféeanire sets for tile coding, and thus have
a separate tile coding for each feature set. This requiyiisga separate group of tilings over each
one of these feature spaces. In this case, the value of asfatened by summing all cell-values

that contain the state, across all the different tile cosling

14

Table 2.1: Free parametersdngreedy, tile coding TDX)

Parameter Description
e step-size for learning
€ exploration probability
A weighting of n-step returns
5 discount factor
a—sched schedule to decrease
e—sched schedule to decrease
d, features in function approximation
tile—shape dimensions of each tile
num-tilings density of tiles

2.6 Adapting RL for Active Model Selection

To apply RL to the coins problem, we attempt to learn the ogkivalue function with several sep-
arate RL agents. Each agent uses a unique set of featuremfioh approximation (described in
detail below), and gains the necessary experience by datetarge number of simulated episodes
generated from the known environment model. Each agenttise®ding as its function approx-
imation method, and employs a TE(learner using an epsilon-greedy (GLIE-type) policy. Com-
bining TD(\) with a linear function approximator (such as tile codingpitractive because upper
bounds have been established on the mean squared errorlefthed value function, under ap-
propriate assumptions [29]. As noted in the RL backgroumti@es, the number of free variables
that must be manually set for a TE)(tile coding agent is extensive. Table 2.1 contains a cotaple
listing of these free variables. When designing our RL agemésexplored a wide range of values
for the variables, including various choices for the praligtof exploration), the weight of n-step
backups 4), and the featuresfg).

To collect features for function approximation, we gatlaetes obvious candidates (e.g. the Beta
hyperparameters, the remaining budget, the means andstiahelviations of the coins), along with
some more subtle attributes (e.g. confidence intervalgyddushsed confidence intervals, modified
lookaheads, variation among the coins, security of thelbektng coin). We found these features
to be relevant because they affected the optimal coin decishen we studied the optimal policy
for small versions of the coins problem. Although we testecharous combinations of features, we
focus on five feature sets that are representative of theglednends observed. For each one of the
five sets, Table 2.2 gives the names of the diffefeature groupghat are included in the set. (The
interested reader should refer to Appendix B.1 to see gxadtlch featuresare included in each
feature group) For our experiments of the next section, we trained fiviediht TD\) tile coding

agents, where each agent used one of the five feature setisfiométion approximation.

15

Table 2.2: Feature sets used for approximating the valugtibm

Set Number Feature Groups Included In Set

1 Budget, Beta hyperparameters

2 Budget, Means and Standard Deviations

3 Budget, Confidence Interval Stats

4 Budget, Mean Stats, Confidence Interval Stats

5 Budget, Lookahead Stats, Confidence Interval Stats

Table 2.3: Expected regret of various policies

Policy (n=5,b=15) (n=8,b=16) (n=10, b=20)

BR 0.05669 0.07544 0.07210
ScL 0.05413 0.07342 0.07211
RL(setl) 0.05747 0.07830 0.07473
RL(set2) 0.05791 0.07896 0.07390
RL(set3) 0.05555 0.07528 0.07385
RL(setd) 0.05545 0.07464 0.07248
RL(set5) 0.05537 0.07507 0.07280

2.7 Empirical Results

To test the effectiveness of our RL agents on active modekteh, we conducted experiments
on three problems of increasing difficulty, where eachahitioin prior was a uniform Beta, 1).
Our five RL agents were given 1.8 million training episodestfe two smaller problems, and 2.8
million for the larger problem. The expected regret (Equag.2) was calculated for BR, SCL, and
the policies learned using our RL agents. For this first sexpkriments, we used TO)agents.
The results are shown in Table 2.3.

The results indicate that for all problems considered,eeiBR or SCL produced the smallest
expected regret. In fact, no RL policy is able to beat eittfehe heuristic policies in the case of
ten coins and a budget of twenty, and no RL policy is able td BE4 onany of the problems. We
have observed that on even larger problems (e.g. ten cotha éndget of thirty), BR beats SCL
and RL policies easily. The results of the experiments flefed despite the extensive number of
states observed during training, the RL policies are noegizing well enough between states to
beat the simpler policies.

In our next set of experiments, we tested the effect of varyifor the TD(\) learner. Figure 2.4
shows the results of varyingwhen using the fifth set of features for function approximibn the
n = 8, b = 16 problem. For all values of considered, the policies learned by RL do only slightly
better than BR and are inferior to SCL. The difference betwtbe various TDX) learners is not

dramatic, but the expected regret is lowest with an intefatedialue ofA = 0.5.

16

Expected Regret Comparison (n=8,b=16)

0.076 T T T
0.0755 - o o o B
1
v

0.075} E
-
(O]
Qo
ok
04 —&— RL(set 5)
8 0.0745 (€] BR -
° —=— SCL
(0]
o
x
i

0.074 B

0.0735 i
0.073 L L L
0 0.25 0.50 0.75 1.0
Lambda

Figure 2.4: Various values of lambda — SCL still superior to R

A possible explanation for the lower performance of RL istthat enough training episodes
are being experienced. Additional training should permitRL agent to increase its exploration
of the state space, and yield a better policy. To test theteffeincreased training, we conducted
experiments on the = 10,b = 20 problem in which we varied the number of training episodes
from two and a half million up to an even more generous fourahdlf million. Learning took place
with a TD(0.5) learner, using one of the strongest RL featats we tested, set number five. The
downward sloping trend of Figure 2.5 suggests that incb&rséning does improve the resulting
policy; however, even after four million episodes, the etpd regret of the RL policy is still larger
than BR’s or SCLs.

For further comparison, we consider the training time andnovy required by BR, SCL, and
the RL policy after four and a half million training episodeBhe memory considered is only the
policy specific storage (i.e., above and beyond the basmeiés such as the Beta hyperparameters
and the budget, that are generally required by all policiEsamining Table 2.4, we see that even
using almost 800 MB of main memory, RL does not gain a sigmfiealvantage over the virtually
memoryless BR and SCL routines.

As these experiments show, the performance, speed, and émmom requirements make the
simper BR and SCL policies preferable to the use of Reinfomd Learning. Although it should be
possible for an RL agent to do better than these heuristicips) the experimental results indicate
that (at least) more cleverly designed features or a beter of function approximator will be

required to achieve this.

17

Expected Regret Comparison (n=10,b=20)
0.0728 T T T

—&— RL(setb)
o BR
0.0727 —x— SCL

0.0726

0.0725

0.0724 b

Expected Regret

0.0723| J

0.0722 b

0.0721 5 % %

0.072 : : :
2.5 3 35 4 4.5

Number of RL Training Episodes (in millions)

Figure 2.5: Various amounts of training — simple policid stiperior to RL

Table 2.4: Resources used by each policy on n=10, b=20

Policy Training time (mins) Memory Used (MB)

BR 0 0
SCL 0 0
RL(set5) 630 760

Perhaps the clearest argumeghinstusing RL for active model selection (and hence general
budgeted learning) is the opportunity cost of conductirgriecessary training. That is, although
experience is easy to generate, the time and memory usegindt agents could be equally well
spent running a bottom-up dynamic program (as in Sectiori Pthat solves for the optimal value
of states. The dynamic program could compute the optimaty&iom some select set of states in
the same amount of time it takes a Reinforcement Learningtageomplete training. In effect, the
optimal actions from this select set of states could beyasihbined with the BR or SCL policies to
lower their regret even further, and make it yet more diffifoit RL methods to compete with these
heuristic policies on active model selection. Overall,tie tibsence of better features for function
approximation, these results suggest that the more tladtabristic policies should be used instead
of RL when considering the higher-dimensional and even naoraplicated problem of budgeted

learning.

18

2.8 Unsuccessful Approaches

We have experimented with several other algorithms fovaathodel selection which have not
performed particularly well. We collect these negativaultssin this section, and briefly describe
the algorithms and their shortcomings so that future refean active model selection can avoid

these approaches and focus on more promising techniques.

2.8.1 Supervised Learning of a Classifier

It is possible to apply standard supervised learning teghes to learn a classifier for active model
selection. Here the classifier implements a policy for &cthodel selection by taking the Beta hy-
perparameters and the remaining budget as input, and irggutire index of the best coin to flip as
output. We used a dynamic program to generate the trainitayrdguired for learning. Unfortu-

nately, the dynamic program can only generate labelledwl&an the budget and number of coins
is small, making it difficult to learn a classifier that can lpplied to the more interesting (large)
problems. In our experiments, we used training data to lagisiparallel and oblique decision trees
[10] and found that even on small problems, the learnedifiexsshad higher expected regret than

simple policies such as BR.

2.8.2 Search

Blind search algorithms such as depth-first search canlglidad the optimal solution to the coins
problem, albeit with time complexity on the order (dfn)b. Nevertheless, we tested a depth-first
search in the obvious way: truncating the lookahead depthreEasonable level, and backing up
heuristic estimates df ™ (s) for all statess at the search horizon. The implementation was used
in an on-line manner (similar to standard two player game s®arch [25]) where a new search
was conducted to the horizon level after each action wasitakd the resulting next state observed.
The search experiments confirmed that one does not requiiledkahead to achieve reasonable
performance. In fact, on the small and medium size problested, a lookahead 6f2 steps was
fairly competitive with SCL. Of course, when the number oihsogrows large, lookaheads become
increasingly expensive and cannot be done to any effecépghd limiting the use of blind search

for active model selection.

2.8.3 Optimal Two Coin (OTC)

In addition to search, we experimented with the optimal temalgorithm. The OTC algorithm
breaks up a large problem into several smaller, abstrablgmts that it can solve optimally. It then
uses the solution to these abstract problems to chooseian fotthe original problem. Specifically,
givenn coins and a budget @f OTC considers several abstract problems, each of whieimrtite

budgetb, but have only two coins from the original setof As there are(?) possible pairs of

19

coins, OTC computes an optimal policy f rg abstract problems. It then selects the abstract
problemA,.,; whose optimal policyr’y, has the highest EMEHP, and it takes the first action of

policy 7%, .. After observing the outcome of the action, the Beta distrdns and the budget are

updated, and a new set fg abstract problems are solved to determine the next actitakéo

To make the algorithm efficiengll possible two coin problems that can be encountered in the
originaln coin, budget problem are solved optimally off-line (prior to running OYKy a dynamic
program. With only two coins involved, the dynamic programuite fast and can typically compute
the solutions to all abstract problems in a few seconds. ttinfiately, performance of OTC falls be-
hind BR, particularly on problems with a large number of soiwhenn is large, the optimal policy
often involves interactions between many of the coins, al@ @& unable to consider interactions
of more thar2 coins. Although using abstraction for active model setecthay hold promise, our

experiments with OTC show that a more clever type of abstmaetill be required to be effective.

2.9 Summary

In this chapter, we explored the problem of active modelddigle. From a machine learning stand-
point, active model selection is interesting because itsisrgpler version of budgeted learning. The
tight relationship between active model selection and btettjlearning has been described in pre-
vious research [17, 18], and also highlighted in this chapAeparticularly interesting property is
that both problems have finite, episodic MDP formulations.a&esult, Reinforcement Learning (a
collection of techniques for developing intelligent beloav in MDPSs) appears to hold promise for
solving budgeted learning. This chapter takes a first steprbtesting this hypothesis, by exten-
sively training several RL agents using different featdfmrdunction approximation on the active
model selection task. Our experiments demonstrate th@isiheuristic policies are able to achieve
lower expected regret with far less computation than theneghRL policies. Our results provide
empirical evidence to the machine learning researcheirttia¢ absence of more sophisticated func-
tion approximation (i.e., without better features or adetype of function approximator), applying
RL techniques to the higher dimensional and more complellgno of budgeted learning will prove
ineffective. Moreover, the experimental results reinéotice effectiveness of simple, heuristic poli-
cies for budgeted learning. We thus concentrate on heudpproaches in the next chapter, when

we consider budgeted learning a bounded active classifier.

20

Chapter 3

Budgeted Learning a Bounded
Active Classifier

3.1 Introduction
3.1.1 A Motivating Example

Consider a doctor using a classifier to diagnose patienaséseThe features of the classifier will
typically be the results of medical tests such as X-rays, ¢Bi blood work on the patient. Due to
the costs associated with running these tests, it is ustieald assume that the classifier will know
the value of all features during classification. Instead,dbctor may be given a budget of $100 to
treat each patient, and the classifier can actively spesdsttiO to collect some features on which
to base its classification. Since this classifier activeljects features and operates under a hard
budget, we refer to it as a “bounded active classifier” (BAG}) [

Learning this $100 BAC will be an expensive proposition,dee a complete training instance
requires running all medical tests on a patient with a knowseake. Here, the hospital may have
only $10000 to allocate téearn the best $100 classifier. That is, only $10000 are available t
collect the features for labelled training instances. Hagith these dual budget constraints on the
learner and the classifier, how should the machine lear@sgarcher spend the $10 000 collecting

features of labelled training instances so as to learn that aazurate $100 BAC?

3.1.2 Objective and Outline

The previous example demonstrates the real-world probfdmdgeted learning a bounded active
classifier. This chapter considers the problem in detailréMwecisely, we study classification tasks
in which feature values are initially unknown to the learaed classifier, and can be acquired at a
cost. The learner is given a pool of labelled but otherwidenown training examples, and it must
decide how to spend its fixed learning budggtacquiring features of training instances so as to
produce the most accurate active classifier that spendsstbmper instance.

Before investigating our problem, we provide some backgdomaterial on active classifiers in

21

Section 3.2. Following this review, we present the formalpem description for budgeted learning
a bounded active classifier, as well as some complexity teesWe also place our problem in the
MDP framework, which allows us to describe the (intractablgtimal algorithm and to improve its
running time (Section 3.4). The main contribution of thetlea is the description and empirical
comparison of several tractable purchasing algorithmsttielearner can employ. Sections 3.5
and 3.6 describe the details of these purchasing algorit@us experimental results (Section 3.7)
demonstrate that when the learning budget is small, theoabviround robin” algorithm (purchasing
every feature of every instance until the budget is exhausted) is problematic. As well, we show
that our alternate learning strategies are able to outparfound robin on a variety of real-world

datasets.

3.2 Background: Bounded Active Classifiers
3.2.1 Definition of an Active Classifier

An active classifier (AC) is a classifier that can activelyghase the value of unknown features be-
fore making its classification decision. Given some pdstispecified instance (e.dz1, 7, 7, x4)),

an active classifier can either output a class labelr it can choose to gather more information by
requesting the value of an unspecified feature (&gor X3). In general, the active classifier can
recur indefinitely, continually purchasing unknown feasufor its current instance (as long as it can
afford to pay for these features). Let us assume that we haueaay classification task in which
there are- total featureqd X; },—; ., and two classes (¥ + and Y= —), with the domain of feature
X; denoted bylom(X;), and with an unknown feature value denoted By Then, formally, an

active classifier is a function:
AC : {dom(X1)U{?} x dom(X2)U{?} x...xdom(X,)U{?}} - {+ —,1,...7} (3.1)

where an integer output indicates the request for the unknown featg and an output of
+ or — indicates a (final) classification decision. Contrast an Ath #he traditional passive classi-
fier (PC) that cannot request additional information. Siaé8C can only output a class label based
on the given feature values, it is poorly suited to tasks wleatures are initially unknown but can
be acquired for a cost. To represent an AC, we can use a detis®as in Figure 3.1. Notice that
each interior node of the tree corresponds to a purchasera feature, while a terminal (leaf) node
corresponds to the AC’s classification decision. As an exenipa test instance descends down
the leftmost branch of the AC in Figure 3.1, then the AC must @ast(Xs3) + Cost(X~) for the

features it acquires before returnibig= +.

3.2.2 Bounding Active Classifiers

Many real-world tasks place a hard budget on the value ofifeatthat can be collected at classifi-

cation time (e.g., a doctor who must diagnose patients wimgost $100 worth of tests). In these

22

Figure 3.1: An example of an active classifier when the fegtand class label are binary

cases, doundedactive classifier (BAC) is required. A BAC with bourg: is an active classifier
that spends at most for any test instance.
To score a BACB, we consider its expected misclassification error over fistrilbution of

labelled instances:

QB) = Y P(xy) L(B(x),y) (3.2)

X,y
whereL(i, j) denotes the misclassification error of classifying an imstaasi when its true class
is j. Let All(bc) denote the set of all bounded active classifiers that spemibsith~ per instance.
We will typically be interested in the optimal bounded aetalassifier fromAil(bc), which is the

one that minimizes the expected misclassification error:

BAC* = argmin Q(B) . (3.3)
BEAll(be)

In fact, when we present our formal problem description foddeted learning a bounded active
classifier in Section 3.3, the ultimate goal is to produce BAC". Previous research [9] has shown
that it is possible to PAC-learn this BAQhy using a straightforward dynamic program that has

sufficiently accuratestimates of the following distributions:
PY =y|X =x%) (3.4

wherex* is any partially specified feature vector with at mégtdollars worth of feature values
specified. As we describe formally in the next section, owbfem involves learning BACwhen
we have only dimited learning budgetith which to estimate the two aforementioned sets of

distributions.

23

3.3 Formal Description

The “budgeted bounded-active-classifier learneBACL, is given the (non-negative) cas{ X;) €
Rt of acquiring each individual featur®, of any single specified instantand the loss matrix
L = [¢; ;] whose(i, j) element specifies the penalty for returning the classhen the true class is
y;; by convention we assurie; = 0 and/; ; > 0 for i # j. BBACL also knows the total amount
the learner can sperid, ¢ T, and how much the resulting active classifier can spend géarice
bc € RT.

At any time, thesBACL can see the current x (r + 1) “tableau”, whose rows each correspond
to an instance € {1,...,m} and whose first columns each correspond to a feature, and whose
r 4+ 1st column is the class label. Initially, only the class laBedpecified; the othern x r entries
are all unknown. In general, we will Ieifj) refer to the initially unknown value of thih feature
of the jth instance. At any point8BACL can perform thEEEj) “probe” to determine the value
of xgj), at costC'(X;). This also reducesBACL’s remaining budget frond;, to b, — C(X;).
Once this budget reaches zeeBACL stops collecting information and returns a bounded active
classifier which corresponds to a decision tree of boundpthd6é]. Our goal is to produce BAC
the bounded active classifier that has minimal expectedlasisification error and spends at most

be collecting features per instance (see Equation 3.3).

3.3.1 Simplifying Assumptions

Recall from Section 3.2.2 that in order to PAC-learn BAGe require accurate estimates of distribu-
tions 3.4 and 3.5. In order to tractably estimate theseibiigtons under our finite learning budget,
we will make some simplifying assumptions. Firstly, the ol frequentist approach of maintain-
ing simple frequencies for probabilities is problematiecduse many conditioning events will not
occur given the sparsity of data. Instead, we will take a Bayestance by assuming that there
is a prior distribution over labelled instances before isg@iny data. In addition to this Bayesian
approach, we will make the Nz Bayes assumption, which meaﬁsrgj)) is independent o:tg)
(for k +# i) as we know the value of the claks= y,.?

Hence, if instancg is labelled with classt, and featureX; has domain siz¢X;| = w, we

will model the distribution of thev multinomial parameters fozrﬁj) as a Dirichlet distribution [11]:

Dir(a{’,,...,al),), with Dirichlet parameters.";. > 0. (Although technically it is thes multi-
nomial parameters that are Dirichlet distributed, we will srite xEj) ~ Dir(a%, o ,a$?+) to

simplify notation.) These Dirichlet parameter%l are unrelated to the ones for negatively labelled

instancesyﬁ and also unrelated to the Dirichlet parameter values fardtraturesX,, for h # .2

1We assume that these costs are independent of each othewitiithand across instances. Moreover, if any test costs
C(X;) = 0, we can simply gather that information for each instance aend tonsider the resulting reduced problem where
C(X;) > 0for all remainingX;s.

2Note that Nave Bayes models often produce good classifiers even foratattmat violate this assumption.

3Thus, we maintain a single Dirichlet distribution for eadature, class-valugpair.

24

Initially, we will assume that each such distribution isfonin Dir(1,...,1). If we later see a sam-
ple T with 29 Y = + instances withX; = + and14 Y = + instances withX; = —, the posterior
distribution foracl(.j) for a newY = + instance would be Djrl +29, 1+ 14). The mean probability
for X; = + here would beP(X; = +|T") = 30/(30 + 15) = 2/3.

In general, if a variabl&'s prior distribution isX ~ Dir(a1, ..., a,), then
Q;
P(X =14 = 3.6
(X=i = o (3.6)

If we then observe a sampléthat includes:; instances ofX = i, thenX’s posterior distribution

remains a Dirichlet, with new parameters
X|T ~ Dir(ag+a1,...,0p+ay) . (3.7)

In the formal description given earlier in this section, arténg probe of the formgj) specifies
the feature to probeX;) and the specific instance in the tableau (instance j) ontwtdigerform
the probe. However, because of ouriléaBayes assumption, we can treat all instances with the
same class label identically. Thus, rather than queryiegifip instances, we only consider learning
probes of the forn{i, y) that request théth feature of a randomly chosen instance in the tableau
whose class label ig.4 (By convention, this process selects the value ofian) feature value that
has not been seen before.) Finally, for our work we will ass@antonstant misclassification cost
¢;; = 1fori # j and{;; = 0.

3.3.2 Complexity Results

Unfortunately, the problem of budgeted learning a boundeigeclassifier is NP-hard in general.
In fact, the reduction follows from the active model selecttask we studied in Chapter 2. More
precisely, Madani et al. [19] proves the following (activedel selection) task is NP-hard: given a
set of coins with known prior distributions and a fixed totahwber of flips, decide when to flip which
coin to decide which coin has the highest head probability. famework inherits this negative NP-
hardness result. (Identify each cdih with a binary featureX;, where the head probability of coin
C; corresponds to the probability the class is true givéns true, P(Y = +|X; = +); we also
let P(Y = +|X; = —) = 0 for all features.) In addition, [9] shows that computing trest active
classifier is NP-hard in general, even if we know the entigritiution. Our framework inherits that

negative result as well.

3.4 The MDP Formulation

Budgeted learning a bounded active classifier is a sequieetizsion making problem: the learner

sequentially specifies which feature-class pair to purelftasn the tableau, and receives a one-time

4In other words, to make a purchase the learner only has totsefeature and a class — not a specific instance in the
tableau.

25

reward (the expected misclassification error of the leaB®@) once the learning budget has been
exhausted and the final learned BAC is applied. The task cafgpletely described as a finite,
episodic Markov Decision Process with a (finite) set of state .S, a (finite) set of actiong € A, a
reward functionR(s), and a transition functiofi'(s, a,). In fact, the mapping is very similar to the
one described in Chapter 2. Each state of the prollen® is identified by the remaining learning
budget (denoted b,), and by the posterior Dirichlet distributions over all fieature-class pairs.
This representation of a state encapsulates all the intfowmthat has been learned so far about the
various feature-class pairs. We identify the initial stafeas the one with full remaining learning
budget §; = b1), and with the Dirichlets set to the (given) prior distrilauis. On the other hand,
the terminal states are those in which the remaining leginirdget is insufficient to make any more
purchasesi; < C(X;) Vi), and has thus resulted in a final set of posterior Dirichietrihutions.
As in Chapter 2, we use to denote the state encountered onithegime step.

The space of possible actions corresponds to every digtiatire-class pair that the learner can
purchase from the tableau. For the reward function, weR(sg to denote the immediate reward
received in state.> R(s) is zero wheneves is a non-terminal state (i.e. no intermediate reward).
On the other hand, i is a terminal state, the reward received is the expectedassfication error
of the best BAC that can be learned from the posterior Diettistributions ins:

R(s) = P iff is a terminal state 3.8
(s) Ber,fblz?bc)z (x,9ls) L(B(x),y) iff s (3.8)

Since all reward is delayed until the final time step, our feabhas a discount factor ef = 1. In
terms of notation, we will use; to denote the immediate reward accrued onithéime step.

Finally, the transition functiof'(s, a, s’) specifies the probability of a particular feature pur-
chase taking on a particular value. These transition piibthed are given by thecurrent Dirich-
let distributions over the feature-class pairs. For instarsuppose we purchase featufe on
an instance wher® = +, and our current Dirichlet distribution for that featudags pair is
X;|+ ~ Dir(1,4,3). Then the probability of transitioning to the next state evhhasX;|+ ~
Dir(1,5, 3) is the probability ofX; taking on its second value:{,) given a positive class label:
P(X;, =z,]Y =+)=4/(14+4+3) =1/2. With S, A, R, andT specified, we have a complete
MDP formulation for budgeted learning a bounded activesifees. The MDP formulation allows us
to use the notation of policies and value functions. In oseca policyr : S — A specifies which
action the learner should take (i.e., which feature-classtpe learner should purchase) given the
current state. As well, the value functiéff (s,) specifies the expected reward accrued from state

s¢+ when following policyr. In this chapter, we define the value function for a poficgs:

Vi(si) =E (Z(’Y%Hﬂ&)) . (3.9)

=0

5This reward notation is slightly different than the one ugse€hapter 2; we make this slight notation change in this
chapter strictly to simplify the proof of some upcoming results

26

Notice that this definition is trivially different from theefinition in Chapter 2 (Equation 2.5), be-
cause here we include the immediate reward received in state part oft/™(s,). This slightly
different value function definition simplifies the proof afrae upcoming resultwithout changing

our problem in any way.

3.4.1 The Optimal Learning Policy

As our problem is a finite Markov Decision Process, theretsxasdeterministic optimal policy
for spending the learning budget [28]. The optimal learnpdicy is the one that minimizes
the expected expected misclassification error of the final bounded active classifi€he first
expectation is over the set of possible Dirichlet distributions prodility the learner’s purchases,
and the second expectatiois over the possible labelled instandes y) that can occugiventhe
resulting Dirichlets. Mathematically, the optimal leargipolicy 7* is defined as:

m =argmin Y P(i) Y P(x,yli) L(BAC; (x),y) (3.10)

T i€Outcomes() Y

where each “outcome” corresponds to a terminal state intwbiz learning budget has been fully
exhausted and has resulted in posterior Dirichlet didfidls over the feature-class pairs. (Notice
that the optimal BAC for each outcome state is contingennuppe probabilities that have been
learned, and thus we writ@ AC' to denote the optimal BAC with respect to the probabilitesrhed
in outcomei.)

This optimal learning policyr* can be computed via a bottom-up dynamic program. To see
this, note that we can compute the optimal value functioh (s)) for all possible outcome states
s where the learning budget has been exhausted, and thenassetthcompute the value for all
possible “predecessor” states where there is only $1 Igfiérlearning budget, and then continue
this backward sweep toward the initial state Unfortunately, the number of outcome states (and

hence the computational complexity of théweadynamic program) has a prohibitive lower bound:

Proposition 4 Let | X;| denote the domain size of featukg, |Y| denote the number of classes,

t = 1Y|>_,|Xi] — 1, and each feature has unit cost. Then the bottom-up dynargram must

i)

We improved this riwe dynamic program by reducing the number of states wholse vaust be

br
compute the value of(<(bz:t) (M)t 1) outcome states.

solved for. Below we show an interesting way to achieve t#uiction by exploiting the equivalence

of two “permuted” states under the conditional independeagsumption.

Definition 1 A proper permutatiofior a feature X; with w domain values is a bijective function
f: [L,w] — [1,w] that applies the same reordering of theparameters for every Dirichlet

distribution on.X;.
Example 1 Let

(X;]Y =0) ~Dir(4,2,7), (X;]Y =1) ~ Dir(3,8,5)

27

Table 3.1: Reduction in computation time using Proposifion
b bc Features DomainSize Nee Improved

2 4 6 4 161 sec 65 sec
3 2 4 3 888 sec 432 sec
4 3 4 3 8280 sec 3360 sec

Then aproper permutatiofor feature X;; is:
(X;]Y =0) ~Dir(7,2,4), (X;|Y =1)~Dir(5,8,3).

Proposition 5 Assume the Nge Bayes assumption holds, and consider any two stgtesd s,
that have equal values éf, and are such that the Dirichlets of statg can be made equal to the
Dirichlets of states; by specifying a set of proper permutations, one for each featu¥ge. Under

these conditionsy ™ (s,) = V™ (s3), andn*(s,) = 7*(s3).

This proposition allows us to improve theima dynamic program by reusing the computed value
of a states, for properly permuted versions ef. The real-time improvement using Proposition 5
is shown in Table 3.1. In the last cade, (= 4, bc = 3), the ndve dynamic program ran out
of memory after more than two hours, while our improved @rdinished properly in under an
hour. Unfortunately such improvements are not sufficienetonove the exponential complexity of
the dynamic program (recall that this task is NP-compldtegrefore, we consider more tractable,

suboptimal approaches in the next section.

3.5 Heuristic Learning Policies

This section summarizes a number of heuristic “budgetechded-active-classifier learners”. We
focus on only the data collection part of the algorithmseraftollecting$s;, worth of feature val-
ues, each of the algorithms then passes its learned (p3¥tBitichlet distributions to a dynamic
program that produces the BA@ Equation 3.3. Our decision to focus on heuristic puraigaigo-
rithms is partially motivated by the results of Chapter 2ytrich we observed that simple heuristics
were able to outperform more complex methods such as RL, lamtidearch on the related problem
of active model selection. We note that many of the algorifimat follow are extensions or variants

of heuristics used in other budgeted learning scenariqsl@]7

3.5.1 Round Robin (RR)

This obvious algorithm simply purchasesmpleteinstances until its budgeét;, is exhausted. It
draws examples randomly, and so expects to have collectadatiaut members of each clags
in proportion toP(Y = y). If there arer unit-cost features, we expect to know everything about
roughly by, /r instances. Notice RR implicitly assumes all features atmbyjvaluable in learning

the target concept.

28

3.5.2 Biased Robin (BR)

A more selective approach than round robin is to purchaseghesieature and test whether or not its
observed value has increased some measure of quality. agedaiobin algorithm is more selective
than RR, continually purchasing featukg as long as it improves quality, and otherwise moving
to featureX,;; (and of course looping back t&; after X,.). There are several choices for how
to measure quality or loss; see Section 3.6. Of course, BR afsrs specify a clasg from which

to purchase its desired feature, and it does this by drawomg the class distributio® (Y = y)

on each purchase. As further motivation for this algoritht¥,] found it to be one of the best
approaches for budgeted learning of a passivevé&Bayes classifier, albeit with a different loss

function. This method also corresponds to the “Play the \&fihapproach discussed in [23].

3.5.3 Single Feature Lookahead (SFL)

One would always like to avoid wasting purchases on pooufeaf especially when faced with a
limited learning budget. This motivates a prediction-lohapproach, which uses a loss function
to estimate the expected loss incurred after making a sequinpurchases of a single, specified
feature.

SFL uses this prediction based approach, and controls ¥keédé myopia or “greediness” in-
volved by providing an additional parameter, = the lookahead depth. With a lookahead depth
of d, SFL calculates the expected loss of spending its fiéxdequentially purchasing featuief
instances of clasg. That is, if s denotes our current set of Dirichlets aslddenotes any of the
Dirichlet sets obtained after spendingn($d, $b7) purchasing featur&’; of Y = j instances, then

the expected loss fdt, j) is:
SFL(i,j) = Y P(s'|s) Loss(s') . (3.11)

SFL determines the feature-class paijrj) with lowest expected loss, then purchases the value
of this best(i, j) feature foroneinstance, and updates the Dirichlets based on the obsentednoe
of that purchase (and reduces the available remaining budgé¢hen recurs, using Equation 3.11
to compute the score for all feature-class pairs in this rievation — with its updated Dirichlets
and a smaller budget. This process repeats until the leaimidget is exhausted. The lookahead
depthd can be set based on the computational resources availabldy the next one purchase is
considered, then this reduces to the 1-step greedy algoriite note that SFL was originally used
in [17, 18] (but with a different loss function).

3.5.4 Randomized SFL (RSFL)

Our experiments show that the SFL algorithm often spendsidjerity of its probes purchasing a
single discriminative feature-class pair and neglectxpdage other potentially good features. This

property can be problematic, particularly when a datasetaios several discriminative features

29

that can jointly yield a more accurate BAC than any singléueaby itself. The randomized single
feature lookahead algorithm (RSFL) alleviates this prabley increasing exploration among the
best looking feature-class pairs. The RSFL algorithm iy gémilar to SFL, as it too calculates the
expected loss in Equation 3.11 for each feature-class ptiwever, rather than deterministically
purchasing the pair with the best SFL score, RSFL consitierbésti feature-class pairs and for
each feature-class pdif, j) in this set, it chooses to purchase featiloé classj with probability:

exp —SFL(i,j)
S T (3.12)
]

T

Here, 7 is a temperature controlling exploration versus explmtat Although we set- to one
throughout this chapter, we include it in Equation 3.12 tovslthe relationship to the Gibbs distri-
bution [28]. After experimenting with various values foethumber of feature-class paits, we
found thatK = (number of classgsx b. seemed to perform well, particularly when the learning

budget was not much greater than the number of features.

3.6 Loss Functions
As mentioned earlier, several of our algorithms rely on a fosiction
Loss : {Dirichlet distributions over feature-class pairs> R (3.13)

that attempts to measure the quality of a given probabiiritbution. After experimenting with
several different choices of loss functions, we found Coownlal Entropy Loss and Depth 1 BAC
Loss to be effectivé.

SFL, RSFL, and the greedy algorithm all use
Ininz P(X; =z)min(1 — P(Y = y|X; = x)) (3.14)
i Yy

which calculates the expected misclassification error efitbst Depth 1 BAC. Since biased robin
needs to detect small changes in a distribution, it tendstiopm better with the more sensitive
conditional entropy calculation, which measures the uaa#y of the class labél” given the value

of a featureX;:

=Y P(X;=2)) P(Y =y|X; =x)log, P(Y = y|X; = z) . (3.15)

The biased robin algorithm uses Equation 3.15 before aed thi¢ purchase of feature; to deter-

mine whether the purchase improved the abilityXgfto predict the clasy’.

8The obvious loss function is just to use Equation 3.3 to complie expected error of the optimal BAC. However,
since loss functions can be called several times to decidegingée purchase, the computational expense of computing
Equation 3.3 is prohibitive.

30

Glass Breast Cancer

0.5 T T T T
— RR 0358 -+ - —% - —% - —% - —% - - — RR
045} —— BR I —— BR
- o SFL (depth25) o SFL (depth25)
_ & RSFL (depth25) _ 03 & RSFL (depth25) ||
2 04r - Greedy n e -+~ Greedy
w o All Data w
= = 0.251 o All Data
50.350 5
S S 0.2
= = =
Soas! 5015/
= =
— L < 01
5 02 3
0.15} 0.05¢
a o a o B o

o

0.1
0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 100
Learning Budget Learning Budget

o

Figure 3.2: Identical costs and some irrelevant featuresSFLRand BR outperform RR

3.7 Experimental Results

To compare the algorithms, we tested their performance weraledatasets from the UCI Machine
Learning Repository [12]. We used supervised entropy disation [8] to discretize datasets with
continuous values. Each dataset was then randomly pagdimto five folds. The algorithms were
run five times, and on each run a single fold was set aside $tintg while the remaining four
were available for purchasing. For each algorithm, we usedaverage value of these five runs as
the algorithm’s misclassification error on the whole data¥ee repeated this process 50 times to
reduce the variance and get a measure of the average mifscédiss error. Thus, each point in the
graphs that follow represents 50 repetitions of five-folassrvalidation.

In the first set of experiments, all features have unit coditha datasets contain some irrelevant
features. We set the classifier’'s budgebte= 3, as this is large enough to allow several features to
be used, but small enough to keep computations tractabl®ird¢hlets parameters are uniformly
initialized to 1. For reference, each graph also includesld standard “All Data” algorithm, which
is allowed to see thentire dataset, and thus represents the best that one can do usihgitte
Bayes assumption on the data.

Figure 3.2 shows the performance of the algorithms on thegGidentification dataset: a bi-
nary class problem with nine features whose domain sizgshetiwween one and three. The four
features that have a domain size of one represent irrel@vaniation that any learning algorithm
(especially one under a constraining budget) should a®nth RSFL and BR learn better than the
obvious RR algorithm for all learning budgets consideretfakt, we found the optimdl = 3
BAC produced by the “All Data” algorithm involves four diffent features, and these four features
are precisely the ones that RSFL and BR purchase heavilggll@arning. This is in contrast to the
RR purchasing behaviour that spends equally on all fegtdespite their unequal predictive power.
Finally, SFL and greedy spend their entire budget on onlyarrteo features during learning, which

accounts for their low accuracy BACs.

31

Iris Vote

0.45 : : : 0.4 ; ; ; ; . .
— RR 3 — RR
0.4f ——BR o oasl —— BR I
o SFL (depth25) - ~0 o . o 9| o SFL(depth25)
=035 2 RSFL (depth25) || N & RSFL (K=2*hc)
ot - 5 L N i
= —- Greedy 2 03 . —+- Greedy
w 03l o All Data L N o All Data
5) ,5 0.5} —e— RSFL (K=6*bc) ||
Bozst a g
= £ ool
0 0
g oz 4
3 20.15¢
S0.15¢ s
— o L
S o0af S 0.1
0.055 o s o o o o o o R 0.05¢ @8 o o " " a | s B
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100 120 140 160
Learning Budget Learning Budget
Figure 3.3: Identical costs, no irrelevant features — RRstboptimal
Heart Disease (Cleve) Pima
oS 04—
— RR —RR
0.4f — BR
0.45 o SFL (depth25) | o SFL (depth25)
5 4 RSFL (depth25) || 0.38 4 RSFL (depth25) ||
= - Glrleedy o™ -+~ Greedy
w L = All Data |
p 0.4 Y036 o All Data
2 S
5] ®
%0.357 % 0.34
1%
8 90.32
S ©
2 03f 2
S s 03r & a 2
ha} o
o S L 4
0.25 028
0.26F 1
e S S RO Bl Bgegigeigiogeigeg
0 50 100 150 200 250 300 350 400 450 500 "0 15 30 45 60 75 90 105 120 135 150
Learning Budget Learning Budget

Figure 3.4: Different feature costs — RSFL and BR dominate RR

The Breast Cancer dataset contains ten features, only ambidi is irrelevant to the concept.
This dataset is particularly interesting because neatliysaleatures are good predictors, but three
features have markedly lower conditional entropy than & rTo produce the lowest error BAC,
the learning algorithms must discover the superiority esththree features. We find RSFL does
exactly this, spending 20%, 21%, and 32% of its budget re¢iedcon the three strong features. In
comparison, RR spends 10% of its budget on every featurehwhakes it much more difficult for
it to separate the top features from the rest. BR also pegftetter than RR for all learning budgets
considered.

The next set of experiments, shown in Figure 3.3, considatasdts without any irrelevant
features. The Iris dataset has only four features and ise® ttlass problem. Given that all four
features are relevant, and titat = 3 in this experiment, the optimal BAC requests every feattire a
some point in its tree. With only four features to consideBFR is able to test them all effectively
and produce better BACs than RR for all budgets considerBdsBlso competitive with RR, except
at some of the very low budgets where BR’s exploration modegnts it from ever investigating

some of the features.

32

Figure 3.3 (right) shows another binary class problem, thte Wataset, that contains 16 features.
Many of these features have similar (high) predictive powad one feature in particular is nearly
perfectly correlated with the class label. Once again wetsateboth RSFL and BR beat RR when
the learning budget is small. RSFL asymptotes after aboyiusbhases — it spends its budget
finding a few strong features quickly and outputs a fairly lemwor BAC. As expected, at larger
budgets RR collects enough information on every featurentbietter candidates for its BAC than
RSFL can. In particular, RR identifies the superiority of thear perfect” feature more consistently
than RSFL does at larger learning budgets. The graph shawvsile can improve the performance
of RSFL by increasing the number of top feature-class p&irghat RSFL considers on this dataset
(thereby reducing the chance of RSFL skipping over the nedegt feature). We also observe that
BR’s exploration model is particularly well suited to thésk because it is able to collectinformation
on every feature at larger budgets, which is important ortasgé such as Vote with a large number
of predictive features.

Our final set of experiments involved datasets where therfesdiffered in cost. Both the Heart
Disease dataset and the Pima Indians dataset have knowdatagt 2], which we scaled (so that
costs were between $1.00 and $10.00) and then used in osir Tt scaled Heart Disease costs
range from $1 to $7, and our tests are run with= $7. This dataset represents the worst case for
RR, because the irrelevant features happen to be the mashgxp ones. In fact, RSFL achieves
the same error rate after $100 that RR takes $500 to reaclhelRitna dataset, feature costs are
between $1 and $5, and we $gt= $5. The two irrelevant features have cost $1, and the single bes
feature is $4. Once again, BR and RSFL dominate RR for all étsdgpnsidered.

3.8 Summary

Many standard learning algorithms implicitly assume thegtdees are always available for free, to
both the learner at “training time” and later the classifér;performance time”. This chapter ex-

tends those systems by explicitly considering these castsath training and performance time),
when the learner and classifier have hard budgets that himtotal value of features that can be col-
lected. In this chapter, we introduce the formal framewankifudgeted learning a bounded active
classifier, and present some complexity results for thelpneb We also propose a more efficient
way to implement the optimal algorithm, which we prove woeffectively. Moreover, this chap-

ter motivates and defines a variety of tractable learniragesgies and shows they work effectively
on various types of data — both with identical and with difier feature costs. In particular, we
demonstrated that our proposed strategies can often do bettdr than the obvious algorithm —

“round robin” — especially when training data is limited.

33

Chapter 4

Related Literature

4.1 Introduction

This chapter reviews some of the relevant literature froefigdds of machine learning and sequen-
tial decision making. We divide the review into two parts. eTfirst section highlights the work
related to our main problem studied in Chapter 3, while tlo@sd section focuses on work related

to the active model selection task investigated in Chapter 2

4.2 Budgeted Learning a Bounded Active Classifier

There are a number of different senses of “costs” in the sbrmtlearning [31]. Our research
considers two of these: the costs paid by the learner to scthe relevant information at training
time to produce an effective classifier, and also the cosits Ipa the classifier, at performance
time, to acquire relevant information about the currentanse. We impose hard constraints on the
expenses paid by the learner, and on the total cost of tedtsdh be performed per instance by the
classifier.

Many existing (sub)fields, such as active learning [5] anpeeixnental design [3] (as well as
earlier results such as [17]) focus on only the first of thessgsc— e.g., bounding how much the
learner can spend to produce an accupassiveclassifier. In addition, many of these systems
request theclass labelfor an otherwisecompletely specified instancéhus they require only a
single quantity per instance. Our problem is the compleroétitis: class labels are known but
feature information must be purchased (see Figure 4.1).ik&Jmhost of the other models, this
means our work may need to consider the correlations amtimgstany unknown properties of an
instance.

There are numerous other machine learning results thas fatveducing the sample complexity
for learning. Some of these include decision theoretic anipding [21], on-line stopping rules [26],
progressive sampling [22], and active feature value adgng20]. We note that these techniques
differ from our approach because we place a firm prior budgethe learner’s ability to acquire

information, while these approaches typically allow tharfeer to purchase until some external

34

Active Learning Budgeted Learning

X, X, Xy XY X X, Xy XY
1 1 0 1 ? ? ? ? ? 1
0O 1 O 1 ? ? 7?2 2 ? 0
1 0 O 0 ? ? 0?7 ? 1
1 0 1 1 ? ? 0?7 ? 1

Class labels unknown Feature values unknown
but can be purchased but can be purchased

Figure 4.1: Active learning versus budgeted learning

stopping criteria (for instance, accuracy) is satisfied.

Weiss and Provost [33] recently explored a problem relatednie that we encounter in our
overall framework: how to represent the class distributidren only a firm budget of. training
examples can be used. For example, if our budget allowstidragming examples, should we select
five from class one and five from class two, or draw our exarmgdesrding to the true (underlying)
class distribution? The results in [33] indicate that drayvirom the true class distribution is the
best choice for maximizing classifier accuracy when no amtil experimentation can be done.
On the other hand, when computational resources are algileiss and Provost suggest using a
progressive sampling algorithm to choose the best clasgbdison. As discussed in Section 3.5,
some of our algorithms (RR and BR) follow the results in [3§] drawing from the true class
distribution when selecting which class to probe. We do hotyever, utilize progressive sampling
due to the computational expense, and the relatively smallavement reported in [33] over using
the true class distribution.

Instead of considering the costs paid at learning time, sesearch has concentrated strictly on
minimizing the costs paid by the classifier at performaneeti In this vein, both [30] and [9] at-
tempt to produce a decision tree that minimizes expectedic¢ost. However, neither work assumes
an a priori resource bound on the learner, thereby allowdimguhconstrained amounts of training
data with which to build these classifiers. Again, our workkasathe more realistic assumption that

if data costs money at performance time, it very likely costsey at learning time as well.

35

4.3 Active Model Selection

Active model selection was originally introduced in [18fh@ugh several similar problems have
been previously studied. The well-known multi-armed bapdiblem [23] is concerned with finding
the best object within a set, but rewards are typically aagrihroughout, without distinguishing
training from testing phases. By contrast, active modetctign gives no reward until the final
coin is selected, and thus more accurately represents teenaining phase of budgeted learning.
Strategies from the adversarial bandit formulation [2]ldoalso be adopted for our problem, but
the adversarial assumption is unnecessarily strong focase, and thus less defensive algorithms
can usually perform better on active model selection. A nregent bandit-variant, the max k-
arm bandit [4], shares our notion of maximizingiaglereward over a fixed number of sequential
decisions. However, [4] allows the single reward to occuaoytime step, as opposed to strictly at
the terminal states.

Duff [7] studied the Bayesian MDP formulation in active mbdelection as a Bayes Adaptive
Markov Decision Process (BAMDP). That study also consigiarsous RL methods to approximate
an optimal policy for BAMDPs, and chooses some of the samestgpfeatures for function approx-
imation that we consider in Chapter 2. Moreover, the expenital results concur with our findings,
as [7] also reports a gap between the reward of the learneRtigs and the optimal policy. Be-
sides RL, another potential strategy for active model $igleds on-line sparse lookahead [32, 16].
Unfortunately, given the size of the state space, we havedftiiat any tractable (truncated) looka-
head (as in [16]) usually yields a higher regret than the ErBR and SCL policies. It would be
interesting to experiment with the recent ideas from [3Zde if a selectively grown lookahead tree

could compete with the current heuristic policies.

36

Chapter 5

Conclusions

5.1 Contributions

This thesis examines classification learning when featuags an acquisition cost, and the learner
and classifier have only finite budgets to spend acquirintyfea of training and testing instances,
respectively.

Chapter 3 explores this practical problem in detail, andigies the formal problem description.
Other contributions from the chapter include a descriptibthe optimal spending policy for the
learner, as well as a method to effectively reduce the rgntiine of the optimal algorithm. We also
extend prior complexity results to our problem to estabiiskts NP-hard. Our main contributions
are to propose several heuristic spending policies forahekr, and to test them empirically. The
primary result of this dissertation is two fold. First, owperiments show that the obvious round
robin purchasing policy that spends equally on all featisesiboptimal — particularly when the
learning budget is small relative to the number of featuBexond, we observe empirically that our
alternative purchasing algorithms (i.e. biased robindoanized single feature lookahead) are able
to outperform round robin on many datasets, both with idahtind with different feature costs.

We also make a contribution to general budgeted learningltyessing an open question in the
budgeted learning literature: can Reinforcement Leartgehniques be used to learn an effective
spending policy for the learner? Chapter 2 takes a first sigjard answering this question by
working with a simplified budgeted learning problem: actinedel selection. We extensively train
multiple RL agents on active model selection, with each ageing a different combination of
features for function approximation. Our experiments destrate that simple heuristic policies
achieve lower expected regret on active model selectiantti@policies learned using the standard
RL techniques and features we selected. These results stutyge (at least) better features for
function approximation will be required if RL techniqueg & be successfully applied to the higher

dimensional and more complex problem of budgeted learnimguaded active classifier.

37

5.2 Research Directions

This dissertation has raised several interesting quesfamfuture study. Beginning with the Re-
inforcement Learning investigation in Chapter 2, the mdsti@us open question is: what feature
space should be used to represent the value function? Aationtof some of the features we used
is that they do not incorporate the synergies that exist &etveoins (for instance, how the value of
coinC; increases if coiC’s andC'5 are also present in the current set of coins). A feature agtgh
able to approximately encode these dependencies may yi@le pnomising results. Another area
of future work is to use RL techniques to effectively leara BR and SCL heuristic policiésWith
some of the features we considered (in Appendix B), iheoreticallypossible for an RL agent to
represent the BR and SCL heuristics; however, we need mangubt representation power in order
to tractably learn BR or SCL. Specifically, the feature spawestgeneralize welko that a TDX)
agent only has to visit a reasonable number of states in ¢odearn a complete value function
for the heuristic algorithms. Finding a feature set that egpress the heuristics while permitting
fast generalization would make RL competitive with BR and-%é&nd thus more applicable to the
full budgeted learning problem). Finally, given the low meigbehaviour of BR and SCL, it would
be interesting to prove or disprove the approximabilityreleteristics of these heuristic algorithms
under the common case of identical starting priors (thisreasained an open problem since first
posed by [19]).

We turn next to the full problem of budgeted learning a bouhdetive classifier. Although
some of our proposed algorithms perform well on this probléray might still be improved using
some simple techniques. In the case of RSFL, for examplegyt e better talynamicallychoose
the numberK of top feature-class pairs to randomly select from (rathantfixing this threshold a
priori). Alternatively, we might consider randomly selegt from all feature-class pairs, but with
a decreasing temperature parameteas in [4]. Another research direction is to experiment with
algorithms that go beyond the “Ne Bayes” assumption, and thus allow the learner to perform
more powerful probes (e.g. requesting featfeon an instance wher&; = + andY = -).
Related to this, we could consider maintaining additiomabpbility estimates such &% X;|Y, X ;)
to incorporate dependencies among the features.

In our work, we have implicitly assumed that it is always vimwvhile for the classifier to spend
more on features (up to the buddet) if we can reduce our misclassification error. However, in
many practical tasks, the cost of a misclassification erray bre less than the cost of acquiring a
feature. In these cases, it makes more sense to build a bactiee classifier that minimizes the
expected total cost per instad@es opposed to the expected misclassification error. Oureframk

can be extended to this case by making some modificationg tdytiemic program we use to build

1The motivation is that by learning the value function for gaéguristics, an RL agent could then employ an exploratory
action selection policy (during planning) to try and impraygon them.
2Where the total cost per instance is defined as: total-eo@hisclassification cost)- (cost of features purchased)

38

BAC* (see [9]).

The cost structure we assume in this work can be quite différem the complex (linked) cost
structure that can exist in practice. For example, a linkest structure might charge $10.00 for a
blood testX; by itself, but charge only $2.00 for the blood test if it is pliased in combination with
a bone scarX ;. For these complicated cost structures, algorithms wilerta consider the value of
information of a feature under multiple scenarios (e.g. myperchased by itself, when purchased at
a discount after acquiring linked featu®g;, etc.). Finally, the most important direction for future
research is to build upon the empirical results herein tekigvalgorithms with strong theoretical

guarantees on learning performance.

39

Bibliography

[1] George E. Andrews. The theory of partitions. Encyclopedia of Mathematics and its Appli-
cations Addison-Wesley, 1976.

[2] Peter Auer, Nicad Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gambilia rigged
casino: the adversarial multi-armed bandit problemPiloceedings of the 36th Annual Sym-
posium on Foundations of Computer Scigrik®95.

[3] Kathryn Chaloner and Isabella Verdinelli. Bayesianexmental design: a revievgtatistical
Science1995.

[4] Vincent A. Cicirello and Stephen F. Smith. The max k-adhandit: a new model of explo-
ration applied to search heuristic selectionThre Twentieth National Conference on Artificial
Intelligence (AAAI)2005.

[5] David A. Cohn, Zoubin Ghahramani, and Michael |. Jord#cttive learning with statistical
models. InAdvances in Neural Information Processing Systems 7 (NIFESb.

[6] D. Dobkin, D. Gunopoulos, and S. Kasif. Computing optirehallow decision trees. In
International Workshop on Mathematics in Artificial Inigitnce 1996.

[7] Michael Duff. Optimal learning: computational procedures for Bayes-atilze Markov Deci-
sion ProcessesPhD thesis, University of Massachusetts Amherst, 2002.

[8] U. Fayyad and K. Irani. Multi-interval discretizatior continuous-valued attributes for classi-
fication learning. IrProceedings of the Thirteenth International Joint Confiexon Artificial
Intelligence (IJCAI) 1993.

[9] Russell Greiner, Adam J. Grove, and Dan Roth. Learningf sensitive active classifiers.
Atrtificial Intelligence 2002.

[10] David G. Heath, Simon Kasif, and Steven Salzberg. Itidnoof oblique decision trees. In
Proceedings of the Thirteenth International Joint Confieon Artificial Intelligence (IJCA))
1993.

[11] David Heckerman. A tutorial on learning in bayesianwmks. InLearning in Graphical
Models The MIT Press, 1999.

[12] S. Hettich, C.L. Blake, and C.J. Merz. UCI repositorynadichine learning databases, 1998.

[13] David Hoel and Milton Sobel. Comparisons of sequenti@cedures for selecting the best
binomial population. IiSixth Berkeley Symposium on Mathematical Statistics aokd®iility,
1971.

[14] Aloak Kapoor and Russell Greiner. Learning and claasif under hard budgets. [fihe
Sixteenth European Conference on Machine Learning (ECRRQ5.

[15] Aloak Kapoor and Russell Greiner. Reinforcement leagrfor active model selection. In
International Workshop on Utility-Based Data Mining (KD[2005.

[16] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sgasampling algorithm for near-
optimal planning in large markov decision procesddachine Learning2002.

[17] Daniel J. Lizotte, Omid Madani, and Russell Greiner.dBeted learning of naive-bayes clas-
sifiers. InProceedings of the Nineteenth Annual Conference on Uriogyte Artificial Intel-
ligence (UAI) 2003.

40

[18] Omid Madani, Daniel J. Lizotte, and Russell Greinertive model selection. IfProceedings
of the Twentieth Annual Conference on Uncertainty in Ai&ifimtelligence (UAI) 2004.

[19] Omid Madani, Daniel J. Lizotte, and Russell Greinertitdemodel selection. Technical report,
University of Alberta, 2004.

[20] Prem Melville, Maytal Saar-Tsechansky, Foster Prgvasid Raymond Mooney. Active
feature-value acquisition for classifier induction. The Fourth IEEE International Confer-
ence on Data Mining (ICDM)2004.

[21] Ron Musick, Jason Catlett, and Stuart Russell. Degifi@oretic subsampling for induction
on large databases. Rroceedings of the Tenth International Conference on Mazhearning
(ICML), 1993.

[22] Foster Provost, David Jensen, and Tim Oates. Efficisvgnessive sampling. IRroceedings
of the fifth ACM SIGKDD International Conference on Knowle@iscovery and Data Mining
(KDD), 1999.

[23] Herbert Robbins. Some aspects of the sequential desigxperimentsBulletin of the Amer-
ican Mathematical Sociefy1952.

[24] Sheldon RossA First Course in Probability Prentice Hall, 1997.

[25] Stuart Russell and Peter Norvidrtificial Intelligence: A Modern ApproachPrentice Hall,
2002.

[26] Dale Schuurmans and Russell Greiner. Sequential panifey. InProceedings of the Eighth
Annual Conference on Computational Learning Theory (CQLY5.

[27] Richard S. Sutton. Learning to predict by the methodeaiporal differencedMachine Learn-
ing, 1988.

[28] Richard S. Sutton and Andrew G. BartReinforcement Learningrhe MIT Press, 1998.

[29] John N. Tsitsiklis and Benjamin Van Roy. An analysis @fporal-difference learning with
function approximationlEEE Transactions on Automatic Contrdl997.

[30] Peter Turney. Cost-sensitive classification: emplrevaluation of a hybrid genetic decision
tree induction algorithmJournal of Atrtificial Intelligence Researcth995.

[31] Peter Turney. Types of cost in inductive concept leagni In Workshop on cost sensitive
learning (ICML), 2000.

[32] Tao Wang, Daniel Lizotte, Michael Bowling, and Dale 8ahmans. Bayesian sparse sampling
for on-line reward optimization. lProceedings of the Twenty-Second International Confer-
ence on Machine Learning (ICML2005.

[33] Gary M. Weiss and Foster Provost. Learning when trgjmiata are costly: the effect of class
distribution on tree inductionJournal of Artificial Intelligence ResearcR003.

41

Appendix A

Proofs

Preface to Propositions 1 and 2

To simplify the proofs of Proposition 1 and 2, we prove thendemthe following value function

definition:

Vi(st) = E <Z(7iri+t775t)> . (A.1)

=0
Note that this definition differs trivially from the one gwven Chapter 2, because we include the
reward received for reaching stateas part ofi’ ™ (s;). This small change in “accounting” simplifies
the proofs of Proposition 1 and ®ithout changing their effective meaning. Nevertheless, after
observing the way we prove the results here, it is easy tosdédbth propositions also hold under

the alternate value function definition of Chapter 2.

A.1 Proposition 1

Let S+hi = (b/7 al)ﬁla”-ai+17ﬂi7~--04n7ﬂn)

and S—Hi :(bla al?ﬁl""ai7ﬁi+1)"'anw@‘rb)

We prove the result by induction on the remaining budgefor the base case, [Et= 0.

*) aq Qg Qp
Now V7™ (stti :max(Y e s >
(™) ay + B a; + B +1 ay + B

oy o; +1 O)
041"'51’ O‘?""ﬁz"'l’ .”04n+ﬁn

and V™ (st") = max (

Since the lattemax is term by term greater than or equal to the formeix, it follows that
V7 (sthi) > V™ (sth) for the base casé, = 0.

For the inductive step, assume the result holdsbfoK (5 — 1), and letd’ = j. We will use

42

stti The to denote the state resulting from?: after coinCy, is flipped, turns up heads, and reduces

the budget té’ = 7 — 1. We prove the inductive step by considering two mutuallylesige cases.

Case 1:The optimal action to take frorfs ™) is to flip some coirCy, # C;.

VT (st = oV (sththe) o By (et) (definition VT (sTH))
< akaTkaﬂ* (sthithe) 4 akﬁfﬁk V™ (sthi tte) (inductive hypothesis
< VT (st (definition V™" (s7"))

Case 2:The optimal action to take frors™**) is to flip coinC;.

VT (sth) = MgV (st thy) 4 LAy (s) (def. VT (sT))
< SAAFVT(sThh) 4 g VT (st (inductive hyp)
< aﬁ_’;{il VT (sThithiy 4 ai+%i+1 V7 (sthitt) (inductive hyp)
= VT (sth) (def. V™" (s7))

Thus, the result holds for all possible cases, completiedrttuctive step.

A.2 Proposition 2

The result is proved via induction on the remaining budgefor the base case, lEt= 0.

* _ a1 a; Qp
Now V7™ (s)= max<a1+61"..ai+6i.'.()(n,+6n)
T A\ aq a;i+1 an
and Vv (S) = max <01+51 2T aHBi+l T an+ﬁn)

Since the latter max is term by term greater than or equaladdimer max, the base case holds.
For the inductive step, assume the result hold$fer (j — 1) and lett’ = j. We will uses™"* to
denote the state resulting frografter coinCy, is flipped, turns up heads, and reduces the budget to

b = j — 1. We prove the inductive step by considering two mutuallyl@siwe cases.

Case 1:The optimal action fron is to flip some coirCy, # C;.

VE(s) = g2 V™ (sTh) + GBg VT (st (Definition of VT (s))
< VT () 4 YT (3% (Inductive hypothesis
<V (3) (Definition of V™" ())

Case 2:The optimal action frons is to flip coinC;.

VT (s) = ai‘fﬁ,@iV”*(s““) + aiﬂTiﬁiV”*(s*“) (Definition of V™ (s))

43

< %%Vﬂ (87M) + a,-ﬁTiﬁiVﬂ* (37%) (Inductive hypothesis
= aioj,-iﬁtlﬂ VT (st a,ﬁ%ﬁl V™ (51%) (Proposition 1
<V™(3) (Definition of V™ (8))

Thus, the result holds for both possible cases, completiagnductive step.

A.3 Proposition 3

We use a non-terminal state to obtain the result. Consid&te, €Q, in whichy’ = 1, there exists
two Betg3, 2) coins, andn — 2) Beta2, 2) coins. It is easy to verify (using Equation 2.3) that the
optimal action in Q is strictly to flip a Befa, 2) coin. To prove the proposition, we show that BR
encounters at leagtdifferent variants of Q in which it chooses to flip a B&&2) coin.

Let there bex = g + 2 coins, and a budget &f= 2n + 3. Notice the budget is such that state Q
is guaranteed to occur under BR’s strategy. In fact, Q oauwitiple times because there reg
distinct ways to place the two B€ta 2) coins. We also note that since the number of tails om all
coins is equal, we are guaranteed that BR will be currenthpiifig the first coin in the set. Thus,
BR will make a suboptimal decision whenever it reaches €atéth the first coin being one of the
Beta2, 2)s. Observe that there a<en ; 1> distinct versions of state Q in which the first coin is a

Beta(2, 2). Now the proposition follows from the fact tha{:n 9 1> = [=ln2) _ (gtlg > 4

forallg > 1.

A.4 Proposition 4

We use two lemmas to aid in the proof. The first is a standardtrieem the theory of partitions [1]:

n

Lemma 1 There are(b

: 11) ways to express an integer> 1 as the sum of exactly positive

integers.
while the second lemma can be derived from the first [24]:

Lemma 2 There are}""_, (7;_ 11) (?) _ <n ;)r_b I 1) ways to express an integer> 1 as

the sum ob nonnegative integers.

Letd = Y| >, | X;|. Working from the bottom-up, the dynamic program (dp) musfib®&y calcu-
lating the value of all possible terminal states. Using ogivll Bayes assumption and the unit cost
of features, each unique terminal state corresponds to aleterallocation of the learning budget
by, over thed Dirichlet parameters. Thus, the number of distinct teringatates (that the dynamic
program has to solve) is equal to the number of ways to expinesearning budgét; as the sum
of d nonnegative integers. Using Lemma 2, the dp computes thie el

(b, +d—1)!

(br)!(d —1)! "2

44

states at the bottom level; using Stirling’s formula on efacitorial, we get

(ptd-1t
(br)!(d —1)!
by +d—1\PL [bp+d—1\d—1
(=) () Vemberd—h
V2rbr/2m(d — 1) (1 + 135-) (1 + 173=5)
br+d—1\bL (bp4+d—1\d—1
(LbL) (Ldfl) c

2V2m/d — 1

(5" () a-n?)

and the result follows using= (d — 1).

A.5 Proposition 5

To prove Proposition 5, the following lemma is required.

Lemma 3 Let the Ndve Bayes assumption hold, and consider anyi3eif Dirichlets over the
feature-class pairs and a bounded active classifietCp (with boundb) constructed fromD.
Given any set of Dirichlet®’ where D’ can be made equal t® by specifying exactly one proper
permutation for each feature, there exists a bounded actassifierBACp (also with bound)

constructed fronD’ such that the expected error BfAC is equal to the expected error 6fAC ..

We prove this lemma first, before moving on to Proposition &t 2(.) p denote a probability under
D, andP(.),» denote a probability unddp’. Letb be a branch oBAC, which, without loss of
generality, specifies some feature valg&s = z;, X; = z;), and has classification lab¥l = y.

Then the expected accuracy of bratidh

P(Xi:iCi,Xj:l'j,Y:y)D =
P(Xi = n|Y =y)p P(Xj = 2|Y =y)p P(Y =y) =

PX; =zi]Y =y)p P(X; =2}V =), P(Y = y)

wherez; is the image ofr; under the proper permutation fof;. Thus we have converted a
branchb of BAC into a new branch’, where the expected accuracybotinderD’ is the same as
the expected accuracy buinderD. We can repeat this conversion for each brancBdlC, to get
a set of new branches which, when summed together, havertreesgected accuracy &4C .

Of course, since the expected misclassification errdr-ifexpected accuracy), the new branches
have the same expected misclassification errds 46’ as well.

All that remains to be shown is that the set of new branchesdar valid BAC with bound.

To see this, note that we can apply our transformation bygiaioreorder traversal & ACp, where
at each non-leaf node specifying featufe, we reorder its subtrees using the proper permutation

for featureX,. A reordering of subtrees cannot invalidate the BAC, noritamcrease the bound

45

bc. Once the entire tree has been traversed, we are guaraateaekttapplied our transformation to
each feature of each branch, ensuring that each branch éa$ully converted. The converted tree
is the desired3AC /.

This completes the proof of the lemma. Now we can prove ttggrai proposition.

Let us adopt the notation thd?,, denotes the Dirichlets of statg,. Further, letD,, + (ijd)
denote the Dirichlets of statg after observingX; = d on aY = j instance. Finally, leff; denote
the proper permutation for featué;, anddom(X;) denote the domain of feature;.

The proof follows from induction oy,. In the base casé; = 0. Since no learning budget
remains in state, or s;, there is no action to take, and hence trivially stateand s, have the
same (null) optimal action. Whely, = 0 the value of state, under an optimal policy is simply
the expected misclassification error of thelC* constructed from state,’s Dirichlets. By Lemma
3, states, must have a corresponding BAC with exactly the same expeuteclassification error.
Furthermore, the value of statg under an optimal policy cannot be any less, for if it werenthe
Lemma 3 implies that state, must have a corresponding BAC with lower expected errorclvhi
is a contradiction to the definition of BAC Thus states, ands; have identical values under the
optimal policy for the base case.

For the inductive step, assume the result holdsfoe= n — 1, and let states, ands;, have
br, = n. Now consider takingny initial action from states,, and then following an optimal policy.
Let V™ (s,|X;,Y = j) denote the value of purchasing featdfe on a randomy” = j instance

from states,, and then following an optimal policy. We have:

V™ (sal X3, Y =) =
>dedom(xy P(Xi =d|Y =j)p,, V™ (Ds, + (ijd), by =n —1) =
Yaedom(xy P(Xi = fi(d)|Y = j)p, V™ (Ds, + (ijd), by =n —1) =
Zdedom(Xi) P(X; = fi(d)|Y = j)DSbVW* (Ds, + (i fi(d),br =n —1) =
VT (5] X3, Y = j)

where the second to last equality follows by an applicatioihe inductive hypothesis, sinde,, +
(ijd) can be made equal ©0,, + (i7 f;(d)) by using the- proper permutations, one for each feature.
Thus, we have just shown that the value of an action in staie equal to the value of the same
action from state;, when the action is followed by an optimal policy. This ingdithat the value of
the two states under an optimal policy is equal, and thattbestates have identical optimal actions.

This completes the inductive step.

46

Appendix B

Features for RL Function
Approximation

B.1 Feature Groups

The following list describes the features that were usedfw@imate the value function for our
RL agents in Chapter 2.

Budget

e remaining budgett’)
Beta Hyperparameters

e o; Vi=1l.n

e 3, Vi=1l.n
Means and Standard Deviations

o 1 Vi=1l.n

e o0; Vi=1.n
Mean Stats

e Max i

e min; y;

b XLMi
Lookahead Stats

. _aitb
® MAXi S ETY

¥ (2
i\ o tB; b

n

47

Confidence Interval Stats

e max (u; + 1.960;) (95% interval)

max (u; + 1.280;) (80% interval)

max (u; +0.670;) (50% interval)

max; (u; +0.1260;) (10% interval)

o 3. (i +0.1260;)

e max (u; + b0 x o;)
o > (i +b x0y)
B.2 Alternate Features

This section describes several other features that we iexgeted with when trying to approximate
the value function for our RL agents. Similar to the resuft€bapter 2, these alternate feature were

unable to consistently beat the simple heuristic policies.

48

Table B.1: Other features tested for RL function approxiomat

Feature Comments

max; o;
mini ag;
22 0
standard dev. of greedy coin
standard dev. of max mean coin

max SCL score on any coin helps simulate SCL
max # of flips on any coin helps simulate RR
min # of flips on any coin helps simulate RR

max # of heads on any coin
min # of heads on any coin

max # of tails on any coin helps simulate BR
min # of tails on any coin helps simulate BR
max|pu; — 15|
min |p; — g
max|o; — o]

min ‘O’i — O'j‘
ma.X|O[i — O[j|
min |Oé7; — Oéj|
max |53; — B;]
min |ﬂt — ﬂJ|
max; %
min; 3
max # of identical coins
max; (i X max; o;
Do Hi X Y0

) /
max; afiT% X max; o;

()47,+b/)
Zi a;+B3i+b’ X Zl i
min # of tails for the max mean coin to lose its max mean spot
min # of heads for a non-max mean coin to become max mean coin

49

