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ABSTRACT 
Interface personalization can improve a user’s performance and 
subjective impression of interface quality and responsiveness. 
Personalization is difficult to implement as it requires an accurate 
model of a user’s intentions and a formal model of how an 
interface meets a user’s need. We present a novel model for 
tractable inference of consumer intentions in the context of 
grocery shopping. The model makes unique use of a priori 
temporal relations to simplify inference. We then present a simple 
interface generation framework that was inspired by viewing user 
interface interaction as a channel coding problem. The resulting 
model defines a simplified but clear notion of a user’s utility for 
an interface. We demonstrate the effectiveness of the research 
prototype on some simple data, and explain how the model can be 
augmented with richer user modeling to create a deployable 
application.  

Categories and Subject Descriptors 
H.5 Information Interfaces and Presentation 

G.3 Probability and Statistics 

General Terms 
Algorithms, Human Factors 

Keywords 
Interface personalization, e-commerce, temporal demand models, 
particle filters, interface cost models, online grocery shopping. 

1. INTRODUCTION 
The grand vision of personalization is to be able to automatically 
optimize the layout and features of a computer-based user 
interface to improve a user’s subjective perception of the interface 
and/or to increase an objective measure of the user’s ability to use 

the interface to complete a task. Automatic personalization frees 
the user from the need to know what optimizations are possible 
and from the burden of learning how to express these 
optimizations.  It can even meet needs users have not consciously 
realized they have. Finally, automatic personalization that 
successfully anticipates the user’s needs can make the user feel 
valued and respected by the interface and the vendor. While 
explicitly eliciting user needs can be useful, the concept of 
automatic personalization achieves its most effective form when 
user needs can be unobtrusively inferred from past interactions of 
the user with the interface or prior information gained through 
other systems. 

Technologies such as personalized interfaces, also known as 
adaptive or dynamic interfaces, and the related field of ubiquitous 
computing bring technologies into increasingly intimate areas of 
users’ lives and therefore need to be considered in the context of a 
broad set of issues. The notion of a user interface itself has vastly 
increased in scope from the traditional display and keyboard, to 
personal digital assistants or cell phones, and to ubiquitous 
technologies such as radio-frequency ID tags [16]. The notion of 
personalization itself can be understood in different ways. We can 
personalize the appearance, size, and manipulation features of an 
interface – technologies that have roots in studies of interface 
usability and menu design [5]. The automatic formatting of 
content to suit different interface technologies is an important 
example of this approach. A generic planner can be given a 
formal description of the functions of interface components, 
generic background knowledge about interface layout, and the 
user’s functional requirements and current platform in a formal 
language. If possible, the planner then generates an interface that 
satisfies the requirements. This paradigm has been employed for 
control of AV equipment [7]. More recently, a similar concept has 
been used in a broader vision of having personal digital assistants 
(PDAs) dynamically download interfaces from appliances like 
copiers, fax machines, etc. [17]. The emphasis in these models is 
on satisfying a formal specification.  

We can also personalize the content provided by an interface 
such as an information retrieval system or a stream processing 
system for email or news [2] [14] [20]. Researchers have also 
investigated infrastructure issues such as resolution of user 
identity from ambiguous IP addresses. 

. 

Beyond the technological issues, there are larger societal 
considerations to be taken into account. Users are increasingly 
concerned about privacy [25]. Will information unobtrusively 
collected by one entity be communicated to others? Despite 
emerging legal protections, enforcement of privacy policies and 

 



detection of breaches to privacy policies remain challenging 
problems. Of course, the social context of users can also be used 
in positive ways such as explicitly using trust networks to produce 
better recommendations [18]. 

While the scope of research into personalization has 
expanded tremendously, core problems remain in what is 
variously called preference elicitation, user profiling, or user 
modeling, and in creating a framework for expressing possible 
personalizations. Presently, an entirely generic framework for 
personalization does not appear to be feasible. We have, 
therefore, decided to focus on personalization in a specific 
domain with rich information content and frequently repeated but 
subtle behaviors: online grocery shopping. Specifically, we 
investigate how to formalize an ongoing user interaction with a 
grocery shopping interface that adapts both between sessions and 
during a single session to update its beliefs about the consumer’s 
current demands for products. In the context of grocery shopping, 
we consider consumers that make weekly shopping trips, charged 
to a regular account, which eliminates the problems of user 
identification and log analysis.  

The issues that make the problem interesting are that (1) 
stores are increasingly stocking a huge inventory of items (50,000 
in a large grocery store) of which a consumer might purchase 
fewer than 50 during a single shopping trip, and (2) the consumer 
makes repeated purchases over time. The substantial size of the 
inventory precludes communication of the entire catalog to the 
consumer, who will only select a minute fraction of the items 
anyway. The repeated purchases aspect introduces the possibility 
for both the consumer and the vendor to learn about each other 
and use this learning to adapt to each other. 

Unlike the problem of long-term menu optimization, the 
user’s demands are highly correlated and can change rapidly over 
time.  Correlations can be complex, even during a single 
transaction (e.g., we may observe many customers purchasing 
related items such as spaghetti sauce, noodles, garlic, red wine, 
and stain remover on a single trip). This analysis over joint 
purchase properties is commonly done in market basket analysis 
in data mining. However, groceries also have temporal 
dependencies. Past purchases influence present ones through 
stocking and inter-product consumption. Traditional approaches 
can result in many complex rules. Inferences about a consumer’s 
demand profile can also change rapidly in real time as he or she 
shops. Informative purchases can change our beliefs about what 
else a consumer will purchase during the same trip. We will have 
more to say about the nature of the user modeling problem below. 
For now, we simply wish to underline the complex dependencies 
and dynamic optimization inherent in the problem. 

We introduce two main ideas in this paper. First, we  
describe a novel framework for modeling household demand that 
is capable of representing rich behaviors while maintaining 
tractable inferences. Second, we reconceptualize the problem of 
personalization in terms of a novel bi-directional communication 
model. Both concepts are illustrated with simple domains.  

2. CONSUMER MODELS 
The key to personalizing customer interfaces is to accurately 

predict the preferences of individuals and households. Consumer 
preferences have been analyzed at a variety of levels and in 
various dimensions by many research communities. Early work in 
modeling and eliciting preferences for individual products can be 
found in the marketing literature. Marketing has focused, more so 

than other disciplines, on measuring the effects of various 
combinations of product attributes on consumer demand through 
techniques such as conjoint analysis (e.g., [9]). Recent extensions, 
such as fast polyhedral conjoint estimation [24], use interactive 
computer programs to maximize the efficiency of one-on-one 
preference elicitation. These techniques make explicit queries to 
the user. The data-mining and web-mining communities have 
been more focused on estimation of preferences from passively 
obtained transaction data. The term “user profiling” is more 
common. These communities have brought insights from the 
machine-learning and data-base communities to create high-
throughput, automated and semi-automated techniques for 
analyzing and exploring very large databases.  Market basket 
analysis techniques [1] allow one to efficiently extract patterns of 
items that frequently appear together. Under reasonable 
assumptions, these correlations can be used to infer demand for 
one alternative given observed choices for correlated alternatives. 
Most research to date has favored the discovery of within basket 
patterns in data, though interest in temporal aspects appears to be 
growing (see  [13]).  

Interest in modeling temporal patterns has been a focus of 
several disciplines. In marketing, techniques borrowed from the 
health sciences and the reliability community (i.e., survival or 
reliability analysis) have been used to estimate consumer demand 
as a function of time and promotional options. In economics and 
finance, considerable sophistication has been achieved in fitting 
time series models to data (ARMA, GARCH, etc. [3]). A number 
of prominent problems in computer science have similar features, 
including speech recognition, video sequence processing, gene 
sequencing, and protein prediction. Techniques based on 
probabilistic models such as hidden Markov models (HMMs) [19] 
and sequential decision processes [22] are popular. 

“Stream processing” [20] is also a rapidly growing field of 
analysis. The goal here is to analyze large collections of 
continuously generated items such as messages, news items, e-
mails, or stock reports over time and provide filtered reports to a 
user in a continuous fashion. The roots of this field can be found 
in work such as the GroupLens project [14] that analyzed news-
net messages. Current applications include Google news. 

2.1 Structured Models 
Grocery purchase patterns have a rich structure that can be 
exploited in a number of ways. First, grocery purchases exhibit 
both patterns over time and within-basket. Temporal patterns are 
evident in purchases of items such as laundry detergent, which 
occur at regular, predictable intervals. Within-basket patterns can 
be seen in many items such as the simultaneous purchase of 
noodles and spaghetti sauce. We also, however, have patterns that 
are both temporal and cross-sectional. Purchases such as ketchup 
and hotdogs are correlated in both time and within basket. Our 
beliefs about the consumer’s demand for ketchup will be 
influenced both by prior belief about the average inter-purchase 
interval for ketchup, but also by our knowledge that ketchup 
consumption tends to increase with hotdog consumption. Thus, 
during summer BBQ season, an increase in hotdog consumption 
would allow our system to learn to predict shorter inter-purchase 
intervals for ketchup.  

Secondly, the dynamics of consumer grocery purchasing 
derive in part from the functional structure of household 
consumption and purchasing. If we assume a general time-series 
model, we must learn things we already know (e.g., the fact that 



the unused portion of a household’s stock of ketchup persists over 
time). A highly structured model that integrates such knowledge 
has the potential to learn complex behaviours with much less data. 

In our structured model, we view the household behavior as 
being organized into a sequence of intervals (we will think of 
these as “weeks”). At the beginning of interval t , the household 
starts with a stock of items S t . This stock S t  is a vector giving a 
real-valued quantity or amount of each possible item currently on 
hand in the household. The household then makes a joint 
stochastic decision of what bundles B t  to consume and what 
items P t  to purchase. Each bundle corresponds to a meal plan. A 
“spaghetti dinner” bundle might include noodles, sauce, bread, 
garlic, salad, and red wine. The bundle consumption decision B t  
is a vector of integers representing the number of times each 
bundle type  will be consumed during the interval. We 
emphasize that consumption is determined in terms of bundles, 
each of which commits the household to consuming a collection 
of underlying items. We note that these bundles can be used in 
mixtures in much the same way that Hofmann defines aspects 
[11]. The purchase decision 
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P t  is a vector of integers 
representing the number of units of each item that the household 
has decided to purchase at the beginning of the interval. In 
contrast to consumption, purchase decisions are in terms of 
individual items. In our spaghetti dinner example, the household 
might have noodles and wine on hand. The household might 
therefore decide to purchase sauce, bread, and salad to complete 
the ingredients required for the spaghetti bundle. The household 
makes a joint decision  in order to maximize its utility. (Bt ,Pt )

A number of non-linear constraints are required to describe 
this process.  First, stock levels, consumption amounts and 
purchase quantities are always positive.  An obvious corollary is 
that consumption is bounded above by the sum of prior stock and 
present purchases.  Second, we assume that the actual 
consumption decision is the result of a non-linear utility 
maximization process. The utility function of the household is 
described by parametersU .  This utility function is the place 
where individual behavior is represented and thus constitutes our 
user model for the purposes of personalization. 

t

We use a non-compensatory Cobb-Douglas style utility 
function to represent the household’s utility, where U  is a 

scalar parameter for the 
k

t

k th  bundle.  The non-compensatory 

aspect ensures that household consumption must be balanced 
among items.  One cannot make up for the need for bread by 
purchasing additional laundry detergent.  The form of the model 
appears in equation 1. 

 

 
Figure 1: Household Decision Process 

 U (Bt ) = (Bk
t )Uk

k∏  (1) 

Presently, we use a simple greedy planner to optimize the 
bundles that should be selected under the utility function.  We 
believe this constitutes a reasonable model of a household’s 
decision process. It repeatedly selects the bundle with the highest 
marginal utility until a sufficient number of bundles have been 
generated to cover the total household consumption. Total 
household consumption is a free parameter that can also be 
estimated from the data and represents an additional parameter 
through which the model may be personalized. 

The structured aspect of the representation comes from the 
fact that the update of the household stock process is deterministic 
given the household’s decisions about which items to purchase 
and which bundles to consume. A resource matrix κ  can be used 
to specify the ingredients of bundles. (Each row is identified with 
some “meal”, and each column with an ingredient, so that each 
entry  specifies how much of ingredient i appears in bundle j.) 

The consumption during an interval 

kij

C t  is therefore the resource 
requirements κ  times bundle choices B t , or C t = κBt . The final 
stock of the household at the end of the interval is the original 
stock S t  plus purchases P t  minus consumption κB t , or 
S t+1 = St +Pt −κBt . A graphical view of the model appears in 
Figure 1.  

Actual purchases and consumption may differ due to events 
in the household or spontaneous shopping behavior. We have 
discovered that the addition of independent additive Gaussian 
noise to the purchases and consumption allows us to maintain an 
efficient algorithm for updates while allowing for random 
departures from deterministic behavior. The noise must be added 
carefully to preserve invariants (household stock, purchases and 
consumption are always positive and should be consistent with 
the update rule). 

The household decision process model leads naturally to a 
Markov-chain-like structure, which models a consumer’s 
purchase history. The stock state of the household is the latent 
state of the process. The utilities become model parameters. The 
household’s purchases are the observables. Nominally, we can use 
standard approaches to maintain a distribution over hidden states 
given observables (e.g., Kalman filters, see p. 551 of [21]). 
However, because the distribution of purchase probabilities is 
created by a complex non-linear optimization process, it is 
difficult to capture in terms of parametric forms.  Researchers 
have attempted to address this issue through techniques such as 
mixtures of Gaussians, truncated exponentials, scented filters and 
other forms. In this work, we elect to employ particle filtering [6], 
a non-parametric representation of the distribution over possible 
household states.  

In particle filtering, we maintain a sample of households – 
each with its own stock state. We then calculate the likelihood of 
each household given the observed purchases. The samples are 
then weighted according to these likelihoods. The process is 
illustrated in Figure 2. From these weighted samples we can 
compute statistics such as the expected demand for each product 
that will be purchased. When normalized, we can use these 



weighted samples as a probability distribution from which to 
choose new households for the next stage. From the vendor’s 
perspective, the household decision process is a stochastic process 
whose parameters can be estimated. Unlike an ARMA model, 
however, the model explicitly encodes the structure of the 
household’s decision making. 

 
Figure 2: Particle Filtering Update 

To explore the properties of the structured temporal-cross-
sectional models, we have performed some simulations with 
synthetic data. In these studies we have predefined a set of 
consumption bundles. In the simulation reported here, there were 
5 possible consumption bundles each consisting of 2 out of 5 
possible ingredients. The bundles, along with some arbitrarily 
chosen utility assignments appear in Table 1.  

 
Table 1 Examples of Bundles 

2 Item Bundles Ingredients Utils 
Peanut butter sandwich 0.05 PB _0.1 bread 0.3 
Banana sandwich 0.2 Banana+0.1 bread 0.3 
Tomato sandwich 1.0 Tomato+0.1 bread 0.7 
Jam sandwich 0.15 Jam + 0.1 bread 0.3 
Wheaties breakfast 0.15 wheaties+0.25 milk 0.7 

 
To test the model, we used the given utility parameters to 
simulate an artificial household purchase history.  We then fed 
just the observed purchases to a consumer utility inference 

 
Figure 3: Inferred Bundle Utilities 
Figure 4 Actual vs. Inferred Peanut Butter Purchases

mechanism based on the process model and particle filtering 
approaches described above. 
Figure 3 shows that the inference mechanism is able to recover 
the relative utility assignments given by the household to various 
consumption bundles using only the observed purchases. Of 
course, modeling a realistic store inventory would require 
hundreds of bundles for each consumer. We present this simple 
illustration to highlight how the household process model 
intuitively captures purchasing behavior.  

Accurate estimates of utilities allow the system to infer the 
rate at which various items are consumed within the household. 
Due to random noise, the model’s predictions can be off.  Figure 4 
shows the actual stock level of peanut butter in the simulated 
household together with the predicted level of peanut butter 
(weighted average of all household particle predictions).  
Generally, the model tracks peanut butter consumption well. At 
some points, the model fails to predict the true stock level. 
Eventually, however, those household particles that better explain 
observed purchases will be re-weighted more highly and the 
prediction will again start tracking actual consumption levels. 
Note, as seen in, Figure 4, it is possible for the model to recover 
from tracking errors before actually observing a purchase of the 
item by making inferences from other correlated items such as 
bread and bananas. 

In Figure 5, we see the household’s actual purchases, 
together with the purchase predictions generated from the stock 
Figure 5 Actual vs. Inferred Peanut Butter Purchases 



level model. We see that when stock is predicted to fall below 
consumption needs in Figure 4, a purchase is predicted in Figure 
5. Where consumption predictions were off in Figure 4, purchase 
predictions were off in Figure 5. Ultimately, the erroneous 
purchase predictions drive the process back to the proper state.  
The overall accuracy of purchase predictions is the most 
important measure of the model’s capability. We have measured 
accuracy as the Euclidean  distance of the point representing the 
predicted purchases at time t  to the actual household purchases at 
time t .  

In Figure 6, the performance of several different prediction 
techniques are compared. The first technique is a “simple 
averager.” It computes the average amount purchased on each 
time interval and uses this average as its prediction for the next 
time interval. So for instance, a household that buys laundry 
detergent every 4 weeks would have a 0.25 chance of buying 
detergent every week under this model. The second model is the 
time-quantity model. This style of model has been used in 
Marketing [10] to assess the sensitivity of purchase timing to 
promotions. The time of the purchase and the quantity to be 
purchased at this time are estimated separately and then 
multiplied to get an expected quantity. This model gives 
improved estimates in theory as it would predict a high 
probability of laundry detergent around week four and lower 
estimates for other weeks. When there is significant variance in 
the timing of purchases, however, the predictions tend to be 
smeared out over several time steps and accuracy suffers. The 
final model is our structured temporal-cross-sectional process 
model. It is able to use its household model to track purchases 
even if they do not occur with perfect inter-purchase regularity 
(often the case due to least common divsor type interactions 
between consumption rates of various ingredients). It can beat 
both other models on this simple problem.   

The utility parameter inference provided by process models 
therefore seem to be a promising technique for characterizing 
purchasing behaviour of consumers.  Furthermore, the output of 
the particle filter has a clean an intuitive interpretation.  The 

likelihood of each household particle can be used to assign a 
probability to each particle’s purchase prediction forming a 
probability distribution Pr(D | H )  over product demands D  
conditioned on the user’s purchase history H . 

Figure 6 Prediction Error for Various Models 

Figure 7 Code corresponds to tree branch indexes 

3. ADAPTATION OF INTERFACES 
In the previous section, we introduce a rich representation for 
consumer purchase behaviors.  In this section, we show how one 
can use a model of the form described above to drive the 
generation of a personalized user interface.  
A classic approach to creating flexible user interfaces is to adopt a 
restricted family of interface layouts and then choose a layout 
within this family. A common choice is to employ a tree-

structured directory hierarchy. In one example [23], a tree 
structure provides access to web resources on mobile phone 
displays. Popular nodes are promoted up the hierarchy in the tree 
to reduce users’ access cost. The optimization is based on a 
weighted metric that measures distance to items based on the 
number of selections and amount of scrolling required to access 
items. Relevant work has also been done in optimization of 
hierarchical computer menus [15]. 

  Figure 8 Reading and navigation costs given by tree  

Using a communications channel analogy, we could recast the 
problem of trying to minimize the effort for users to find desired 
products (eg, with a minimum expected number of keystrokes) as 
the problem of constructing an information channel with an 
optimal code to express the desired messages. Specifically, the 
sequence of choices the user makes as they descend a tree-
structured hierarchy correspond to sending successive digits in an 
n-ary code.  In figure at the top, “Peas” have the code “02” and 
plain yogurt “111”.  
The navigation pattern imposes a cost on the user. In the figure 
above, a simple cost model assigns costs to reading and link 
following. Reaching “plain yogurt” has a cost of  “6”. We have 
used simple and equal integer costs here for clarity. The model, 
however, admits a general cost function. 



One can easily optimize the tree to minimze the cost to obtain 
“plain yogurt”, however, the cost of all other items will increase. 
The best organization to use in personalizing the interface for a 
given consumer is not obvious and will depend on the user’s 
demand distribution, Pr(D | H ) . We note that the demand 
distribution, Pr(D | H ) ,  corresponds to the message transmission 
frequency in coding theory. Given transmission cost and 
transmission frequency, Huffman [12] provides an efficient 
optimal method for finding codes spelled with n-ary digits The 
original work, however, assumes that all digits have equal 
transmission cost. This assumption fails to hold in our navigation 
problem as options with higher branch numbers require additional 
reading (and possibly interface manipulation) to reach. This 
problem is called a code with unequal letter costs and is known to 
be solvable approximately for useful cases  [8].   
So far, we have only considered communication from consumer 
to vendor.  It captures the behaviour of a user who has a specific 

grocery category in mind (e.g., “peas”) and navigates through the 
hierarchy to find it.  However, the user must go from an abstract 
category to a specific stock keeping unit or SKU (i.e., a box with 
a barcode on it) .   So, the category “peas” might be refined by 
brand, format, and organic status to become “Everfresh organic 
frozen peans, 2kg bag”.  To perform this specialization, the user 
needs to scan the SKU’s related to the category of interest.   
In our coding analogy, this means that SKU’s which are related 
should have similar prefixes in the code so that they will fall 
under the same branch.  We are unaware of specific extensions to 
coding theory to this.  We therefore extended coding to a new 
paradigm we call “coherent coding” which enforce the idea that 
messages with related content should have codes with similar 
prefixes 

In  Table 2, we present a high-level outline of the core ideas 
for an  algorithm to compute coherent codes.  We start with a flat 
tree T  containing all products.  Given the user demand 
distribution , we attempt to partition the nodes of the tree using 
an attribute to create a new tree structure 

p
T '   so as to minimize 

the expected cost of finding each item, EC (T ' , p). Intuitively, 
expected cost will be minimized by the attribute that separates 
items likely to be demanded by the consumer from items unlikely 
to be demanded by the consumer. For example, some consumers 
might find the attribute “organic” to be a useful separator, while 
other consumer’s might find an ethnic category more useful.  In 
our implementation, we also allow promotion of highly demanded 
nodes to rise above the split as in [23]. The algorithm also has the 
important property that the resulting directory tree is always 
complete in the sense that all items are always accessible.  

To test the algorithm, we developed a simple simulation 
scenario. We simulate a store with a 5,000 item inventory. Each 
item has 10 attributes (weight, brand, etc). Each attribute has 5 
levels (e.g., 100g, “Fresh Pick”). We define a spread parameter S  
which gives the spread of products over the attributes. The 
usefulness of attributes for partitioning products will depend on 
how the products are spread over the levels of the attribute.  If the 
products are spread out over all levels, the attribute will be 
informative (e.g., grocery department). If the products are 
concentrated on one level, the attribute will be uninformative 
(e.g., all products in store are non-organic). We generated 1,000 
customers with randomized demand functions. Each consumer 
randomly chooses an item to request from the store. Two stores 
are created: one which is personalized for the user’s personal 
demand distribution, Pr(D | H )  in as much as attributes allow it 
and one that is optimized to the average demand distribution of 
the 1000 customers in our sample. In Figure 10, we can see that 
when attributes are highly discriminative (S=1/5), savings in 
navigation time created by personalization are about 81 percent. 
When attributes are completely uninformative (S=5/5), there are 
no savings, as expected. This simple scenario is intended only to 
give the reader a qualitative understanding of how interface 
personalization can be used to reduce user communication 
overhead.  

Table 2: Greedy Directory Tree Generation 
Greedy_generate(Items,D) 
   Return Greedy_generate_helper(makeTree(Items),D) 
 
Greedy_generate_helper(T,D) 

   [a*,T * ] = max
a∈A

EC ( partition(T ,a),D){ } 

   R = new_root_node() 

   foreach n in T* 
      R+=greedy_generate_helper(n,D) 
   Return R 

4. FUTURE WORK 
A key goal for us in the coming months is to apply our framework 
to some real-world data. As part of this project we are 
implementing automatic bundle discovery.   Beyond immediate 
applications, the grocery domain introduces a number of 
challenging properties into consumer modeling and interface 
generation. Products can be substitutable and complementary. 
Optimizers must be able to recognize this so that demand for 2% 
milk is not treated independently of demand for 1% milk. Similar 
reasoning is required to address multiple quantities of the same 
item. The number of samples for any one consumer is small, and 
thus information about the population must be used to give us 
information about the individual. Techniques such as shrinkage 
and Hierarchical-Bayes estimation can be used here. We are also 
in the process of comparing our techniques to traditional ARMA 
style time series analysis.  

     Figure 9 Costs in yogurt optimized tree  



Another key problem for this area of research is defining 
measures of customer satisfaction. Simple matching of the 
predicted demand to actual demand seems problematic for a 
number of reasons. First, satisfaction is asymmetric. One is better 
off to occasionally meet a user’s needs in the excess than to 
undersupply a need. Traditional matching measures also introduce 
subtle biases that skew the notion of closeness of two time series 
in unintuitive ways. For instance, two time series that are identical 
but shifted in phase would show high absolute pair-wise error, 
whereas we would want this to have low error. 

5. CONCLUSIONS 
Grocery shopping poses special challenges for personalization. It 
involves complex inter-temporal and inter-item correlations. It 
also requires unobtrusive and incremental real-time analysis.  Our 
novel approach to consumer modeling leverages a household 
behavior model to achieve tractable incremental inference of 
these complex correlations using only past observations of 
shopping behavior. The inference uses household utility 
parameters to represent preferences.  The preferences generate a 
demand model which is then used to personalize the interface.  
Finally, we showed that this personalization can be implemented 
using channel coding concepts to optimize an expressive family 
of interfaces and that these optimized interfaces have the potential 
to reduce objective interface manipulation costs for the user.  
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