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Abstract. Viola and Jones [VJ] demonstrate that cascade classificatethods
can successfully detect objects belonging to a single ctash as faces. Detect-
ing and identifying objects that belong to any of a set of $sks”,many class
detection is a much more challenging problem. We show that objects ffach
class can form a “cluster” in a “classifier space” and illatgrexamples of such
clusters using images of real world objects. Our detectigarahm uses a “de-
cision tree classifier” (whose internal nodes each cormepo a VJ classifier)
to propose a class label for every sub-imageof a test image (or reject it as a
negative instance). If thi§” reaches a leaf of this tree, we then péshrough a
subsequent VJ cascade of classifiers, specific to the idhtifass, to determine
whetherW is truly an instance of the proposed class. We perform skgergir-
ical studies to compare our system for detecting objectsipfod M classes, to
the obvious approach of runningsatof M learned VJ cascade classifiers, one
for each class of objects, on the same image. We found thatetfeetion rates
are comparable, and our many-class detection system i$ abdast as running
asingleVJ cascade, and scales up well as the number of classessesrea

1 Introduction

The pioneering work of Viola and Jones [17,16] has led to aes&ful face detec-
tion method based on “cascade classifiers”, where eachfidass a binary classifier
that is learned by applying Adaboost [3] (or some relatedrtigm [15, 18, 8, 13]) to
a database of training images of faces and non-faces. Therlyimdy principle in all
these algorithms is to learn many binary classifiers dutirggttaining phase, then at
performance time, run these classifiers as a “cascad@g”ifl a sequence one after an-
other) on each region (at various resolutions) of the teagneliminating non-faces at
each stage. This work has also been used to detect objecengfather “classes” (like
cars, motorbikes, etc.). Many researchers have extendethftade detection method
to solve several other related problems [7, 4, 9].

Our goal, however, is detecting and identifying objects,(assigning a class label)
of differentclasses. One possible way to solve this problem is to hufldlifferent
“single class Viola-Jones"s(c-vJ) cascades, one to detect objects of each class, then
run themall at performance time to detect and identify objects of mldtiglasses.
However, this does not scale up well; it requires running cascade for each class
of objects and is therefore expensive. Moreover, it can bieiguous if more than one



classifier labels a instance as positive. Another approa¢h build onemany-class
cascadeof classifiers and use it to detect objects of multiple clas$bat is, letl’ =
T+ U T~ be a training set images of positive exampl&s’) and negative examples
(T7), such that'+ = UM, T; whereT; has images of clagsand7~ does not have any
images of any of thé/ classes. We can run the Viola-Jones algorithm on this set and
produceN binary classifiers, such that each classifier can detectisbjgany of the
M classes (with a certain false positive rate) as a positis&irce, but cannot assign a
class label. We refer to each of thdsieary classifiers as a “many-class classifier” or,
“Mc-classifier”. This approach has two problems: (1) Simceclassifiers themselves
are binary, during performance, they just label any objed T as positive, but they
cannot assign a more specific class label to it. (2) A simgteclassifier, built using
objects of different classes as positive examples, can aavgh false positive rate.
This is not surprising: Many of these individual classed wéturally correspond to
disjoint clusters (see below), and thigc-classifier corresponds to thainion Any
algorithm that attempts to form a convex hull around sucjotfisclusters is likely to
include many extraneous instances.

In this paper, we present a “multi-class detector and iiertithat is built using
Mc-classifiers and several single-class cascades. We shbautiraany-class detection
algorithm (McDA) takes much less time than running class-specific cascades, one
for each of theM classes. We also show empirically that the accuracy@ba, in
detecting and categoriziny = 4 diverse classes of objects, is similar to the detection
rate of the class specif&c-vJ cascade.

Section 2 motivates and summarizes our framework. Sectexpiins the details
of how we build our learning system and how we use it to detiejetads of many classes.
Section 4 provides empirical results in detecting obje€t®or classes and discusses
how they compare with thec-vJ cascade detection method, with respect to accuracy,
efficiency and ROC curves. Section 5 discusses relevant setated to our research.

2 Motivation and Framework

The Viola-Jones learning algorithnvJ” takes as input a set of images that are each
correctly labeled as either a face or a non-face, and pracaicascade of boosted clas-
sifiers. Every classifier consists of many “linear sepasdt@ach built using one “rect-
angle feature”, that is a rectangular sub-region in thiex 24 pixel) training images.
The algorithm uses three kinds of rectangle features, esicly wectangular regions
of the same height and width adjacent to each other: (1) ar¢wtangle feature (see
Figure 1) that computes the difference between the sum oihtkasities of the pix-
els of two adjacent rectangular regions; (2) a three-rgtefieature that computes the
sum within two outside rectangles subtracted from the sumdenter rectangle; and
(3) a four-rectangle feature that computes the differemte/den the diagonal pairs of
rectangles. There are many (over a hundred thousand) possilnbinations of rectan-
gle features each of which can potentially be used as input fmear separator. The
learning algorithm chooses the best linear separatorséttiamt can best separate faces
in training data from non-faces, like the region across tloatim and nose; see the hu-
man face on the left in Figure 1) from these candidates, waiehthen used to build
classifiers.



Fig. 1. Features of different classes on a rectangular region

Let C; be any classifier based érlinear separatorg’; classifies any sub-imadé#
of atestimage as aface‘L]“f:1 ai-ci(W) > 4 Zle a; whereq; is the weight given
to i*" linear separatoe; andc; (1) is the boolean classification result @fon I as
a face or non-face (see [17] for details). We refer to the tityal; (W) = Zle o -
c;i(W), as theSCQOvalue (“sum of classifier output values”) 6f onW.

VvJ can be used to detect objects of classes other than facess&VWe to build
N Mc-classifiers using a training set af different classes of classifierse., T' =
T+UT~ whereT+ = UM, T;. Each of theV classifiers can detect objects/af classes
(but cannot assign a class label). We define its “classifiacapas theV-dimensional
space formed by using tIf&®COvalue of each ofV mc-classifiers as a dimension. That
is, the N classifiers collectively map each input image to a point ex¥hdimensional
classifier space. We anticipate that 8@0Ovalues of objects in a single class should be
similar, and that objects from different classes shoulcetdifferentSCGvalues. Our
results show that this holds — in that each class will form laster” in the classifier
space; see Figure 2. For each cluster, we can assign thelaletd based on the
number of images of each class in the cluster; see Sectidoi3details.

Figure 2 shows various clusters of four classes of objectsars, deaves, motor-
bikes and faces — plotted using tB€Ovalues of 2 of thevc-classifiers, on training
images of these four classes of objettd/e selected the classifiers shown in Figure 2
(Cy1,C,, ..., Cs) manually to clarify our ideas. Of course, we do not antitgéphat
the SCOvalues ofeverypair of Mc-classifiers (or for that matter every setiof< N
classifiers) will form clusters.

Note that onesubsetof the N classifiers may be sufficient to distinguish class#1
from class#2; here, it would clearly be inefficient to comsidll NV classifiers. Unfor-
tunately, a different subset may be necessary to sepaess#dl from class#3, and a
third subset for class#2 vs class#3, and so forth. There mawplsmall set of classifiers
that is sufficient distinguish each class of objects fromdtieers. That is why we use
a dynamic process to find the most appropriate subset offegassFor each input im-
age, this process sequentially decides which classifiesemext, based on the values
observed from the classifiers previously executed on thiglow. The challenge is to
learn the dynamic sequence of classifiers that can effectivelyndisish the clusters
corresponding to different classes.

We use dynamic programming to find a sequenceofclassifiers that optimally
partition the training images into clusters. Our learnitgpeathm therefore builds a
depthd “decision tree classifier"Tc, see Figure 3) that attempts to identify the ap-

4 The weights for linear separators are learned during trgini
5 We presented clusters in two dimensions for clarity; in gehthere may be clusters in a
p-dimensional space f& < p < N
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Fig. 2. Clusters of objects of the same class in cascade space

propriate label for each instance, using the leameetlassifiers as features. Eaphc
leaf, corresponding to one class of objects, also includeglaer VJ cascade of classi-
fiers, to verify an instance qualifies.

State representation:We can identify each node in DTC with a states. We repre-
sents with the SCOvalues of the classifiers on the path from the roobot to n
(see Figure 3). Thatis, = ([Vinin,1, Vinaz,1l, - - - [Vinin.ks Vinas,x)), Where for each,
[Vinin,is Vimas,i] 1 the range oBCOvalues ofC;. We say two states aré-equivalent”,
written s; ~; so, iff
— 51 ands, have applied the same set of classifiers, not necessarlgisame order
— For every classifie’; used ins; and sa, |V(1) — | <6 and|V(1) -

min,i min,i max,i

v | <4, whered is a pre-defined constant. We set 70 in this work.

max,i

We use the equivalence property of states for two reasopdu¢ing training, to merge
all §-equivalent states into one, and (2) during performand&)diche closest matching
state from the training results and use the best classifieceged with it.

At run time, to classify a sub-imag@ within the current test image)cbA ba-
sically follows bTc: it dynamically selects a classifier to apply ¥, based on the
responses of the previously run classifierslgnlf all the classifiers on the path from
the root to the leaf obTc label W positively, we classifyit’ with the class labef of
the corresponding leaf. We then apply a cascade, specifiisttetf, toll/, to confirm
that W is an instance of clasé If any of the classifiers imTc or the class specific
cascade labéll’ negatively, we stop processifij and proceed to the next sub-image.
We can summarize the framework as follows:



[\/l,Vz]/ So, Ca \[vj,w] 1
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Fig. 3. Decision tree classifier. Each node is associated with @, stat every internal node with
a particular classifier. Each leaf represents a cluster & single class), and has an associated
cascade.

— Use training dat&” = 7+ U T~ to build N many-class boosted (binaryjc-
classifiers, each designed to classify objects of any ofMhelasses as positive
instances. (Note this does not distinguish these differiasses).

— Use dynamic programming to buildtarc using theseV mc-classifiers as binary
“features”, where each leaf corresponds to a cluster of@esitiass.

— For every leaf inbTc, find class label (explained in Section 3.1) and assign a
cascade” of class( to the leaf.

— At performance time, scan through each sub-imagef the test image. For each
W, follow the decision tre®Tc. If any of the classifiers encountered labElas
negative, stop. Otherwise, if all label it as positive, &ively assigni’ the class
label ¢ associated with the leaf reached. Run the cascade assbwitiethis leaf
to confirmW¥ is an instance of clags

We can contrast this approach with the other obvious algworifor detectingh/
classes of objects: just ugd class-specific cascades, each havglassifiers. We
will call this “m-sc-vJ”. This means classifying each instance would require nogni
M x N classifiers. As our detection method chooses classifieefudlrin the first
stage, we can assign a tentative class label usingofily\/ classifiers (see clusters in
Figure 2), then rumnelength-V cascade. Hence, we need only run a total of at most
M + N classifiers for each image, which is clearly more efficfeSection 4 presents
empirical results confirming this.

& While some classifiers are more expensive to apply than sitttee difference in the cost of
applying any two classifiers is negligible compared to therall cost. So, runnind/ + N
classifiers is better than runnid x N classifiers.



3 Learning to Detect Objects of Many Classes

This section presents the details of using dynamic progriagnto construct abTC of
Mc-classifiers, and then how we use thisc to detect objects of many different classes.

3.1 Building DTC classifier

Figure 4(a) presents the learning algorithm. We bniléhc-classifiers using the images
of T'. We then produce a depthdecision treeTC) using theséV classifiers.

Exploring sequences of classifiersiWe explore every possible sequencedofic-
classifiers on the images @f" to find the sequence that yields the best clusters. That
is, we first apply anyvc-classifierC; on each imagey € T*. We ignore all the
images that’; labels as negatives. We sort the remaining images base@®mis®0O
valuesVi(w) of Cy on these images,e., (w1, ..., Wy /2, W /241, - - W), Where
Vi(w;) > Vi(wy) whenj > k. We split them into two equal halvé§l) and (T}7)
(denoting the left and right branches), such ttiBf) contains{w, ..., w,,/»} and
(T{) contains{w,, /211, ..., wn }. We then apply anothenc-classifierC; # C; on
(TE) and (T) separately resulting in (177, T¥) and (T, T4) that each repre-
sents one half of the classifiers @f) thatC, labeled as positives (2Y'{*, 7)) and
(TE, TF) that each represents one half of the classifier§gf) that C, labeled as
positives.

We repeat the process fésteps, applying a sequenceidaflassifiers{C1, ..., Cq).
The resulting2? leaves are clusters. Note that this is for one (random) seguefd
classifiers. When we considé{?{) different sequences dfclassifiers, it leads to a total

of (1) x 27 clusters. While many clusters can have the same class stimistibe a
problem. Any sub-image will now be matched to one of the senalusters. In general,
we identify each node at deptlwith a states that is a list of ranges d8CQvalues, of
the form([V,L,., VL .1, ...y [V, Vi

min’ ¥ max min’ maw] > .

Computing the utilities of clusters: We want to determine the best decision tree within
this tableau — the one that leads to the “purest” leaf nodashleaf of the tree rep-
resents a cluster. We want the clusters that are as “puredssiye,i.e., which group
images of only one class together. For every clugiewe compute the probability that
images ins, are of clasg, weighted by the size of class

P(Ti|sa)
U(sq) = max————=
i |T|

where of courseP(T; | sq ) is the fraction of images of clagsin s; and|T;| is the
number of images in training s&}. Basically, we are computing the fraction of images
of each class and normalizing it with the fraction of images in the traigiset, so that
any class that has a high number of training images does metdraunfair advantage.
We assign the class labéthat has the maximum utility te,;. Recall this is after ap-
plying any sequence af classifiers{C1, Cs ... Cy). The idea is to assign high utility
value to clusters that group images of the same class tagEtreany state; with pos-
sible “children”{s’_;};, (each corresponding to the application of one other dlagsi



we compute the utilityl/ (s;) = maxj{U(s{H} i.e., the maximum utility of any state
produced by applying an additional- 1¢ classifier.

Building pTc: We collect the(s;, C;) tuples and also the corresponding utilities, for
all i, 1 < i < d, wheres; denotes the state resulting after applyingjassifiers,C;
denotes the classifier that, when applied totransitions it to another statg, ,, with

the maximum utility among the states resulting after apgy( + 1) classifiers. For
every two states; ands; (i # j) that arej-equivalent we retain only one state that has
higher utility and the corresponding classifier. Note that(s;, C) tuples forl < i <

d tell us precisely the classifiers applied so far, their individu8CGvalues and the
best classifieC; to apply ins;. This corresponds precisely to th&c decision tree.

LearnpTc(7T =7+ U T~ : TrainingSet)
e Build N mc-classifier§C1, Cs, ... Cn} using images iff".
e Let All be the set of al(")) sequences of of Mc-classifiers
e For every sequence dfclassifiers(C1, . .., Cy) from All
— Let (To) be set of all (+)images,e., T
— Fori=1tod do
o Apply C; separately on each partitigff’;_1)
produced by applyingCi,...,Ci—1)
o For each partitioT;_1), remove all images that; labels as negatives
o Split the rest of images into two (left and right) partitions
— For each clustes,; produced by applying the sequencedaflassifiers
o Assigh maximum probable class lalfel
o Compute utilityU (sq)
— For every state; resulting after applying < d classifiers
o Compute utilityU (s;) = maz;U (s, ;)
o Let C; be associated classifier that yielded max. utility wheniagdgph s;
o AssociateC; with s;, store(s;, C})
e Merge all thed-equivalent states into one, store one classtfigwith the max. utility
e The resulting(s;, C;) for1 <4 < disDTC

MCDA (I, : Test Image
* For each windowV (of 24 x 24 pixels) within I,
oForl <4 <d,
— Find states; “closest” toW,
— Apply theC;" associated with;, to W
olfallof (C1,Cs,...C4) labelW as a positive
— Find the corresponding clustée., s,
— Assign the mostly likely claséassociated witls;, to W
— Apply sc-vJ cascaddCy,C5 ... CL)to W
— If class? cascade also labeld as a positive, markl” as an instance of clags
o Resizel, by a factor of 0.8
o If I;.length> 24 and;.width > 24, gotox
e Return all windows marked as positive instances with clagslk (and correct sizes)

Fig. 4. (a) Learning algorithm to produazT c; (b) Dynamic classification algorithm



3.2 Detection

Our detection algorithmyicba shown in Figure 4(b), uses classifiers built by the cas-
cade classifiers method [16, 18]. It examines extlx 24 pixel window in the image,
then rescales by a factors (i.e, resizes the current height and width of the test image
by a factor 0f0.8) and repeats. For each winddW, DTC first applies the classifier;
associated with root (see Figure 3). This might rejéttif so the process terminates
(i.e, DTC continues with the next window). OtherwisgTc computes th&&COvalue
associated witl; on W and uses this value to decide which subsequent clasSifier
to apply. Again this could rejedt/, but if not,C5’s SCGOvalue identifies the next clas-
sifier C5 to apply toWW. This can continue for at mosgtsteps, untill/’ reaches a leaf
(cluster). If all thed classifiers labelV as a positive instance;rc finds the class labél
associated with the cluster. We then run #ftievJ cascadéCy, Cs, ... C%) associated
with this leaf (of clas¥) and declaréV to be an object of clagsonly if it passes all of
these classifiers. Otherwise, we reject it as a negativannst

4 Experimental Results

4.1 Experimental setup

Data Used:We used four classes of objects in our experiments: faces(iear view),
leaves and motorbikes. We used a total @0 images of faces, collected from popular
face image databases (including ones from Olivetti Rebesnd AT&T, PIE, UMIST,
Yale, etc.) in the training set of facefr. We used the entire MIT-CMU database of
faces, which has a total 78 images with532 faces, as the test set for faces. For the
other three classes (cars, motorbikes and leaves), we msgpks from Caltech image
database [1]. We split tHe26 images of cars into two random setsi@f and50 images.
We used the first set as the training set for c@fs,and the second set (with a total of
67 cars) as a test set. Similarly we split #26 images of motorbikes into two random
sets of776 and50 images and used the first set as the training set for motaridike
and the second set 6 images (with a total 050 motorbikes) as the test set. Caltech
database uses three different types of leaves (see Figanel$jas a total af86 images

of leaves. We split this into two random sets166 and 30 images and used the first
set as the training set for leavés and the remaining set 8f) as the test set. We also
used anothe37 images of leaves (that we captured using a digital cameth warious
backgrounds and sizes) in the test set. So, our entire tefsirdeaves has a total @7
images, one leaf per image. Our training set for the negateenples — has a total
of 2320 images; none of these has any pictures of faces or cars @leamotorbikes.

Building VJ Classifiers: We usedlc, T, Ty, Tr andT~ to build4 sc-vJ cascade

classifiers (one for each class), thatinvol¥8d17, 17 and21 classifiers for cars, leaves,
motorbikes and faces, respectively. We also h¥il= 10 mc-classifiers that can detect
objects of any of the four classes. Since we have four diffeckasses, and with the
application of each classifier (carefully, usingc) we can distinguish between two



rbikés (side view) and faces

leaves,

Fig. 5. Performance on test images of cars (rear view)



Class TestData #Windows| Peak Accuracy Av.Detcn.Time(sec)

#lmages#ObjectsAv.Image Sizé SC-VJ | MCDA |SC-VJ|MCDA|M-SC-VvJ

Cars 50 65 265x 360 [10,114,61337.69%86.15%0.495 0.806| 1.787
Leaves 67 67 318x 436 |20,607,66897.01%95.52%0.454 0.834 2.006
Motorbikeg 50 50 279x 297 | 8,680,218 97.0%)| 92.0%|0.574,0.963| 1.912
Faces 169 532 403x 402 |76,957,71(92.11% 92.0%|1.541 1.883| 4.558

Table 1. Comparison of test results feic-vJ cascademcba and MSC-VJ algorithms

classes, we set = 3.” That is, we built abTc upto a depth o using our learning
algorithm as explained in Section 3.1.

Training time: Our system required abo@thours to build each of the class spe-
cific cascades and anothiehour to build themc-classifier§. It then required about
minutes to builddTc, so the total training time was approximatéB/hours.

Results: We comparedicDA to the standard set df/ = 4 sc-vJ cascades, with re-
spect to accuracy, ROC curves and efficiency. NoteMitaiA appliesd mc-classifiers
(within DTC) to determine which class label to consider for each testimsge, and
then applies a cascade specific to that class.SkheJ detection algorithm has an eas-
ier task, as we explicitly identify which single class of etis it should seek for each
image, which means it does not need to applymraoyclassifiers. This is why we do not
expect the performance ofcDA to be better thaisc-vy, in terms of either efficiency
or accuracy. However, our results indicate thi@pa does quite well in detecting ob-
jects as well as assigning class labels. In fact, our algworituns at least twice as fast
as runningM vJ cascades to detesf = 4 classes of objects; see Section 4.4.

4.2 Accuracy and Execution Time

Figure 5 shows some test images in whicbbA could successfully detect cars (rear
view), leaves, motorbikes and faces. Table 1 compeieEsA with the sc-vJ cascade
algorithm in terms of accuracy and efficiency. The peak amyias we vary the number
of cascade classifiers at the leffgr sc-vJ andMmcbpA are given in Table 1. These
values are statistically indistinguishablepat 0.05. While MCDA is slower tharsc-

vJ, by an additives3%, 83.7%, 67.7% and22.26%, we attribute this to: (1) the time
needed to run the extrd = 3 classifiers usingTc and (2) the overhead involved in
assigning a class label to each sub-image of any test imaxje that this is much better
than the obvious-sc-vJ alternative.

" We tried larger values af, but the results were not any better

8 1. We use the Wu and Rehg [18] implementatiorvaf
2. All results presented here were run on a 1 GHz. Intel Penfitocessor with 256 Mbytes
of memory running Windows-2000.

® We define “peak accuracy” as the accuracy value with nedgigite of increase with increas-
ing values false positives.
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4.3 Number of Class-Specific Classifiers

We ran the following experiment to determine how these tware@chesN§icbA and
sc-vJ) each scale with the numbéfrof class-specific classifiers: We first appliée: 3
classifiers withinbTc, then applied!’ class-specific classifiers at each leaf, varyihg

in the ranges [10-18], [10-17], [10-17] and [12-21] for ¢cdeaves, motorbikes and
faces, respectively. For each valuedbfve recorded the number of false positives and
accuracy, as well as the total number of windo@ssx 24 pixel sub-images) processed.
We also did this foisc-vJ. Each graph in Figure 6 plots accuracy against the number
of false positives per window processed. We seeskatJ detection method performs
better tharmcDA, while the overall detection fancbDA is comparable tec-vJ.

4.4 Comparison tom-sc-vJ

On the test set of each class, we ran each of the four cascastéfigrs and recorded
the execution time; see Table 1. As the execution time ofdlgsrithm is linear in

the number of classes, it does not scale as well@sa, which does not need to run
multiple cascades.



5 Related Work

There has been a lot of interest in multiclass object deteatecently. Torralbaet

al. [14] train binary classifiers “jointly” (for several clasgeand use the common fea-
tures to detect objects of the various classes. They shavehture sharing is a fun-
damental aspect of multiclass detectors that scale up wtilthve number of object
classes. In our work, we usec-classifiers that use features of multiple classes of ob-
jects to detect member of these classes. Different clagsagexts have different fea-
tures,i.e, a classifier'sSCOvalue is different for different classes of objects. Uding
SCOvalues of the firstl classifiers oDTC, we assign a class label to any sub-image of
a test image. That is, usirf§COvalues, we reach some partition of the feature space
where a single object class exists. Hence, our work impficitilizes feature sharing.
But our learning and detection algorithms are significadtfferent. Fan [2] presents
an algorithm that learns a hierarchical partitioning of lypothesis space, which they
use to do a coarse to fine search in the hypothesis spacengmnoiups of hypotheses
at every stage. Li, Fergus and Perona [6] use a generatibalpifistic model to rep-
resent the shape and appearance of a constellation ofdeaifian object. They learn
the parameters of the model incrementally in a Bayesian sraiiey test it on01
different object categories. Lin and Liu [7] argue that fde¢ection itself is a multiclass
detection problem because of the variations in the appearaia face caused by dif-
ferent poses, lighting conditions, expressions, occhsietc. They present a boosting
algorithm to detect faces to account for all these variati@ur work is different from
this as we try to assign a class label based on the clustet$han detect objects using
class specific cascades. We addressed related issues torafeased face-recognition
system [5] by posing the task a “Markov Decision Problem (MD®/e use dynamic
programming to produce an optimal poligy, that maps “states” to “actions” (feature
detectors) for that MDP, then used that optimal policy t@oggize faceefficiently We
use similar techniques here in this work, as we again find &st $equence of classi-
fiers. The current work differs because it considatstiple classes of objects.

6 Conclusions

This research provides a way to use learned binary classifietetect and identify ob-
jects in diverse classes. We first observe that images of@ash can form clusters in
the classifier space ofc-classifiers, and that different subsetsaf-classifiers may be
sufficient to distinguish different pairs of classes. Heraeefficient approach should
select these classifiers dynamically. We present a leatadoayithm that produces a
decision treepTc, that first applies a dynamic sequence of classifiers to m®pgos-
sible class label for each sub-image of a test image, thelieagpcascade of classifiers,
specific to that class, that is effective for pruning awagégbositives.

We present empirical results to demonstrate that our aphtis@ffective. In partic-
ular, we show that our implementation can detect and ideabfects belonging to any
of M = 4 classes, obtaining roughly the same accuracy and ROC-perfe@mance as
the naive approach of simply runniig differentvJ systems. Moreover, our approach
is about as fast as runningsingleVVJ cascade, and will scale well as the number of
object classes grows.
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