
Learning to Detect Objects of Many Classes Using
Binary Classifiers

Ramana Isukapalli1 and Ahmed Elgammal2 and Russell Greiner3

1 Lucent Technologies, Bell Labs Innovations, Whippany, NJ 07981, USA
2 Rutgers University, New Brunswick, NJ 08854, USA
3 University of Alberta, Edmonton, CA T6G 2E8, CA

Abstract. Viola and Jones [VJ] demonstrate that cascade classification methods
can successfully detect objects belonging to a single class, such as faces. Detect-
ing and identifying objects that belong to any of a set of “classes”,many class
detection, is a much more challenging problem. We show that objects from each
class can form a “cluster” in a “classifier space” and illustrate examples of such
clusters using images of real world objects. Our detection algorithm uses a “de-
cision tree classifier” (whose internal nodes each correspond to a VJ classifier)
to propose a class label for every sub-imageW of a test image (or reject it as a
negative instance). If thisW reaches a leaf of this tree, we then passW through a
subsequent VJ cascade of classifiers, specific to the identified class, to determine
whetherW is truly an instance of the proposed class. We perform several empir-
ical studies to compare our system for detecting objects of any of M classes, to
the obvious approach of running asetof M learned VJ cascade classifiers, one
for each class of objects, on the same image. We found that thedetection rates
are comparable, and our many-class detection system is about as fast as running
a singleVJ cascade, and scales up well as the number of classes increases.

1 Introduction

The pioneering work of Viola and Jones [17, 16] has led to a successful face detec-
tion method based on “cascade classifiers”, where each classifier is a binary classifier
that is learned by applying Adaboost [3] (or some related algorithm [15, 18, 8, 13]) to
a database of training images of faces and non-faces. The underlying principle in all
these algorithms is to learn many binary classifiers during the training phase, then at
performance time, run these classifiers as a “cascade” (i.e., in a sequence one after an-
other) on each region (at various resolutions) of the test image, eliminating non-faces at
each stage. This work has also been used to detect objects of many other “classes” (like
cars, motorbikes, etc.). Many researchers have extended the cascade detection method
to solve several other related problems [7, 4, 9].

Our goal, however, is detecting and identifying objects (i.e., assigning a class label)
of different classes. One possible way to solve this problem is to buildM different
“single class Viola-Jones” (SC-VJ) cascades, one to detect objects of each class, then
run themall at performance time to detect and identify objects of multiple classes.
However, this does not scale up well; it requires running onecascade for each class
of objects and is therefore expensive. Moreover, it can be ambiguous if more than one

classifier labels a instance as positive. Another approach is to build onemany-class
cascadeof classifiers and use it to detect objects of multiple classes. That is, letT =
T + ∪ T− be a training set images of positive examples (T +) and negative examples
(T−), such thatT + = ∪M

i=1Ti whereTi has images of classi andT− does not have any
images of any of theM classes. We can run the Viola-Jones algorithm on this set and
produceN binary classifiers, such that each classifier can detect objects ofanyof the
M classes (with a certain false positive rate) as a positive instance, but cannot assign a
class label. We refer to each of thesebinary classifiers as a “many-class classifier” or,
“ MC-classifier”. This approach has two problems: (1) SinceMC-classifiers themselves
are binary, during performance, they just label any object in T + as positive, but they
cannot assign a more specific class label to it. (2) A singleMC-classifier, built using
objects of different classes as positive examples, can havea high false positive rate.
This is not surprising: Many of these individual classes will naturally correspond to
disjoint clusters (see below), and thisMC-classifier corresponds to theirunion. Any
algorithm that attempts to form a convex hull around such disjoint clusters is likely to
include many extraneous instances.

In this paper, we present a “multi-class detector and identifier” that is built using
MC-classifiers and several single-class cascades. We show that ourmany-class detection
algorithm (MCDA) takes much less time than runningM class-specific cascades, one
for each of theM classes. We also show empirically that the accuracy ofMCDA, in
detecting and categorizingM = 4 diverse classes of objects, is similar to the detection
rate of the class specificSC-VJ cascade.

Section 2 motivates and summarizes our framework. Section 3explains the details
of how we build our learning system and how we use it to detect objects of many classes.
Section 4 provides empirical results in detecting objects of four classes and discusses
how they compare with theSC-VJ cascade detection method, with respect to accuracy,
efficiency and ROC curves. Section 5 discusses relevant workrelated to our research.

2 Motivation and Framework

The Viola-Jones learning algorithm “VJ” takes as input a set of images that are each
correctly labeled as either a face or a non-face, and produces a cascade of boosted clas-
sifiers. Every classifier consists of many “linear separators”, each built using one “rect-
angle feature”, that is a rectangular sub-region in the (24 × 24 pixel) training images.
The algorithm uses three kinds of rectangle features, each using rectangular regions
of the same height and width adjacent to each other: (1) a two-rectangle feature (see
Figure 1) that computes the difference between the sum of theintensities of the pix-
els of two adjacent rectangular regions; (2) a three-rectangle feature that computes the
sum within two outside rectangles subtracted from the sum ina center rectangle; and
(3) a four-rectangle feature that computes the difference between the diagonal pairs of
rectangles. There are many (over a hundred thousand) possible combinations of rectan-
gle features each of which can potentially be used as input for a linear separator. The
learning algorithm chooses the best linear separators (those that can best separate faces
in training data from non-faces, like the region across the mouth and nose; see the hu-
man face on the left in Figure 1) from these candidates, whichare then used to build
classifiers.

Fig. 1. Features of different classes on a rectangular region

Let Ci be any classifier based onk linear separators.Ci classifies any sub-imageW
of a test image as a face if

∑k
i=1 αi ·ci(W) ≥ 1

2

∑k
i=1 αi whereαi is the weight4 given

to ith linear separatorci andci(W) is the boolean classification result ofci on W as
a face or non-face (see [17] for details). We refer to the quantity Vj(W) =

∑k
i=1 αj ·

ci
j(W), as theSCO-value (“sum of classifier output values”) ofCi onW .

VJ can be used to detect objects of classes other than faces. We use VJ to build
N MC-classifiers using a training set ofM different classes of classifiers,i.e., T =
T +∪T− whereT + = ∪M

i=1Ti. Each of theN classifiers can detect objects ofM classes
(but cannot assign a class label). We define its “classifier space” as theN -dimensional
space formed by using theSCO-value of each ofN MC-classifiers as a dimension. That
is, theN classifiers collectively map each input image to a point in theN -dimensional
classifier space. We anticipate that theSCO-values of objects in a single class should be
similar, and that objects from different classes should have differentSCO-values. Our
results show that this holds — in that each class will form a “cluster” in the classifier
space; see Figure 2. For each cluster, we can assign the classlabel ℓ based on the
number of images of each class in the cluster; see Section 3.1for details.

Figure 2 shows various clusters of four classes of objects — cars, leaves, motor-
bikes and faces — plotted using theSCO-values of 2 of theMC-classifiers, on training
images of these four classes of objects.5. We selected the classifiers shown in Figure 2
(C1, C2, . . . , C8) manually to clarify our ideas. Of course, we do not anticipate that
theSCO-values ofeverypair of MC-classifiers (or for that matter every set ofk ≤ N

classifiers) will form clusters.
Note that onesubsetof the N classifiers may be sufficient to distinguish class#1

from class#2; here, it would clearly be inefficient to consider all N classifiers. Unfor-
tunately, a different subset may be necessary to separate class#1 from class#3, and a
third subset for class#2 vs class#3, and so forth. There may be no small set of classifiers
that is sufficient distinguish each class of objects from theothers. That is why we use
a dynamic process to find the most appropriate subset of classifiers: For each input im-
age, this process sequentially decides which classifier to use next, based on the values
observed from the classifiers previously executed on this window. The challenge is to
learn the dynamic sequence of classifiers that can effectively distinguish the clusters
corresponding to different classes.

We use dynamic programming to find a sequence ofMC-classifiers that optimally
partition the training images into clusters. Our learning algorithm therefore builds a
depth-d “decision tree classifier” (DTC, see Figure 3) that attempts to identify the ap-

4 The weights for linear separators are learned during training.
5 We presented clusters in two dimensions for clarity; in general there may be clusters in a
p-dimensional space for2 ≤ p ≤ N

S
C

O
-v

a
lu

e
 o

f
C

2

SCO-value of C1

Faces
Motorbikes

Leaves

S
C

O
-v

a
lu

e
 o

f
C

4

SCO-value of C3

Faces
Cars

S
C

O
-v

a
lu

e
 o

f
C

6

SCO-value of C5

Faces
Leaves

S
C

O
-v

a
lu

e
 o

f
C

8

SCO-value of C7

Motorbikes
Leaves

Fig. 2.Clusters of objects of the same class in cascade space

propriate label for each instance, using the learnedMC-classifiers as features. EachDTC

leaf, corresponding to one class of objects, also includes afurther VJ cascade of classi-
fiers, to verify an instance qualifies.

State representation:We can identify each noden in DTC with a states. We repre-
sents with the SCO-values of the classifiers on the path from the root ofDTC to n

(see Figure 3). That is,s = 〈[Vmin,1, Vmax,1], . . . [Vmin,k, Vmax,k]〉, where for eachi,
[Vmin,i, Vmax,i] is the range ofSCO-values ofCi. We say two states are “δ-equivalent”,
writtens1 ≈δ s2, iff

– s1 ands2 have applied the same set of classifiers, not necessarily in the same order
– For every classifierCi used ins1 ands2, |V (1)

min,i − V
(2)
min,i| ≤ δ and |V (1)

max,i −

V
(2)
max,i| ≤ δ, whereδ is a pre-defined constant. We setδ = 70 in this work.

We use the equivalence property of states for two reasons: (1) during training, to merge
all δ-equivalent states into one, and (2) during performance, tofind the closest matching
state from the training results and use the best classifier associated with it.

At run time, to classify a sub-imageW within the current test image,MCDA ba-
sically follows DTC: it dynamically selects a classifier to apply toW , based on the
responses of the previously run classifiers onW . If all the classifiers on the path from
the root to the leaf ofDTC labelW positively, we classifyW with the class labelℓ of
the corresponding leaf. We then apply a cascade, specific to this leaf, toW , to confirm
that W is an instance of classℓ. If any of the classifiers inDTC or the class specific
cascade labelW negatively, we stop processingW and proceed to the next sub-image.
We can summarize the framework as follows:

...

1

2

3

d

leaves

 (clusters)

.

.

depth

S
0
,
C
1

S
1
,
C
2
 S
2
,
C
3

S
3
,
C
3
 S
4
,
C
4

S
6

(face)

[
V
1
,
 V
2
]
 [
V
3
 , V
4
]

[
V
7
,
 V
8
]

[
V
9
 , V
10
]

[
V
5
,
 V
6
]

S
5

(car)

.

.

.

.

Apply cars

cascade

[
V
11
 , V
12
]

Apply faces

cascade

Fig. 3. Decision tree classifier. Each node is associated with a state, and every internal node with
a particular classifier. Each leaf represents a cluster (i.e., a single class), and has an associated
cascade.

– Use training dataT = T + ∪ T− to build N many-class boosted (binary)MC-
classifiers, each designed to classify objects of any of theM classes as positive
instances. (Note this does not distinguish these differentclasses).

– Use dynamic programming to build aDTC using theseN MC-classifiers as binary
“features”, where each leaf corresponds to a cluster of a single class.

– For every leaf inDTC, find class labelℓ (explained in Section 3.1) and assign a
cascadeC of classℓ to the leaf.

– At performance time, scan through each sub-imageW of the test image. For each
W , follow the decision treeDTC. If any of the classifiers encountered labelW as
negative, stop. Otherwise, if all label it as positive, tentatively assignW the class
labelℓ associated with the leaf reached. Run the cascade associated with this leaf
to confirmW is an instance of classℓ.

We can contrast this approach with the other obvious algorithm for detectingM
classes of objects: just useM class-specific cascades, each havingN classifiers. We
will call this “ M-SC-VJ”. This means classifying each instance would require running
M × N classifiers. As our detection method chooses classifiers carefully in the first
stage, we can assign a tentative class label using onlyp ≤ M classifiers (see clusters in
Figure 2), then runonelength-N cascade. Hence, we need only run a total of at most
M + N classifiers for each image, which is clearly more efficient.6 Section 4 presents
empirical results confirming this.

6 While some classifiers are more expensive to apply than others, the difference in the cost of
applying any two classifiers is negligible compared to the overall cost. So, runningM + N

classifiers is better than runningM × N classifiers.

3 Learning to Detect Objects of Many Classes

This section presents the details of using dynamic programming to construct aDTC of
MC-classifiers, and then how we use thisDTC to detect objects of many different classes.

3.1 Building DTC classifier

Figure 4(a) presents the learning algorithm. We buildN MC-classifiers using the images
of T . We then produce a depthd decision tree (DTC) using theseN classifiers.

Exploring sequences of classifiers:We explore every possible sequence ofd MC-
classifiers on the images ofT + to find the sequence that yields the best clusters. That
is, we first apply anyMC-classifierC1 on each imagew ∈ T +. We ignore all the
images thatC1 labels as negatives. We sort the remaining images based on their SCO-
valuesV1(w) of C1 on these images,i.e., 〈w1, . . . , wm/2, wm/2+1, . . . , wm〉, where
V1(wj) > V1(wk) whenj > k. We split them into two equal halves〈T L

1 〉 and〈T R
1 〉

(denoting the left and right branches), such that〈T L
1 〉 contains{w1, . . . , wm/2} and

〈T R
1 〉 contains{wm/2+1, . . . , wm}. We then apply anotherMC-classifierC2 6= C1 on

〈T L
1 〉 and 〈T L

2 〉 separately resulting in (1)〈T L
1 , T L

2 〉 and 〈T L
1 , T R

2 〉 that each repre-
sents one half of the classifiers of〈T L

1 〉 thatC2 labeled as positives (2)〈T R
1 , T L

2 〉 and
〈T R

1 , T R
2 〉 that each represents one half of the classifiers of〈T R

1 〉 that C2 labeled as
positives.

We repeat the process ford steps, applying a sequence ofd classifiers,〈C1, . . . , Cd〉.
The resulting2d leaves are clusters. Note that this is for one (random) sequence ofd
classifiers. When we consider

(

N
d

)

different sequences ofd classifiers, it leads to a total
of

(

N
d

)

× 2d clusters. While many clusters can have the same class, this is not be a
problem. Any sub-image will now be matched to one of the smaller clusters. In general,
we identify each node at depthi with a states that is a list of ranges ofSCO-values, of
the form〈[V 1

min, V 1
max], . . . , [V i

min, V i
max]〉.

Computing the utilities of clusters: We want to determine the best decision tree within
this tableau — the one that leads to the “purest” leaf nodes. Each leaf of the tree rep-
resents a cluster. We want the clusters that are as “pure” as possible,i.e., which group
images of only one class together. For every clustersd, we compute the probability that
images insd are of classi, weighted by the size of classi:

U(sd) = max
i

P (Ti | sd)

|Ti|

where of courseP (Ti | sd) is the fraction of images of classi in sd and |Ti| is the
number of images in training setTi. Basically, we are computing the fraction of images
of each classi and normalizing it with the fraction of images in the training set, so that
any class that has a high number of training images does not have an unfair advantage.
We assign the class labelℓ that has the maximum utility tosd. Recall this is after ap-
plying any sequence ofd classifiers,〈C1, C2 . . . Cd〉. The idea is to assign high utility
value to clusters that group images of the same class together. For any statesi with pos-
sible “children”{sj

i+i}j, (each corresponding to the application of one other classifier),

we compute the utility,U(si) = maxj{U(sj
i+i} i.e., the maximum utility of any state

produced by applying an additionali + 1st classifier.

Building DTC: We collect the〈si, C
∗

i 〉 tuples and also the corresponding utilities, for
all i, 1 ≤ i ≤ d, wheresi denotes the state resulting after applyingi classifiers,C∗

i

denotes the classifier that, when applied tosi, transitions it to another states∗i+1, with
the maximum utility among the states resulting after applying (i + 1) classifiers. For
every two statessi andsj (i 6= j) that areδ-equivalent we retain only one state that has
higher utility and the corresponding classifier. Note that the〈si, C

∗

i 〉 tuples for1 ≤ i ≤
d tell us precisely thei classifiers applied so far, their individualSCO-values and the
best classifierC∗

i to apply insi. This corresponds precisely to theDTC decision tree.

Learn DTC(T = T+ ∪ T− : TrainingSet)
• Build N MC-classifiers{C1, C2, . . . CN} using images inT .
• Let All be the set of all

`

N

d

´

sequences ofd of MC-classifiers
• For every sequence ofd classifiers〈C1, . . . , Cd〉 from All

− Let 〈T0〉 be set of all (+)images,i.e., T+

− For i = 1 tod do
◦ Apply Ci separately on each partition〈Ti−1〉

produced by applying〈C1, . . . , Ci−1〉
◦ For each partition〈Ti−1〉, remove all images thatCi labels as negatives
◦ Split the rest of images into two (left and right) partitions

− For each clustersd produced by applying the sequence ofd classifiers
◦ Assign maximum probable class labelℓ

◦ Compute utilityU(sd)
− For every statesi resulting after applyingi < d classifiers

◦ Compute utilityU(si) = maxjU(sj
i+1)

◦ Let C∗

i be associated classifier that yielded max. utility when applied insi

◦ AssociateC∗

i with si, store〈si, C
∗

i 〉
• Merge all theδ-equivalent states into one, store one classifierC∗

i with the max. utility
• The resulting〈si, C

∗

i 〉 for 1 ≤ i ≤ d is DTC

MCDA (It : Test Image)
⋆ For each windowW (of 24 × 24 pixels) withinIt

◦ For1 ≤ i ≤ d,
– Find statesi “closest” toW ,
– Apply theC∗

i associated withsi, to W

◦ If all of 〈C1, C2, . . . Cd〉 labelW as a positive
– Find the corresponding cluster,i.e., sd,
– Assign the mostly likely classℓ associated withsd, to W

– Apply SC-VJ cascade〈Cℓ
1, C

ℓ
2 . . . Cℓ

P 〉 to W

– If classℓ cascade also labelsW as a positive, markW as an instance of classℓ
• ResizeIt by a factor of 0.8
• If It.length≥ 24 andIt.width≥ 24, goto⋆

• Return all windows marked as positive instances with class labels (and correct sizes)

Fig. 4. (a) Learning algorithm to produceDTC; (b) Dynamic classification algorithm

3.2 Detection

Our detection algorithm,MCDA shown in Figure 4(b), uses classifiers built by the cas-
cade classifiers method [16, 18]. It examines each24 × 24 pixel window in the image,
then rescales by a factor0.8 (i.e., resizes the current height and width of the test image
by a factor of0.8) and repeats. For each windowW , DTC first applies the classifierC∗

1

associated with root (see Figure 3). This might rejectW ; if so the process terminates
(i.e., DTC continues with the next window). Otherwise,DTC computes theSCO-value
associated withC∗

1 onW and uses this value to decide which subsequent classifierC∗

2

to apply. Again this could rejectW , but if not,C∗

2 ’s SCO-value identifies the next clas-
sifier C∗

3 to apply toW . This can continue for at mostd steps, untilW reaches a leaf
(cluster). If all thed classifiers labelW as a positive instance,DTC finds the class labelℓ
associated with the cluster. We then run theSC-VJ cascade〈Cℓ

1, C
ℓ
2, . . . C

ℓ
P 〉 associated

with this leaf (of classℓ) and declareW to be an object of classℓ only if it passes all of
these classifiers. Otherwise, we reject it as a negative instance.

4 Experimental Results

4.1 Experimental setup

Data Used:We used four classes of objects in our experiments: faces, cars (rear view),
leaves and motorbikes. We used a total of1600 images of faces, collected from popular
face image databases (including ones from Olivetti Research and AT&T, PIE, UMIST,
Yale, etc.) in the training set of faces,TF . We used the entire MIT-CMU database of
faces, which has a total of178 images with532 faces, as the test set for faces. For the
other three classes (cars, motorbikes and leaves), we used images from Caltech image
database [1]. We split the526 images of cars into two random sets of476 and50 images.
We used the first set as the training set for cars,TC , and the second set (with a total of
67 cars) as a test set. Similarly we split the826 images of motorbikes into two random
sets of776 and50 images and used the first set as the training set for motorbikes TM

and the second set of50 images (with a total of50 motorbikes) as the test set. Caltech
database uses three different types of leaves (see Figure 5)and has a total of186 images
of leaves. We split this into two random sets of156 and30 images and used the first
set as the training set for leavesTL and the remaining set of30 as the test set. We also
used another37 images of leaves (that we captured using a digital camera, with various
backgrounds and sizes) in the test set. So, our entire test set for leaves has a total of67
images, one leaf per image. Our training set for the negativeexamples,T− has a total
of 2320 images; none of these has any pictures of faces or cars or leaves or motorbikes.

Building VJ Classifiers: We usedTC , TL, TM , TF andT− to build4 SC-VJ cascade
classifiers (one for each class), that involved18, 17, 17 and21 classifiers for cars, leaves,
motorbikes and faces, respectively. We also builtN = 10 MC-classifiers that can detect
objects of any of the four classes. Since we have four different classes, and with the
application of each classifier (carefully, usingDTC) we can distinguish between two

Fig. 5.Performance on test images of cars (rear view), leaves, motorbikes (side view) and faces

Class TestData #Windows Peak Accuracy Av.Detcn.Time(sec)
#Images#ObjectsAv.Image Size SC-VJ MCDA SC-VJ MCDA M-SC-VJ

Cars 50 65 265× 360 10,114,61387.69%86.15%0.495 0.806 1.787
Leaves 67 67 318× 436 20,607,66397.01%95.52%0.454 0.834 2.006

Motorbikes 50 50 279× 297 8,680,218 97.0% 92.0% 0.574 0.963 1.912
Faces 169 532 403× 402 76,957,71092.11% 92.0% 1.541 1.883 4.558
Table 1.Comparison of test results forSC-VJ cascade,MCDA and MSC-VJ algorithms

classes, we setd = 3.7 That is, we built aDTC upto a depth of3 using our learning
algorithm as explained in Section 3.1.

Training time: Our system required about3 hours to build each of the4 class spe-
cific cascades and another1 hour to build theMC-classifiers8. It then required about5
minutes to buildDTC, so the total training time was approximately18 hours.

Results:We comparedMCDA to the standard set ofM = 4 SC-VJ cascades, with re-
spect to accuracy, ROC curves and efficiency. Note thatMCDA appliesd MC-classifiers
(within DTC) to determine which class label to consider for each test sub-image, and
then applies a cascade specific to that class. TheSC-VJ detection algorithm has an eas-
ier task, as we explicitly identify which single class of objects it should seek for each
image, which means it does not need to apply anyMC-classifiers. This is why we do not
expect the performance ofMCDA to be better thanSC-VJ, in terms of either efficiency
or accuracy. However, our results indicate thatMCDA does quite well in detecting ob-
jects as well as assigning class labels. In fact, our algorithm runs at least twice as fast
as runningM VJ cascades to detectM = 4 classes of objects; see Section 4.4.

4.2 Accuracy and Execution Time

Figure 5 shows some test images in whichMCDA could successfully detect cars (rear
view), leaves, motorbikes and faces. Table 1 comparesMCDA with the SC-VJ cascade
algorithm in terms of accuracy and efficiency. The peak accuracy, as we vary the number
of cascade classifiers at the leafs,9 for SC-VJ and MCDA are given in Table 1. These
values are statistically indistinguishable atp < 0.05. While MCDA is slower thanSC-
VJ, by an additive63%, 83.7%, 67.7% and22.26%, we attribute this to: (1) the time
needed to run the extrad = 3 classifiers usingDTC and (2) the overhead involved in
assigning a class label to each sub-image of any test image. Note that this is much better
than the obviousM-SC-VJ alternative.

7 We tried larger values ofd, but the results were not any better
8 1. We use the Wu and Rehg [18] implementation ofVJ.

2. All results presented here were run on a 1 GHz. Intel Pentium processor with 256 Mbytes
of memory running Windows-2000.

9 We define “peak accuracy” as the accuracy value with negligible rate of increase with increas-
ing values false positives.

 50

 60

 70

 80

 90

 0 2e-005 4e-005 6e-005

A
cc

u
ra

cy

FP-ratio

SC-VJ
MCDA

 60

 70

 80

 90

 100

 0 2e-006 4e-006 6e-006 8e-006

A
cc

u
ra

cy

FP-ratio

SC-VJ
MCDA

(a) Cars (b) Leaves

 40

 50

 60

 70

 80

 90

 100

 0 1e-005 2e-005 3e-005 4e-005

A
cc

u
ra

cy

FP-ratio

SC-VJ
MCDA

 70

 80

 90

 100

 0 1e-005 2e-005 3e-005

A
cc

u
ra

cy

FP-ratio

SC-VJ
MCDA

(c) Motorbikes (d) Faces

Fig. 6. ROC curves forSC-VJ cascade detection andMCDA for (a) Cars (rear); (b) Leaves; (c)
Motorbikes; and (d) Faces.

4.3 Number of Class-Specific Classifiers

We ran the following experiment to determine how these two approaches (MCDA and
SC-VJ) each scale with the numberd′ of class-specific classifiers: We first appliedd = 3
classifiers withinDTC, then appliedd′ class-specific classifiers at each leaf, varyingd′

in the ranges [10–18], [10–17], [10–17] and [12–21] for cars, leaves, motorbikes and
faces, respectively. For each value ofd′ we recorded the number of false positives and
accuracy, as well as the total number of windows (24×24 pixel sub-images) processed.
We also did this forSC-VJ. Each graph in Figure 6 plots accuracy against the number
of false positives per window processed. We see thatSC-VJ detection method performs
better thanMCDA, while the overall detection forMCDA is comparable toSC-VJ.

4.4 Comparison toM-SC-VJ

On the test set of each class, we ran each of the four cascade classifiers and recorded
the execution time; see Table 1. As the execution time of thisalgorithm is linear in
the number of classes, it does not scale as well asMCDA, which does not need to run
multiple cascades.

5 Related Work

There has been a lot of interest in multiclass object detection recently. Torralbaet
al. [14] train binary classifiers “jointly” (for several classes) and use the common fea-
tures to detect objects of the various classes. They show that feature sharing is a fun-
damental aspect of multiclass detectors that scale up well with the number of object
classes. In our work, we useMC-classifiers that use features of multiple classes of ob-
jects to detect member of these classes. Different classes of objects have different fea-
tures,i.e., a classifier’sSCO-value is different for different classes of objects. Usingthe
SCO-values of the firstd classifiers ofDTC, we assign a class label to any sub-image of
a test image. That is, usingSCO-values, we reach some partition of the feature space
where a single object class exists. Hence, our work implicitly utilizes feature sharing.
But our learning and detection algorithms are significantlydifferent. Fan [2] presents
an algorithm that learns a hierarchical partitioning of thehypothesis space, which they
use to do a coarse to fine search in the hypothesis space, pruning groups of hypotheses
at every stage. Li, Fergus and Perona [6] use a generative probabilistic model to rep-
resent the shape and appearance of a constellation of features of an object. They learn
the parameters of the model incrementally in a Bayesian manner. They test it on101
different object categories. Lin and Liu [7] argue that facedetection itself is a multiclass
detection problem because of the variations in the appearance of a face caused by dif-
ferent poses, lighting conditions, expressions, occlusions, etc. They present a boosting
algorithm to detect faces to account for all these variations. Our work is different from
this as we try to assign a class label based on the clusters, and then detect objects using
class specific cascades. We addressed related issues in a feature-based face-recognition
system [5] by posing the task a “Markov Decision Problem (MDP)”. We use dynamic
programming to produce an optimal policyπ∗, that maps “states” to “actions” (feature
detectors) for that MDP, then used that optimal policy to recognize facesefficiently. We
use similar techniques here in this work, as we again find the best sequence of classi-
fiers. The current work differs because it considersmultipleclasses of objects.

6 Conclusions

This research provides a way to use learned binary classifiers to detect and identify ob-
jects in diverse classes. We first observe that images of eachclass can form clusters in
the classifier space ofMC-classifiers, and that different subsets ofMC-classifiers may be
sufficient to distinguish different pairs of classes. Hence, an efficient approach should
select these classifiers dynamically. We present a learningalgorithm that produces a
decision tree,DTC, that first applies a dynamic sequence of classifiers to propose a pos-
sible class label for each sub-image of a test image, then applies a cascade of classifiers,
specific to that class, that is effective for pruning away false positives.

We present empirical results to demonstrate that our approach is effective. In partic-
ular, we show that our implementation can detect and identify objects belonging to any
of M = 4 classes, obtaining roughly the same accuracy and ROC-curveperformance as
the naive approach of simply runningM differentVJ systems. Moreover, our approach
is about as fast as running asingleVJ cascade, and will scale well as the number of
object classes grows.

Acknowledgments

The authors thank Jianxin Wu and Jim Rehg for making the cascade detection code
available. They also thank Caltech computational vision group and members of many
other groups (including PIE, MIT/CMU, UMIST, Yale, Olivetti Research and AT&T)
for making their image databases available.

References
1. R. Fergus, P. Perona and A.Zisserman Object class recognition by unsupervised scale-

invariant learning InCVPR, 2003, pp. 264–271
2. X. Fan Efficient multiclass object detection by a hierarchy of classifiers InCVPR, 2003
3. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting.Computational Learning Theory: Eurocolt, 1995.
4. E. Grossmann. Adatree: boosting a weak classifier into a decision tree. InIEEE Workshop on

Learning in Computer Vision and Patter Recognition, 2004.
5. R. Isukapalli and R. Greiner Use of Off-line Dynamic Programming for Efficient Image

InterpretationIJCAI, Acapulco, Mexico, Aug 2003
6. F.F. Li, R.Fergus and P. Perona Learning generative visual models from few training examples:

An incremental Bayesian approach tested on 101 object categories In Proceedings of the
Workshop on Generative Model Based Vision, Washington, D.C., June 2004

7. Y. Lin and T. Liu Robust face detection with multi-class boosting InCVPR2005, pp.680-687
8. C. Liu and H.Shum, Kullback-Leibler Boosting InCVPR2003, pp.587–594
9. E-J. Ong and R. Bowden A boosted classifier tree for hand shape detection International

Conference on Automatic Face and Gesture Recognition, 2004, pp.889–894
10. H. Rowley, S. Baluja and T. Kanade. Neural network-basedface detection.IEEE Transac-

tions on Patten Analysis and Machine Intelligence (PAMI), 1998.
11. D. Roth, M. Yang and N. Ahuja. A snowbased face detector. In NIPS, 2000.
12. H. Schneiderman and T. Kanade. A statistical method for 3d object detection applied to faces

and cars. InICCV, 2000.
13. J. Sun, J.M. Rehg and A.Bobick Automatic cascade training with perturbation bias InCVPR,

2004
14. A. Torralba, K. Murphy and W.T. Freeman Sharing features: efficient boosting procedures

for multiclass object detection InCVPR, 2004.
15. P. Viola and M. Jones. Fast and robust classification using asymmetric adaboost and a detec-

tor cascade. InCVPR, 2001.
16. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In

CVPR, 2001.
17. P. Viola and M. Jones. Robust real-time face detection. In IJCV, 2004.
18. J. Wu, J.M. Rehg and M.D. Mullin. Learning a rare event detection cascade by direct feature

selection. InNIPS, 2003.

