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Abstract. Gliomas are diffuse, invasive brain tumors. We propose a
3D classification-based diffusion model, cdm, that predicts how a glioma
will grow at a voxel-level, on the basis of features specific to the patient,
properties of the tumor, and attributes of that voxel. We use Supervised
Learning algorithms to learn this general model, by observing the growth
patterns of gliomas from other patients. Our empirical results on clinical
data demonstrate that our learned cdm model can, in most cases, predict
glioma growth more effectively than two standard models: uniform radial
growth across all tissue types, and another that assumes faster diffusion
in white matter.
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1 Introduction

Primary brain tumors originate from a single glial cell in the nervous system,
and grow by invading adjacent cells, often leading to a life-threatening condi-
tion. Proper treatment requires knowing both where the tumor mass is, and
also where the occult cancer cells have infiltrated in nearby healthy tissue. Some
conventional treatments implicitly assume the tumor will grow radially in all
directions — e.g., the standard practice in conformal radiotherapy involves ir-
radiating a volume that includes both the observed tumor, and a uniform 2cm
margin around this border [6, 7]. Swanson’s model [16] claims the tumor growth
rate is 5 times faster in white matter, versus grey matter. Our empirical evidence,
however, shows that neither model is particularly accurate.

We present an alternative approach to modeling tumor growth: use data
from a set of patients to learn the parameters of a diffusion model. In particular,
given properties of the patient, tumor and each voxel (based on MRI scans; see
Fig. 1[a–g]) at one time, our cdm system predicts the tumor region at a later time
(Fig. 1[h]). This model can help define specific treatment boundaries that would
replace the uniform, conventional 2cm margin. It can also help find regions where
radiologically occult cancer cells concentrate but do not sufficiently enhance on
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(a) T1-weighted (b) T1-contrast (c) T2-weighted

(d) white matter (e) grey matter (f) CSF

(g) initial tumor region (h) predicted tumor region

Fig. 1. Axial slices of brain tumor patient: (a) T1-weighted scan; (b) T1-weighted scan
using gladolinium contrast; (c) T2-weighted scan; (d) white matter; (e) grey matter;
(f) CSF — cerebrospinal fluid; (g) segmented patient tumor; (h) predicted patient
tumor, after adding 30, 000 voxels in 3D, overlayed on T1c (green represents the true
positives, red the false positives and blue the false negatives).

the MRI scan. Therefore, the model can help define the appropriate radiation
doses to deliver to the relevant regions adjacent to the visible tumor.

Section 2 reviews standard glioma diffusion models, and Section 3 formally
defines the diffusion models we are considering. Finally, Section 4 describes our
experiments testing cdm, comparing it with two other models: näıve uniform
growth and tissue-based diffusion. Additional details are in [1, 12].

2 Related Work

In recent decades, glioma growth modeling has offered important contributions to
cancer research, shedding light on tumor growth behaviour and helping improve
treatment methods. In this section, we describe two types of tumor modeling:
volumetric at the macroscopic level, and models based on white matter invasion.

2.1 Macroscopic and Volumetric Modeling

Mathematical modeling of gliomas at the macroscopic level has represented the
traditional framework in predicting glioma diffusion, using growth and prolifer-
ation parameters. We review three of these models:
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Kansal et al. [9] simulate the gompertzian growth, which views the tumor as
a population of cells and the growth as a dynamic process where proliferating
and inactive classes of cells interact. Kansal et al. use cellular automata to model
the different states of tumor cells, from dividing cells at the periphery, to non-
proliferating, and finally to the necrotic state at the centre of the tumor. This
model is designed to predict the growth of glioblastoma multiforme (GBM), the
most aggressive, grade IV gliomas. The model does not account for various tumor
grades, brain anatomy, nor the infiltrating action of cancer cells in tissue near
the tumor.

Tabatabai et al. [19] simulate asymmetric growth as in real tumors and
accommodate the concept of increasing versus decreasing tumor radii (due to
treatment effects), but do not account for various clinical factors involved in
malignant diffusion. Instead, their model describes tumors as self-limited sys-
tems, not incorporating the interactions between healthy and cancer cells at the
tumor border and the competition of cells inside the tumor. This is not a realistic
representation of clinical cancer diffusion.

Zizzari’s model [21] describes the proliferation of GBMs using tensor product
splines and differential equations, the solutions of which give the distribution of
tumor cells with respect to their spatio-temporal coordinates. Zizzari extends
his growth model to introduce a treatment planning tool that incorporates a
supervised learning task. However, his growth predictions are based only on
geometric issues, and do not consider biological factors nor patient information.

2.2 Glioma Modeling based on White Matter Invasion

The trend in glioma research is to study biological and clinical factors involved in
cancer diffusion through healthy tissue. Recent models provide a more promising
direction, which can also help provide more effective treatment. In this section,
we review models that incorporate the heterogeneity of brain tissue and histology
of cancer cells.

Swanson et al. [16] develop a model based on the differential motility of
glioma cells in white versus grey matter, suggesting that the diffusion coefficient
in white matter is 5 times that in grey matter. This model was extended to
simulate virtual gliomas [18] and to assess the effectiveness of chemotherapy
delivered to different tissue types in the brain [17]. This modeling is different
from our cdm system as we do not a priori assume the cancer diffusion rates in
different tissue types, but rather our system can learn glioma diffusion behaviour
from clinical data.

Price et al. [14] use T2-weighted scans and Diffusion Tensor Imaging (DTI)
to determine whether DTI can identify abnormalities on T2 scans. Regions of
interest particularly include white matter adjacent to the tumor, and areas of
abnormality on DTI that appeared normal on T2 images. Results demonstrated
further glioma invasion of white matter tracts near the observed tumor.

Clatz et al. [3] propose a model that simulates the growth of GBM based on
an anatomical atlas that includes white fibre diffusion tensor information. The
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model is initialized with a tumor detected on the MRI scan of a patient, and re-
sults are evaluated against the tumor observed six months later. However, model
results are reported for only one patient, leaving in question how it performs on
a variety of patients, and with various tumor types.

2.3 Discussion

Each of the glioma diffusion models presented above describes the geometrical
growth of gliomas as evolving objects. Few of these models use the biological
complexity of cancerous tumors, the heterogeneity of the human brain anatomy,
or the clinical factors of malignant invasion. Moreover, none of these earlier sys-
tems attempts to learn general growth patterns from existing data, nor are they
capable of predicting growth of various tumor grades (as opposed to methods
specifically designed to predict GBM growth only).

The literature does suggest that the following factors should help us predict
how the tumor will spread — i.e., whether the tumor is likely to infiltrate to a
new voxel:

– Anatomical features of the brain: regions that represent pathways versus
brain structures that act as a boundary to the spreading action of the ma-
lignant cells.

– Properties of the tumor: the grade of the tumor (as high-grade gliomas grow
much faster than low-grade ones); the location of the tumor within the brain
(as the shape of the tumor depends on surrounding anatomical structures).

– Properties of the voxels (at the periphery of the tumor where there can
be interaction between malignant and normal cells): its tissue type — grey
versus white matter; whether it currently contains edema1.

We incorporate these diffusion factors as learning features into our ‘general’
diffusion model, cdm. The remainder of this paper describes the diffusion models
we implemented, presents the experiments, and evaluates the performance of the
three models given our dataset of MRI scans.

3 Diffusion Models

In general, a diffusion model (Fig. 2) takes as input an image whose voxels
are each labeled with: the current “voxel label”, VL, which is “1” if that voxel is
currently a tumor and “0” otherwise (see Fig. 1[g])2 as well as general information
e = ePatient ∪ eTumor ∪ {ei}i about the patient ePatient, the tumor eTumor and
the individual voxels ei (see Section 3.1). The third input is an integer s that

1 Swelling due to accumulation of excess fluid.
2 Here, expert radiologists have manually delineated the “enhancing regions” of tumors

based on their MRI scans. Note this does not include edema, nor any other labels.
We then spatially interpolate each patient image to fill inter-slice gaps and to obtain
voxels of size 8mm3.
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1. Diffusion( VoxelLabel: VL; GeneralInfo: e; int: s )
% VL[i, j, k]=1 if position 〈i, j, k〉 is a tumor
% Initially VL corresponds to current tumor
% When algorithm terminates, VL will correspond to tumor containing “s” additional voxels

2. total count := 0
3. Do forever:

4. Compute N :=
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5. For each location vi ∈ N

6. Determine if vi becomes a tumor
7. If so,
8. Set VL[vi] := 1
9. total count++;
10. If (total count == s), return

Fig. 2. Generic Diffusion Model

tells the diffusion model how many additional voxels to include. See line 1 of
Fig. 2. The output is the prediction of the next s additional voxels that will
be incorporated into the tumor, represented as a bit-map over the image. For
example, if the tumor is currently 1000 voxels and the doctor needs to know
where the tumor will be, when it is 20% larger — i.e., when it is 1200 voxels —
he would set s = 200.

A diffusion model first identifies the set of voxels N just outside the border
of the initial tumor; see line 4 of Fig. 2. In the following diagram

v1 v2 v6 v7 v5

X X v3 v4 X

X X X X X

(1)

(where each X cell is currently a tumor), N would consist of the voxels labeled
v1 through v5, but not v6 nor v7 (as we are not considering diagonal neighbors).
In the 3D case, each voxel will have 6 neighbors.

The diffusion model then iterates through these candidate voxels, vi ∈ N . If
it decides that one has become a tumor, it then updates VL (which implicitly
updates the tumor/healthy border) and increments the total number of “trans-
formed voxels”; see lines 5−9 of Fig. 2. After processing all of these neighbors (in
parallel), it will then continue transforming the neighbors of this newly enlarged
boundary. If a voxel is not transformed on one iteration, it remains eligible to
be transformed on the next iteration. When the number of transformed voxels
matches the total s, the algorithm terminates, returning the updated VL assign-
ment (Fig. 2, line 10).

The various diffusion models differ only in how they determine if vi has
become tumor — line 6 of Fig. 2. The uniform growth model, UG, simply includes
every “legal” voxel it finds (where a voxel is legal if it is part of the brain, as
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opposed to skull, eye, etc.). The tissue-based model, GW, assumes the growth
rate for white matter is 5 times faster than for grey matter [16], and 10 times
faster than other brain tissue. Here, whenever a neighboring voxel vi is white
matter, it is immediately included. If vi is grey matter (other tissue), its count
is incremented by 0.2 (resp., 0.1). GW does not allow diffusion into the skull.
This is easy to determine as the ei part of the GeneralInfo e specifies the tissue
type of each vi voxel, as computed by SPM [5] (see Fig. 1[d–f]).

3.1 cdm Diffusion Model

Our cdm model is more sophisticated. First, its decision about each voxel de-
pends on a number of features, based on:

the patient, ePatient: the age (which may implicitly indicate the tumor grade).

the tumor, eTumor: volume-area ratio, edema percentage, and volume increase.

each individual voxel {ei}i: various attributes for every voxel vi — spatial
coordinates, distance-area ratio, minimum euclidean distance from the tumor
border, whether the voxel is currently in an edema region, white matter, grey
matter, or CSF (automatically determined by SPM [5]), and image intensities
of T1, T1-contrast and T2 axial scans [2] (obtained both from the patient’s
scan and a standard template3 [8] — after normalization and registration
using SPM [4]).

neighborhood of each voxel {ei}i: attributes of each of the 6 neighbors of
the voxel — whether a neighbor voxel nj is edema, white matter, grey matter,
or CSF, and image intensities from the template’s T2 and T1-contrast.

(The webpage [1] provides more details about each of these features, as well as
some explicit examples.)

cdm then uses a probabilistic classifier to compute the probability qi that
one tumor neighbor vi of a tumor voxel will become tumorous, qi = PΘ( `(vi) =
Tumor | ePatient, eTumor, ei ). Some voxels can have more than one such tumor-
neighbors; e.g., in diagram (1), the voxels v1, v2 and v5 each have a single
tumor-neighbor, while v3 and v4 each have 2. Each tumor-neighbor of the voxel
vi has a qi chance to transform this vi; hence if there are k such neighbors,
and each acts independently, the probability that vi will be transformed on this
iteration is pi = 1− (1− qi)

k. cdm will then transform this voxel to be a tumor
with probability pi. We then assign it to be a tumor if pi > τ using a probability
threshold of τ = 65%.4 cdm performs these computations in parallel — hence on
the first iteration, even if v3 is transformed, v4 still has only 2 tumor-neighbors
(on this iteration). We discuss below how cdm learns the parameters Θ used in
PΘ( · ).

3 Several images of a normal brain of an individual, averaged and registered to the
same coordinate system.

4 We experimented with several thresholds, and chose this τ = 0.65 value as it provided
the best observed accuracy.
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4 Experiments

We empirically evaluated the three models, UG, GW and cdm, over a set of 17
patients. For each patient, we had two sets of axial scans R1 and R2 taken at
different times, each with known tumor regions. Let si refer to the size of the
tumor in scan Ri. For each patient, we then input that patient’s initial scan (R1)
to each model, and asked it to predict the next s = s2 − s1 voxels that would be
transformed. We then compare the predicted voxels with the truth — i.e., the
tumor region of the second scan, R2.

To measure the quality of each model, let “nt” be a set of tumor cells for
the patient that are actually transformed (i.e., this is the “truth”, associated
with R2) and “ptχ” be the cells that the χ model predicts will be transformed.

We then use the standard measures: “precision” of χ (on this patient) is
|nt∩ptχ|
|ptχ|

and “recall” is
|nt∩ptχ|

|nt| . In our case, as our diffusion models stop when |ptχ| =

|nt| = s, the precision and recall values will be the same5 (see tables in [1, 12]).
We report results in terms of the “F-measure” = 2×precision×recall

precision+recall
[20], where

F-measure = precision = recall, for each patient.
While UG and GW are completely specified, cdm must first be trained. We

use a “patient level” cross-validation procedure: That is, we trained a learner
(e.g., Logistic Regression [11] or SVM [13]) on 16 patients, then tested on the
17th. Each training instance corresponded to a single voxel vi around the initial
tumor in the first scan R1, with features ePatient, eTumor, and ei, and with the
label of “1” if this voxel was in the tumor in R2, or “0” otherwise. Training voxels
represent the set difference between the tumor in R1 and R2 for each patient
(i.e., the region that a ‘perfect’ diffusion model would consider), in addition
to a 2-voxel border around the tumor in R2 to account for the segmentation
error margin at the tumor border. The total number of training voxels was
approximately 1

2
million for the 17 patients. Notice this training is at the voxel

level, and is only implicitly based on the diffusion approach (in that this is how
we identified the specific set of training voxels).

Results appear in Fig. 3 and in [1, 12]. Below we analyze these results in
terms of best, typical, and special cases; describe system performance versus
tumor grade; and statistically assess of the three models.

4.1 Feature Selection

Here, we consider finding the best subset of the 75 features described in Sec-
tion 3.1, called S0. We first computed the Information Gain (IG) of each feature,
then ranked the features based on their IG scores. We observed that patient-
specific tissue features have the lowest IG scores (likely due to SPM’s segmenta-
tion errors and the presence of tumors in patients’ scans). We formed two sub-
sets of features based on the IG scores and the feature type (e.g., tumor-specific,

5 In some patients, precision and recall can be slightly different if the algorithm ter-
minates prematurely, i.e., before reaching the target size of the tumor.
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Fig. 3. Empirical Results
The F-measure for the three Models with 17-fold “patient-level” CV
(Note F-measure = precision = recall, for each patient — see Section 4).
Results correspond to the output of a logistic regression classifier, learned with feature
set S1. The name of each patient identifies their tumor grades — Astrocytoma grade I
(A) and grade II (A.GBM) that progressed into GBM, Mixed Oligo-astrocytoma grade
II (MOA), Anaplastic astroyctoma grade III (AA), and the most common GBM.

tissue-based features, spatial coordinates, etc.). The first subset S1 contains 28
features only; it excluded all patient-specific tissue features since these have lower
IG scores (see [1, 12]), as well as spatial coordinates and template-specific tissue
features, to help generalize the learned tumor growth model (i.e., without mak-
ing any assumptions about the spatial location of the tumor). The second subset
S2 contains 47 features, excluding only CSF features as these are associated with
the lowest IG scores, likely due to errors in SPM’s tissue segmentation process.
(Note tumors do not grow into CSF regions, e.g., ventricles6, but induced tumor
pressure can deform them, which allows tumors to appear in a region that had

been ventricles, etc.)

By excluding tissue-based features from S1, we allow the model to perform
more accurately for subjects whose tumors have altered the basic brain anatomy
— e.g., tumors that have deformed the ventricles, such as patients A.GBM 4 and
GBM 12 (see Fig. 4). But accuracy slightly decreased for scenarios that rely on
specific training information (i.e., voxel locations and tissue information). Since
S2 includes spatial and tissue information, classifiers that used these features
performed almost the same as S0. Fig. 3 reports results obtained when training
on S1 feature set only. Results with the other feature sets appear in [1, 12].

6 Cavities in the brain filled with cerebrospinal fluid (CSF).
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Fig. 4. Tumor-induced pressure deforms the ventricles in patients A.GBM 4 and
GBM 12 (two image slices for each patient).

4.2 Tumor Growth Patterns Learned from the Data

Here, we considered training voxels a perfect diffusion algorithm will consider
over our 17 patients — these are the voxels that were normal in the first scan
but tumor in the second. Of the voxels that went from normal to tumor, 45%
were edema, 23% had T2 ≥ 0.75, 42% had T1 < 0.5, 45% were grey matter,
and 32% white matter. Of the remaining voxels that stayed normal, we observed
25%, 15%, 51%, 39%, and 24%, respectively. (Generally, white matter voxels are
more likely to become tumor than grey matter.)
P (class(v) = ‘tumor′ | edema(v) = 1, T2(v) ≥ 0.75, tissue(v) = w) = 86% .
We then ran Logistic Regression, training on 16 patients, and testing on GBM 7,
the conditional probability was 99.9% .

These probabilities confirm our assumption that voxels located in edema
regions (bright on T2, dark on T1 scans) and in the grey or white matter (the
last being a diffusion pathway for tumor cells) are likely to become diseased.
See [1] for other patterns we found in the data.

4.3 Typical, Best, and Special Case Results

Patients GBM 1, GBM 2, and GBM 3 represent typical case results, where cdm

performs more accurately than UG and GW by at least a small percentage.
In these cases, the tumor tends to grow along the edema as glioma cells have
already infiltrated into the peritumoral edema regions. These diffuse occult cells
did not enhance at first on T1-contrast images as these cells may exist only in
very low concentration. But on the next scan of the patient, enhancing tumors
appeared in these regions as glioma cells built up into detectable masses.

Infiltration of glioma cells in edema regions is particularly more obvious on
the MRI scans for patient GBM 7 (Fig. 5), which represents the best case results
as cdm models tumor diffusion more accurately than UG and GW, by 20% and
12% respectively (see Fig. 3 and tables in [1, 12]).

In typical and best case scenarios, the prediction is based on what the clas-
sifier recognizes as ‘tumor’, which are often voxels located in edema regions.
Glioma cell infiltration in peritumoral edema may be even more detectable if
the truth volume was obtained from a patient scan before that patient under-
went a surgical procedure or received radiation treatment.

Patients GBM 10, GBM 12, and GBM 13 are examples of special tumor
growth cases where tumors do not follow usual diffusion patterns (e.g., the tumor
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Fig. 5. Top: MR T1-contrast images of Patient GBM 7, showing lower to higher axial
brain slices from left to right, corresponding to the “truth” volume (R2). Bottom: the
initial images (R1) augmented with shades of grey corresponding to results from cdm

model: initial tumor volume is colored white, true positives are green, false positives
are red, and false negatives are blue.

shrinks due to treatment and recurs a few months later in regions near the
original mass). In these cases, cdm performed the same as the standard models.
The effect of treatment is present in all of our data, but is more prominent in
these patients.

4.4 Model Performance versus Tumor Grade

Our dataset consists of four different glioma grades ranging from low-grade as-
trocytomas to the most invasive GBM. GBMs are the most common among
glioma patients, and represent 2

3
of our data. Because cdm is a general learning

model, it is not restricted to predicting a particular tumor grade, but it requires a
fair representation of various tumor types in training data. Currently, low-grade
tumors are under-represented in our data since they are less common among
glioma patients.

Also, cdm’s prediction is based on probabilities assigned by classifiers to the
unlabeled voxels. High-probability tumor voxels are likely to be located in peri-
tumoral edema regions (edema features have the highest IG scores), particularly
more pronounced in high-grade, larger tumors (e.g., patients GBM 1, GBM 3,
and GBM 7). This is because peritumoral edema regions harbour diffuse malig-
nant cells that infiltrated through tissue near the visible tumor. These malignant
cells form detectable tumor masses over time.

4.5 Statistical Evaluation of the Three Models

Over the 17 patients, the average leave-one-out recall (≡ precision) values for
the cdm, UG and GW models are 0.598, 0.524 and 0.566 respectively. We ran
a t-test [15] for paired data to determine if these average values are statistically
significant from one another, at the 95% confidence interval (i.e., p < 0.05).



A Classification-based Glioma Diffusion Model using MRI Data 11

– Comparing cdm versus UG, the t value is 4.14 meaning the probability of
the null hypothesis (i.e., values are not significantly different) is 0.001. In
this case, we reject the null hypothesis and conclude that the average recall
obtained with cdm and UG are significantly different.

– Comparing cdm versus GW, the t value is 3.61 meaning the probability of
the null hypothesis is 0.002, which suggests that the average recall obtained
with cdm and GW are significantly different as well.

Given the above t-test results, we conclude that our cdm model is performing
more accurately, in general, than either of UG and GW.

4.6 Computational Cost of the Three Models

cdm requires several preprocessing steps of the MRI scan followed by feature
extraction (which require approximately one hour). Given a segmented tumor,
and a learned classifier (e.g., Logistic Regression), cdm produces its prediction
of tumor growth in 10 minutes on average7. UG and GW require the same
data processing, and produce their predictions in 1 and 10 minutes on average,
respectively. Note UG performs the fewest number of iterations.

5 Contributions and Future Work

Our team has produced a system that can automatically segment tumors based
on their MRI images [1]; we are currently using this system to produce tumor
volume labels for hundreds of patients, over a wide variety of tumor types and
grades. We plan to train our diffusion model on this large dataset. We will also
experiment with other learning algorithms, including Conditional and Support
Vector Random Fields [10], as these may better account for neighborhood in-
terpendencies between tumor and normal voxels. We will also investigate other
attributes, e.g., estimated tumor growth rate, and features from other types of
data such as Magnetic Resonance Spectroscopy. We may also incorporate diago-
nal neighbors in the diffusion algorithm, which may help improve the accuracy,
and will also help decrease the number of iterations required to grow the tumor,
making the algorithm more efficient.

Contributions: This paper has proposed a classification-based model, cdm, to
predict glioma diffusion, which learns ‘general’ diffusion patterns from clinical
data. (To the best of our knowledge, this is the first such system.) We empirically
compare cdm with two other approaches: a näıve uniform growth model (UG)
and a tissue-based diffusion model (GW), over pairs of consecutive MRI scans.
Our results, on real patient data (as opposed to simulating virtual tumors [18]),
show statistically that cdm is more accurate. See [1] for more details.

7 This average is computed over our set of 17 patients, characterized by a wide variety
of tumor sizes, including a few that require a very large number of additional voxels
to grow, and were therefore more computationally costly.
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