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Abstract
One of the well known risks of large margin training meth-
ods, such as boosting and support vector machines (SVMs),
is their sensitivity to outliers. These risks are normally miti-
gated by using a soft margin criterion, such as hinge loss, to
reduce outlier sensitivity. In this paper, we present a more di-
rect approach that explicitly incorporates outlier suppression
in the training process. In particular, we show how outlier de-
tection can be encoded in the large margin training principle
of support vector machines. By expressing a convex relax-
ation of the joint training problem as a semidefinite program,
one can use this approach to robustly train a support vector
machine while suppressing outliers. We demonstrate that our
approach can yield superior results to the standard soft mar-
gin approach in the presence of outliers.

Introduction
The fundamental principle of large margin training, though
simple and intuitive, has proved to be one of the most ef-
fective estimation techniques devised for classification prob-
lems. The simplest version of the idea is to find a hyper-
plane that correctly separates binary labeled training data
with the largest margin, intuitively yielding maximal robust-
ness to perturbation and reducing the risks of future mis-
classifications. In fact, it has been well established in the-
ory and practice that if a large margin is obtained, the sepa-
rating hyperplane is likely to have a small misclassification
rate on future test examples (Bartlett & Mendelson 2002;
Bousquet & Elisseeff 2002; Schoelkopf & Smola 2002;
Shawe-Taylor & Cristianini 2004).

Unfortunately, the naive maximum margin principle
yields poor results on non-linearly separable data because
the solution hyperplane becomes determined by the most
misclassified points, causing a breakdown in theoretical and
practical performance. In practice, some sort of mecha-
nism is required to prevent training from fixating solely on
anomalous data. For the most part, the field appears to have
fixated on the soft margin SVM approach to this problem
(Cortes & Vapnik 1995), where one minimizes a combina-
tion of the inverse squared margin and linear margin vio-
lation penalty (hinge loss). In fact, many variants of this
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approach have been proposed in the literature, including the
ν-SVM reformulation (Schoelkopf & Smola 2002).

Unfortunately, the soft margin SVM has serious short-
comings. One drawback is the lack of a probabilistic in-
terpretation of the margin loss, which creates an unintuitive
parameter to tune and causes difficulty in modeling overlap-
ping distributions. However, the central drawback we ad-
dress in this paper is that outlier points are guaranteed to
play a maximal role in determining the decision hyperplane,
since they tend to have the largest margin loss. In this paper,
we modify the standard soft margin SVM scheme with an
explicit outlier suppression mechanism.

There have been a few previous attempts to improve the
robustness of large margin training to outliers. The theoreti-
cal literature has investigated the concept of a robust mar-
gin loss that does not increase the penalty after a certain
point (Bartlett & Mendelson 2002; Krause & Singer 2004;
Mason et al. 2000). One problem with these approaches
though is that they lose convexity in the training objective,
which prevents global optimization. There have also been a
few attempts to propose convex training objectives that can
mitigate the effect of outliers. Song et al. (2002) formulate
a robust SVM objective by scaling the margin loss by the
distance from a class centroid, reducing the losses (hence
the influence) of points that lie far from their class centroid.
Weston and Herbrich (2000) formulate a new training objec-
tive based on minimizing a bound on the leave one out cross
validation error of the soft margin SVM. We discuss these
approaches in more detail below, but one property they share
is that they do not attempt to identify outliers, but rather alter
the margin loss to reduce the effect of misclassified points.

In this paper we propose a more direct approach to the
problem of robust SVM training by formulating outlier de-
tection and removal directly in the standard soft margin
framework. We gain several advantages in doing so. First,
the robustness of the standard soft margin SVM is improved
by explicit outlier ablation. Second, our approach preserves
the standard margin loss and thereby retains a direct con-
nection to standard theoretical analyses of SVMs. Third, we
obtain the first practical training algorithm for training on
the robust hinge loss proposed in the theoretical literature.
Finally, outlier detection itself can be a significant benefit.

Although we do not pursue outlier detection as a central
goal, it is an important problem in many areas of machine



learning and data mining (Aggarwal & Yu 2001; Brodley &
Friedl 1996; Fawcett & Provost 1997; Tax 2001; Manevitz &
Yoursef 2001). Most work focuses on the unsupervised case
where there is no designated class variable, but we focus on
the supervised case here.

Background: Soft margin SVMs
We will focus on the standard soft margin SVM for bi-
nary classification. In the primal representation the clas-
sifier is given by a linear discriminant on input vectors,
h(x) = sign(x>

w), parameterized by a weight vector w.
(Note that we drop the scalar offset b for ease of exposition.)
Given a training set (x1, y1), ..., (xt, yt) represented as an
n× t matrix of (column) feature vectors, X , and a t×1 vec-
tor of training labels, y ∈ {−1, +1}t, the goal of soft margin
SVM training is to minimize a regularized hinge loss, which
for example (xi, yi) is given by:

hinge(w,xi, yi) = [1 − yix
>
i w]+

Here we use the notation [u]+ = max(0, u). Let the mis-
classification error be denoted by

err(w,xi, yi) = 1(yix
>

i
w<0)

Then it is easy to see that the hinge loss gives an upper bound
on the misclassification error; see Figure 1.
Proposition 1 hinge(w,x, y) ≥ err(w,x, y)

The hinge loss is a well motivated proxy for misclassifi-
cation error, which itself is non-convex and NP-hard to opti-
mize (Kearns, Schapire, & Sellie 1992; Hoeffgen, Van Horn,
& Simon 1995). To derive the soft margin SVM, let Y =
diag(y) be the diagonal label matrix, and let e denote the
vector of all 1s. One can then write (Hastie et al. 2004)

min
w

β
2 ‖w‖2 +

∑

i[1 − yix
>
i w]+ (1)

= min
w

β
2 ‖w‖2 + e

>ξ s.t. ξ≥e−YX>
w, ξ≥0 (2)

= max
α

α>
e− 1

2β
α>Y X>XY α s.t. 0≤α≤1 (3)

The quadratic program (3) is a dual of (2) and establishes the
relationship w = XY α/β between the solutions. The dual
classifier can thus be expressed as h(x) = sign(x>XY α).
In the dual, the feature vectors only occur as inner products
and therefore can be replaced by a kernel operator k(xi,xj).

It is instructive to consider how the soft margin solution
is affected by the presence of outliers. In general, the soft
margin SVM limits the influence of any single training ex-
ample, since 0 ≤ αi ≤ 1 by (3), and thus the influence of
outlier points is bounded. However, the influence of outlier
points is not zero. In fact, of all training points, outliers will
still retain maximal influence on the solution, since they will
normally have the largest hinge loss. This results in the soft
margin SVM still being inappropriately drawn toward out-
lier points, as Figure 2 illustrates.

Robust SVM training
Our main idea in this paper is to augment the soft mar-
gin SVM with indicator variables that can remove outliers
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Figure 1: Margin losses as a function of yx>
w: dotted

hinge, bold robust, thin η-hinge, and step err. Note that
η-hinge ≥ robust ≥ err for 0 ≤ η ≤ 1. Also hinge ≥
robust. If yx>

w ≤ 0, then η = 0 minimizes η-hinge; else
η = 1 minimizes η-hinge. Thus minη η-hinge = robust for
all yx>

w.

entirely. The first application of our approach will be to
show that outlier indicators can be used to directly min-
imize the robust hinge loss (Bartlett & Mendelson 2002;
Shawe-Taylor & Cristianini 2004). Then we adapt the ap-
proach to focus more specifically on outlier identification.

Define a variable ηi for each training example (xi, yi)
such that 0 ≤ ηi ≤ 1, where ηi = 0 is intended to indi-
cate that example i is an outlier. Assume initially that these
outlier indicators are boolean, ηi ∈ {0, 1}, and known be-
forehand. Then one could trivially augment the soft SVM
criterion (1) by

min
w

β
2 ‖w‖2 +

∑

i ηi[1 − yix
>
i w]+ (4)

In this formulation, no loss is charged for any points where
ηi = 0, and these examples are removed from the solution.
One problem with this initial formulation, however, is that
ηi[1−yix

>
i w]+ is no longer an upper bound on the misclas-

sification error. Therefore, we add a constant term 1 − ηi to
recover an upper bound. Specifically, we define a new loss

η-hinge(w,x, y) = η [1 − yx>
w]+ + 1 − η

With this definition one can show for all 0 ≤ η ≤ 1

Proposition 2 η-hinge(w,x, y) ≥ err(w,x, y)

In fact, this upper bound is very easy to establish; See Fig-
ure 1. Similar to (4), minimizing the objective

min
w

β
2 ‖w‖2 +

∑

i ηi-hinge(w,xi, yi) (5)

ignores any points with ηi = 0 since their loss is a constant.
Now rather than fix η ahead of time, we would like to si-

multaneously optimize η and w, which would achieve con-
current outlier detection and classifier training. To facili-
tate efficient computation, we relax the outlier indicator vari-
ables to be 0 ≤ η ≤ 1. Note that Proposition 2 still applies
in this case, and we retain the upper bound on misclassifica-
tion error for relaxed η. Thus, we propose the joint objective

min
w

min
0≤η≤1

β
2 ‖w‖2 +

∑

i ηi-hinge(w,xi, yi) (6)

This objective yields a convex quadratic program in w given
η, and a linear program in η given w. However, (6) is not
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Figure 2: Illustrating behavior given outliers.

jointly convex in w and η, so alternating minimization is
not guaranteed to yield a global solution. Instead, we will
derive a semidefinite relaxation of the problem that removes
all local minima below. However, before deriving a convex
relaxation of (6) we first establish a very useful and some-
what surprising result: that minimizing (6) is equivalent to
minimizing the regularized robust hinge loss from the theo-
retical literature.

Robust hinge loss
The robust hinge loss has often been noted as a superior al-
ternative to the standard hinge loss (Krause & Singer 2004;
Mason et al. 2000). This loss is given by

robust(w,x, y) = min(1, hinge(w,x, y))

and is illustrated in bold in Figure 1.
The main advantage of robust over regular hinge loss is

that the robust loss is bounded, meaning that outlier exam-
ples cannot have an effect on the solution beyond that of any
other misclassified point. The robust hinge loss also retains
an upper bound on the misclassification error, as shown in
Figure 1. Given such a loss, one can pose the objective

min
w

β
2 ‖w‖2 +

∑

i robust(w,xi, yi) (7)

Unfortunately, even though robust hinge loss has played a
significant role in generalization theory (Bartlett & Mendel-
son 2002; Shawe-Taylor & Cristianini 2004), the minimiza-
tion objective (7) has not been often applied in practice be-
cause it is non-convex, and leads to significant difficulties in
optimization (Krause & Singer 2004; Mason et al. 2000).

We can now offer an alternative characterization of robust
hinge loss, by showing that it is equivalent to minimizing
the η-hinge loss introduced earlier. This facilitates a new
approach to the training problem that we introduce below.
First, the η-hinge loss can be easily shown to be an upper
bound on the robust hinge loss for all η.
Proposition 3 η-hinge(w,x, y) ≥ robust(w,x, y) ≥
err(w,x, y)

Second, minimizing the η-hinge loss with respect to η
gives the same result as the robust hinge loss

Proposition 4 min
η

η-hinge(w,x, y) = robust(w,x, y)

Both propositions are straightforward, but can be seen
best by examining Figure 1. From these two propositions,
one can immediately establish the following equivalence.
Theorem 1

min
w

min
0≤η≤1

β
2 ‖w‖2 +

∑

i ηi-hinge(w,xi, yi)

= min
w

β
2 ‖w‖2 +

∑

i robust(w,xi, yi)

Moreover, the minimizers are equivalent.

Proof Define frob(w) = β
2 ‖w‖2 +

∑

i robust(w,xi, yi);
fhng(w, η) = β

2 ‖w‖2 +
∑

i ηi-hinge(w,xi, yi); wr =
argminw frob(w); (wh, ηh)=arg minw,0≤η≤1 fhng(w, η);
ηr =argmin0≤η≤1 fhng(wr, η). Then from Proposition 3

min
w

min
0≤η≤1

fhng(w, η) = min
0≤η≤1

fhng(wh, η)

≥ frob(wh) ≥ min
w

frob(w)

Conversely, by Proposition 4 we have

min
w

frob(w) = frob(wr)

= min
0≤η≤1

fhng(wr, η) ≥ min
w

min
0≤η≤1

fhng(w, η)

Thus, the two objectives achieve equal values. Finally,
the minimizers wr and wh must be interchangeable, since
frob(wr) = fhng(wr, ηr) ≥ fhng(wh, ηh) = frob(wh) ≥
frob(wr), showing all values are equal.

Therefore minimizing regularized robust loss is equiva-
lent to minimizing the regularized η-hinge loss we intro-
duced. Previously, we observed that the regularized η-hinge
objective can be minimized by alternating minimization on
w and η. Unfortunately, as Figure 1 illustrates, the mini-
mization of η given w always results in boolean solutions
that set ηi = 0 for all misclassified examples and ηi = 1
for correct examples. Such an approach immediately gets
trapped in local minima. Therefore, a better computational
approach is required. To develop an efficient training tech-
nique for robust loss, we now derive a semidefinite relax-
ation of the problem.

Convex relaxation
To derive a convex relaxation of (6) we need to work in the
dual of (5). Let N = diag(η) be the diagonal matrix of η
values, and let ◦ denote componentwise multiplication. We
then obtain
Proposition 5 For fixed η

min
w

β
2 ‖w‖2 +

∑

i ηi-hinge(w,xi, yi)

= min
w,ξ

β
2 ‖w‖2 + e

>ξ + e
>(e − η) subject to

ξ ≥ 0, ξ ≥ N(e − Y X>
w)

(8)

= max
α

η>(α − e) − 1
2β

α>(X>X◦yy
>◦ηη>)α + t

subject to 0 ≤ α ≤ 1



Proof The Lagrangian of (8) is L1 = β
2 w

>
w + e

>ξ +

α>(η − NY X>
w−ξ)−ν>ξ +e

>(e−η) such that α ≥
0, ν ≥ 0. Computing the gradient with respect to ξ
yields dL1/dξ = e−α−ν = 0, which implies α ≤ e.
The Lagrangian can therefore be equivalently expressed by
L2 = β

2 w
>
w + α>(η − NY X>

w) + e
>(e − η) subject

to 0 ≤ α ≤ 1. Finally, taking the gradient with respect to
w yields dL2/dw = βw − XYNα = 0, which implies
w=XYNα/β. Substituting back into L2 yields the result.

We can subsequently reformulate the joint objective as
Corollary 1

min
0≤η≤1

min
w

β
2 ‖w‖2 +

∑

i ηi-hinge(w,xi, yi) (9)

= min
0≤η≤1

max
0≤α≤1

η>(α−e)− 1
2β

α>(X>X◦yy
>◦ηη>)α+t

The significance of this reformulation is that it allows us
to express the inner optimization as a maximum, which al-
lows a natural convex relaxation for the outer minimization.
The key observation is that η appears in the inner maximiza-
tion only as η and the symmetric matrix ηη>. If we create
a matrix variable M = ηη>, we can re-express the problem
as a maximum of linear functions of η and M , yielding a
convex objective in η and M (Boyd & Vandenberghe 2004)

min
0≤η≤1, M=ηη>

max
0≤α≤1

η>(α − e) − 1
2β

α>(G ◦ M)α

Here G = X>X ◦ yy
>. The only problem that remains is

that M = ηη> is a non-convex quadratic constraint. This
constraint forces us to make our only approximation: we
relax the equality to M � ηη>, yielding a convex problem

min
0≤η≤1

min
M�ηη>

max
0≤α≤1

η>(α−e)− 1
2β

α>(G ◦M)α (10)

This problem can be equivalently expressed as a semidef-
inite program.
Theorem 2 Solving (10) is equivalent to solving

min
η,Mν,ω,δ

δ s.t. ν ≥ 0, ω ≥ 0, 0 ≤ η ≤ 1, M � ηη>,
[

G ◦ M η + ν − ω

(η + ν − ω)> 2
β
(δ − ω>

e + η>
e)

]

� 0

Proof Objective (10) is equivalent to minimizing a gap vari-
able δ with respect to η and M subject to δ ≥ η>(α −
e) − α>(G ◦ M/2β)α for all 0 ≤ α ≤ 1. Consider
the right hand maximization in α. By introducing La-
grange multipliers for the constraints on α we obtain L1 =
η>(α − e) − α>(G ◦ M/2β)α + ν>α + ω>(e − α),
to be maximized in α and minimized in ν, ω subject to
ν ≥ 0, ω ≥ 0. The gradient with respect to α is given
by dL1/dα = η− (G◦M/β)α+ν−ω = 0, yielding α =
β(G◦M)−1(η+ν−ω). Substituting this back into L1 yields
L2 = ω>

e−η>
e+β/2(η+ν−ω)>(G◦M)−1(η+ν−ω).

Finally, we obtain the result by applying the Schur comple-
ment to δ − L2 ≥ 0.

This formulation as a semidefinite program admits a poly-
nomial time training algorithm (Nesterov & Nimirovskii
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Figure 3: Gaussian blobs, with outliers.

1994; Boyd & Vandenberghe 2004). We refer to this
algorithm as the robust η-hinge (REH) SVM. One mi-
nor improvement is that the relaxation (10) can be tight-
ened slightly by using the stronger constraint M � ηη>,
diag(M) = η on M , which would still be valid in the dis-
crete case.

Explicit outlier detection
Note that the technique developed above does not actually
identify outliers, but rather just improves robustness against
the presence of outliers. That is, a small value of ηi in the
computed solution does not necessarily imply that example
i is an outlier. To explicitly identify outliers, one needs to
be able to distinguish between true outliers and points that
are just misclassified because they are in a class overlap re-
gion. To adapt our technique to explicitly identify outliers,
we reconsider a joint optimization of the original objective
(4), but now add a constraint that at least a certain proportion
ρ of the training examples must not be considered as outliers

min
w

min
0≤η≤1

β
2 ‖w‖2 +

∑

i ηi[1 − yix
>
i w]+ s.t. e

>η ≥ ρt

The difference is that we drop the extra 1−ηi term in the
η-hinge loss and add the proportion ρ constraint. The con-
sequence is that we lose the upper bound on the misclas-
sification error, but the optimization is now free to drop a
proportion 1−ρ of the points without penalty, to minimize
hinge loss. The points that are dropped should correspond to
ones that would have obtained the largest hinge loss; i.e. the
outliers. Following the same steps as above, one can derive
a semidefinite relaxation of this objective that allows a rea-
sonable training algorithm. We refer to this method as the
robust outlier detection (ROD) algorithm. Figure 3 shows
anecdotally that this outlier detection works well in a simple
synthetic setting, discovering a much better classifier than
the soft margin SVM (hinge loss), while also identifying the
outlier points. The robust SVM algorithm developed above
also produces good results in this case, but does not identify
outliers.

Comparison to existing techniques
Before discussing experimental results, we briefly review re-
lated approaches to robust SVM training. Interestingly, the



original proposal for soft margin SVMs (Cortes & Vapnik
1995) considered alternative losses based on the transforma-
tion loss(w,x, y) = hinge(w,x, y)p. Unfortunately, choos-
ing p > 1 exaggerates the largest losses and makes the tech-
nique more sensitive to outliers. Choosing p < 1 improves
robustness, but creates a non-convex training problem.

There have been a few more recent attempts to improve
the robustness of soft margin SVMs to outliers. Song et al.
(2002) modify the margin penalty by shifting the loss ac-
cording to the distance from the class centroid

min
w

1
2‖w‖2 +

∑

i[1 − yix
>
i w − λ‖xi − µyi

‖2]+

where µyi
is the centroid for class yi ∈ {−1, +1}. Intu-

itively, examples that are far away from their class centroid
will have their margin losses automatically reduced, which
diminishes their influence on the solution. If the outliers are
indeed far from the class centroid the technique is reason-
able; see Figure 2. Unfortunately, the motivation is heuristic
and loses the upper bound on misclassification error, which
blocks any simple theoretical justification.

Another interesting proposal for robust SVM training is
the leave-one-out (LOO) SVM and its extension to the adap-
tive margin SVM (Weston & Herbrich 2000). The LOO
SVM minimizes the leave-one-out error bound on dual soft
margin SVMs, derived by Jaakkola and Haussler (1999).
The bound shows that the misclassification error achieved
on a single example i by training a soft margin SVM on
the remaining t − 1 data points is at most loo err(xi, yi) ≤
yi

∑

j 6=i αjyjx
>
i xj , where α is the dual solution trained on

the entire data set. Weston and Herbrich (2000) propose to
directly minimize the upper bound on the loo err, leading to

min
α≥0

∑

i[1 − yix
>
i XY α + αi‖xi‖

2]+ (11)

Although this objective is hard to interpret as a regularized
margin loss, it is closely related to a standard form of soft
margin SVM using a modified regularizer

min
α≥0

∑

i αi‖xi‖
2 +

∑

i[1 − yix
>
i XY α]+

The objective (11) implicitly reduces the influence of out-
liers, since training examples contribute to the solution only
in terms of how well they help predict the labels of other
training examples. This approach is simple and elegant.
Nevertheless, its motivation remains a bit heuristic: (11)
does not give a bound on the leave-one-out error of the LOO
SVM technique itself, but rather minimizes a bound on the
leave-one-out error of another algorithm (soft margin SVM)
that was not run on the data. Consequently, the technique is
hard to interpret and requires novel theoretical analysis. It
can also give anomalous results, as Figure 2 indicates.

Experimental results
We conducted a series of experiments on synthetic and real
data sets to compare the robustness of the various SVM
training methods, and also to investigate the outlier detec-
tion capability of our approach. We implemented our train-
ing methods using SDPT3 (Toh, Todd, & Tutuncu 1999) to
solve the semidefinite programs.
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The first experiments were conducted on synthetic data
and focused on measuring generalization given outliers, as
well as the robustness of the algorithm to their parameters.
We assigned one Gaussian per class, with the first given by

µ = (3,−3) and Σ =

(

20 16
16 20

)

and the second by −µ

and Σ. Since the two Gaussians overlap, the Bayes error
is 2.2%. We added outliers to the training set by drawing
examples uniformly from a ring with inner-radius of R and
outer-radius of R + 1, where R was set to one of the values
15, 35, 55, 75. These examples were labeled randomly with
even probability. In all experiments, the training set con-
tained 50 examples: 20 from each Gaussian and 10 from the
ring. The test set contained 1, 000 examples from each class.
Here the examples from the ring caused about 10% outliers.

We repeated all the experiments 50 times, drawing a train-
ing set and a test set every repetition. All the results reported
are averaged over the 50 runs, with a 95% confidence inter-
val. We compared the performance of standard soft mar-
gin SVM, robust η-hinge SVM (REH) and the robust out-
lier detector SVM (ROD). All algorithms were run with the
generalization tradeoff parameter set to one of five possible
values: β = 10−4, 10−2, 100, 102, 104. The robust outlier
detector SVM was run with outlier parameter set to one of
seven possible values, ρ = 0.2, 0.4, 0.6, 0.8, 0.9, 0.94, 0.98.

Figure 4 shows the results for the two versions of our
robust hinge loss training versus soft margin SVM, LOO
SVM, and centroid SVM. For centroid SVM we used 8 val-
ues for the λ parameter and chose the best over the test-set.
For all other methods we used the best value of β for stan-
dard SVM over the test set. The x-axis is the noise level
indicated by the radius R and the y-axis is test error.

These results confirm that the standard soft margin SVM
is sensitive to the presence of outliers, as its error rate in-
creases significantly when the radius of the ring increases.
By contrast, the robust hinge SVM is not as affected by la-
bel noise on distant examples. This is illustrated both in the
value of the mean test error and the standard deviation. Here
the outlier detection algorithm with ρ = 0.80 achieved the
best test error, and robust η-hinge SVM second best.

Figure 5 shows the test error as a function of β for all
methods for high noise level R = 55. From the plot we
can draw a few more conclusions: First, when β is close to
zero the value of ρ does not affect performance very much.
But otherwise, if the value of ρ is too small, then the per-
formance degrades. Third, the robust methods are generally
less sensitive to the value of the regularization parameter β.
Fourth, if β is very high then it seems that the robust meth-
ods converge to the standard SVM.

We also evaluated the outlier detection algorithm as fol-
lows. Since the identity of the best linear classifier is known,
we identified all misclassified examples and ordered the ex-
amples using the η values assigned by the ROD training al-
gorithm. We compute the recall and precision using this or-
dering and averaged over all 50 runs. Figure 6 shows the
precision versus recall for the outlier detection algorithm
(ROD) for various values of ρ and for the minimal value
of β. As we can see from the plot, if ρ is too large (i.e. we
guess that the number of outliers is smaller than their ac-
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Figure 7: Relative improvement of the robust algorithms
over standard soft SVM for the speech data.

tual number), the detection level is low and the F-measure is
about 0.75. For all other values of ρ, we get an F-measure
of about 0.85.

A few further comments, which unfortunately rely on
plots that are not included in the paper due to lack of space:
First, when β is large we can achieve better F-measures by
tuning ρ. Second, we found two ways to set ρ. The simple
method is to perform cross-validation using the training data
and to set ρ to the value that minimized the averaged error.
However, we found an alternative method that worked well
in practice. If ρ is large, then the graph of sorted η values
attains many values near one (corresponding to non-outlier
examples) before decreasing to zero for outliers. However,
if ρ is small, then all values of η fall below one. Namely,
there is a second order phase transition in the maximal value
of η, and this phase transition occurs at the value of ρ which
corresponds to the true number of outliers. We are investi-
gating a theoretical characterization of this phenomenon.

Given these conclusions, we proceed with experiments
on real data. We conducted experiments on the TIMIT
phone classification task. Here we used experimental setup
similar to (Gunawardana et al. 2005) and mapped the 61
phonetic labels into 48 classes. We then picked 10 pairs
of classes to construct binary classification tasks. We fo-
cused mainly on unvoiced phonemes, whose instantiations
have many outliers since there is no harmonic underlying
source. The ten binary classification problems are identified
by a pair of phoneme symbols (one or two Roman letters).
For each of the ten pairs we picked 50 random examples
from each class, yielding a training set of size 100. Simi-
larly, for test, we picked 2, 500 random examples from each
class and generated a test set of size 5, 000. Our preproces-
sor computed mel-frequency cepstral coefficients (MFCCs)
with 25ms windows at a 10ms frame rate. We retained the
first 13 MFCC coefficients of each frame, along with their
first and second time derivatives, and the energy and its first
derivative. These coefficient vectors (of dimension 41) were
whitened using PCA. A standard representation of speech
phonemes is a multivariate Gaussian, which uses the first
order and second order interaction between the vector com-



ponents. We thus represented each phoneme using a feature
vector of dimension 902 using all the first order coefficients
(41) and the second order coefficients (861).

For each problem we first ran the soft margin SVM and
set β using five-fold-cross validation. We then used this β
for all runs of the robust methods. The results, summarized
in Figure 7, show the relative test error between SVM and
the two robust SVM algorithms. Formally, each bar is pro-
portional to (εs − εr)/εs, where εs(εr) is the test error. The
results are ordered by their statistical significance for robust
hinge SVM (REH) according to McNemar test—from the
least significant results (left) to the most significant (right).
All the results right to the black vertical line are significant
with 95% confidence for both algorithms. Here we see that
the robust SVM methods achieve significantly better results
than the standard SVM in six cases, while the differences
are insignificant in four cases. (The difference in perfor-
mance between the two robust algorithms is not significant.)
We also ran the other two methods (LOO SVM and centroid
SVM) on this data, and found that they performed worse
than the standard SVM in 9 out of 10 cases, and always
worse than the two robust SVMs.

Conclusion
In this paper we proposed a new form of robust SVM train-
ing that is based on identifying and eliminating outlier train-
ing examples. Interestingly, we found that our principle pro-
vided a new but equivalent formulation to the robust hinge
loss often considered in the theoretical literature. Our alter-
native characterization allowed us to derive the first practical
training procedure for this objective, based on a semidef-
inite relaxation. The resulting training procedure demon-
strates superior robustness to outliers than standard soft mar-
gin SVM training, and yields generalization improvements
in synthetic and real data sets. A useful side benefit of the
approach, with some modification, is the ability to explicitly
identify outliers as a byproduct of training.

The main drawback of the technique currently is compu-
tational cost. Although algorithms for semidefinite program-
ming are still far behind quadratic and linear programming
techniques in efficiency, semidefinite programming is still
theoretically polynomial time. Current solvers are efficient
enough to allow us to train on moderate data sets of a few
hundred points. An important direction for future work is to
investigate alternative approximations that can preserve the
quality of the semidefinite solutions, but reduce run time.

There are many extensions of this work we are pursuing.
The robust loss based on η indicators is generally applicable
to any SVM training algorithm, and we are investigating the
application of our technique to multi-class SVMs, one-class
SVMs, regression, and ultimately to structured predictors.
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