Investigating the maximum likelihood alternative to TD())

Fletcher Lu
Relu Patrascu
Dale Schuurmans

F2LUQMATH.UWATERLOO.CA
RPATRASC@QMATH.UWATERLOO.CA
DALEQ@CS.UWATERLOO.CA

Dept. of Computer Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1 Canada

Abstract

The study of value estimation in Markov re-
ward processes has been dominated by re-
search on temporal difference methods since
the introduction of TD(0) in 1988. Temporal
difference methods are often contrasted with
a maximum likelihood approach where the
transition matrix and reward vector are es-
timated explicitly and converted into a value
estimate by solving a matrix equation. It is
often asserted that maximum likelihood esti-
mation yields more accurate values, but the
temporal difference approach is far more effi-
cient computationally. In this paper we show
that the first assertion is true, but the sec-
ond can be false in many circumstances. In
particular, we show that a reasonable imple-
mentation of a sparse matrix solver can yield
run times for maximum likelihood that are
competitive with TD(A). In our experiments
the quality of maximum likelihood seems to
be worth its cost, suggesting that a model
based approach might yet be worth pursuing
in scaling up reinforcement learning.

1. Introduction

Estimating the expected future reward in a Markov
reward process is fundamental to many approaches
for reinforcement learning and Markov decision pro-
cess planning (Bellman, 1957). This assertion is es-
pecially true of methods that employ a policy itera-
tion approach and therefore require an estimate of the
value for the current policy at each iteration. In this
paper we focus on value estimation and consider al-
ternative estimators that have differing advantages for
this task. In particular, we will investigate the prob-
lem of estimating the expected sum of future rewards
in an infinite horizon discounted Markov reward pro-
cess (Sutton & Barto, 1998).

The problem of value estimation in Markov reward
processes has been vigorously studied, and a lot of at-
tention has been paid to temporal difference estimators
(Sutton, 1988; Dayan, 1992; Sutton & Barto, 1998).
Temporal difference estimators are computationally ef-
ficient methods that have an appealing bootstrap na-
ture, where the value estimate for a visited state is
updated to reflect both the immediate reward and the
estimated future values currently held in subsequent
states. Temporal difference estimation is often called
the direct or non-model based approach because these
methods attempt to directly estimate the value func-
tion, and do not otherwise build an explicit model of
the state transition matrix or the average reward vec-
tor. Another direct approach is Monte Carlo (Barto
& Duff, 1993) which we compare below.

In contrast with these direct estimators, the maximum
likelihood approach follows an indirect or model based
strategy where an explicit estimate of the state tran-
sition matrix and average reward vector is first com-
puted, and then the value estimate is recovered by
solving a matrix equation. It is the computational
complexity of solving this matrix equation that is of-
ten held as the primary reason for precluding maxi-
mum likelihood as a practical estimator for these tasks,
since it appears to fundamentally require more time
and space. (We discuss other reasons below.) In this
paper we show that maximum likelihood need not be
inefficient, even in common experimental settings, if
one takes care to exploit the sparse structure of the
matrices that often arise in these problems. The bene-
fit of maximum likelihood estimation, which we verify
below, is that it almost always yields more accurate es-
timates than either the temporal difference or Monte
Carlo methods. Therefore, it seems that explicit model
based approaches such as maximum likelihood may be
worthwhile to pursue in more significant large scale
studies.

In this paper, we focus on comparing estimators in
terms of their estimation accuracy given comparable

data resources, and their computational efficiency in
terms of time and space requirements. We will not
focus on other issues such as on-line versus off-line al-
gorithmic structure, or model based versus non-model-
based algorithmic structure.

Before continuing, it is important to note that the dis-
tinction between temporal difference and maximum
likelihood estimation is not the same as the distinc-
tion between on-line and batch learning. That is, in
this paper we are comparing temporal difference and
maximum likelihood both as batch estimators which
exploit the data produced by an independent explo-
ration strategy. The fundamental distinction between
on-line and batch learning is that the former requires
one to address the exploration/exploitation tradeoff
and explicitly plan for exploration. However, tempo-
ral difference estimation methods, by themselves, say
nothing about exploration. They simply provide value
estimates based on the data returned by an indepen-
dently controlled sampling strategy. Here, one could
assess the computational efficiency of the value estima-
tion methods under two regimes: single shot, where
one considers the computational resources needed to
produce a single estimate of the value function given
a batch of data; and incremental, where one consid-
ers the computational resources needed to produce a
complete value function at every step during the ex-
ploration. Clearly, in the latter case the direct tem-
poral difference and Monte Carlo estimators retain
their computational advantage, but nevertheless, some
progress can be made toward closing the gap. In this
paper, we begin to make progress by considering the
first, simpler analysis.

2. Preliminaries

A discrete time Markov reward process on a finite set
of N states, n = 1,..., N is described by a transition
model P(S;41 = m|S; = n), where we assume the tran-
sition probabilities do not change over process time ¢
(stationarity assumption). Such a transition model
can be represented by an N x N matrix P, where
P(n,m) denotes P(S;11 = m|S; = n) for all process
times ¢. The reward R; observed at time 7 is indepen-
dent of all other rewards and states given the state S;
visited at time i. We also assume the reward model is
stationary and therefore let r(n) denote E[R;|S; = n]
and o?(n) denote Var(R;|S; = n) for all process times
i. Thus, r and o2 represent the vectors (of size N x 1)
of expected rewards and reward variances respectively
over the different states n = 1, ..., V.

We consider an infinite horizon process where the ini-
tial state Sy is drawn from an initial distribution,

which can be represented by an N x 1 vector o« such
that w(n) = P(Sp = n). Once Sy is chosen, state
transitions S;_1 — S; are performed where each des-
tination state S; emits a reward S; — R;. Therefore,
the overall structure of the probability model is that
of a hidden Markov model. We will let n, m, £ refer to
states respectively (1 < n,m,f¢ < N), and i, j, k refer
to process times (0 < 4, j, k). Thus, a stationary, dis-
crete time, discounted infinite horizon Markov reward
process will be completely specified by a discount fac-
tor v, an N x N matrix P, an N x 1 vector 7, and the
reward distribution, which can be summarized by the

N x 1 vectors r and 2.1

The value function v(n) is defined to be the expected
sum of discounted future rewards obtained by starting
in a state So = n. That is, v is a vector given by

r+~yPr+~*Pr4...
= r++4Pv (1)

Therefore, if P and r are known then v can be calcu-
lated explicitly by solving the matrix equation

(I-~vP)v = r (2)

All of the estimators we consider will produce esti-
mates v of the value function by processing sample tra-
jectories that have been generated by some indepen-
dent sampling strategy. The specific sampling strategy
we consider depends on whether or not the Markov re-
ward process has an absorbing state.

Absorbing restarts If the process has an absorbing
state (where the probability of an infinite walk is 0)
then the sampling process produces independent tra-
jectories by re-starting at a state drawn from the initial
distribution = whenever the absorbing state is reached.

Random walk If the Markov reward process does not
have an absorbing state (and is irreducible) then we
sample one long trajectory through the reward process.

Several estimators can be applied to the value esti-
mation problem in Markov reward processes. These
methods attempt to estimate the value of each state
by processing sampled trajectories. The specific esti-
mators we consider are: maximum likelihood, Monte

Carlo, and TD(A).

Maximum likelihood For the individual parameters
P(n,m) and r(n), the maximum likelihood estimates

!Note that an analysis of expected squared prediction
error, MSE, requires no further information about the dis-
tribution of rewards other than their means and variances.

are given by

. #{i:s; =n and s;31 = m}

Pn,m) = #{i:s; =n}
~ Z{i:sl:n} Ty
£(n) #{i:s;, =n}

if #{i : s; = n} > 0 (otherwise undefined). Here
denotes set cardinality. Given these quantities one
can obtain the maximum likelihood estimate simply
by plugging P and 7 into Equation 2 and solving for
the vector ml in

(I-yP)ml = ¢ (3)

Solving this equation is perceived to be the most ardu-
ous aspect of producing an ML estimate, since it can
require O(N?) run time using standard algorithms.
Nevertheless, ML yields a consistent estimator in the
sense that limp_, o, ml — v with probability one for
reachable states, since both P — P and t — r by the
strong law of large numbers (Ash, 1972). However,
ML is actually biased; that is, generally, E[ml] # v.2
However, despite this bias ML yields a good estima-
tor for v because it tends to make efficient use of the
sample data by estimating the transition probabilities
P(Si+1 = m|S; = n) in terms of every visit to S; = n
regardless of process time i. We empirically verify be-
low that it does indeed yield superior estimates. In
addition, ML requires O(¢) space where ¢ is the num-
ber of nonzeros in the matrix of Equation 3.

Monte Carlo The on-line Monte Carlo estimator
(MC) first initializes a default guess mec = g and then,
upon visiting a state n and receiving reward r, up-
dates the value estimate for n according to me(n) +
(I — a)me(n) + ar, where « is a constant that de-
pends on the number of updates (Singh & Sutton,
1996; Singh & Dayan, 1998). (We will use a constant «
for simplicity.) MC estimators are obviously computa-
tionally efficient. If T is the total number of state-to-
state transitions observed, then MC produces a value
estimate in O(T) time and O(N) space. However, note
that MC does not exploit the fact that the Markov

2This can be seen by noting that even though E[P7§#] =
E[P/]E[f], B[] = r and E[P] = P (since R; is indepen-
dent Qf Sk given S; = n), it is not true that E[f”] is equal
to P? in general. Consider the special case of determin-
ing E[Pz(n7 m)]. Here]32(717 m) = i\;_ol p(n,[)f’([, m),
where for terms such that £ # n we have P(n,£) inde-
pendent of p([,m), as desired.
{ = n, the quantities p(n,n) and Is(n,m) are not inde-
pendent. For example, in the case where m = n they be-

However for the term

come]5(n7 n)?, whose expectation is given by]El[ls(n7 n)?] =

Var(P(n,n)) + (B[P(n, n)])* > (B[P(n, n)])*.

Initialize td(n) = g(n), e(n) =0, forall 1 <n < N
Repeat for each trajectory:
Draw an initial state n according to =
Repeat for each step of trajectory:
Observe next state m and reward r
d «r+~vytd(m) —td(n)
For all states ¢:
td(¢) < td(¢) + ade(f)
e(f) « update-eligibility(¢)
n<+<m
Until state n is terminal

Figure 1. On-line TD(\) with eligibility traces

process is stationary: The MC estimator could just
as easily be applied to a nonstationary process with-
out modification. This clearly suggests that MC is an
inefficient estimator for stationary reward processes,
which we verify below.

TD(A) Finally, we consider the temporal difference es-
timator TD(A), which is conventionally implemented
using eligibility traces, as shown in Figure 1 (Sutton
& Barto, 1998). Subtle variants of this procedure are
obtained by changing the way the eligibilities are up-
dated. For example, if n is the current state and £ # n,
then all procedures use the update e(f) « vyAe({),
however for state n “accumulate trace” uses the up-
date e(n) < yAe(n) + 1 whereas “replace trace” uses
the update e(n) « 1 (Singh & Dayan, 1998). TD(})
is also perceived to be computationally efficient, as it
runs in O(TN) time, in the worst case, while requir-
ing O(N) space. Although these crude analyses sug-
gest that ML might always be computationally more
expensive, we will see below that this need not always
be the case.

3. Assessing estimation accuracy

First we consider some brief experimental results to
confirm the well known folklore surrounding the sta-
tistical accuracy and computational efficiency of max-
imum likelihood and temporal difference estimators
(Sutton & Singh, 1994; Singh & Sutton, 1996; Singh &
Dayan, 1998). We conducted a series of experiments
on artificial domains where we could control the num-
ber of states IV, the number of state-to-state transi-
tions sampled T, and the number of unique state-to-
state transition pairs observed ¢ (which determines the
sparsity of the matrix P used by ML). The four do-
mains we considered are described in Figure 2.

To assess the accuracy of the various estimators on
these problems we measure their expected squared pre-

Figure 2. (a) The ring problem and (b) the torus problem: random
probability of moving to neighbouring states, random rewards between
0 and 1; (c) the sd problem as defined in Figure 2 of (Singh & Dayan,
1998); the random problem, not shown here: entries in P are generated

uniformly random, and random rewards between 0 and 1.

The Random Problem

T | ML MCl _MC2 TDR TDA | %
10 62.86 75.96 76.17 74.76 7528 | 9
100 | 6.493 8.680 11.48 64.11 59.97 | 92

1000 0.046 1.172 0.143 14.23 7.974 538

The Ring Problem

T ML MC1 MC2 TDR TDA t
10 180.5 200.3 200.3 199.9 198.3 5
100 148.8 168.7 168.7 180.8 179.6 13

1000 113.6 127.4 127.4 151.7 148.1 32

The Torus Problem

T ML MC1 MC2 TDR TDA t
10 149.5 169.2 169.2 159.5 161.1 8
100 185.8 145.9 145.9 154.8 154.3 47
1000 83.5 72.4 72.5 132.7 131.8 98
The SD Problem
T ML MC1 MC2 TDR TDA t
10 0.524 1.000 1.000 2.274 2.292 6
100 0.438 0.820 0.820 2.477 2.343 28

1000 0.086 0.053 0.045 1.796 1.697 51

Table 1. Mean Square Error.*

The Random Problem

N | ML MCIL MC2 TDR TDA | %
5 0.118 0.008 0.231 0.322 0357 | 25
10 0.121 0.007 0.232 0.489 0.527 | 92
20 0.129 0.013 0.235 0.822 0.863 | 326
30 0.137 0.020 0.238 1.155 1.199 | 534
50 0.148 0.083 0.243 1.817 1.866 | 778
100 | 0.169 0.064 0.255 3.472 3.545 | 937
250 | 0.254 0.148 0.289 8.623 8.397 | 991

The Ring Problem

N | ML MCL MC2 TDR TDA | &
5 0.117 _ 0.008 0.220 _ 0.322 _ 0.354 | 10
10 | 0.118 0.006 0.231 0.487 0.519 | 19
20 | 0121 0012 0.234 0.820 0.850 | 36
30 | 0124 0017 0236 1.152 1.181 | 46
50 | 0.130 0.021 0.240 1.818 1.843 | 50

Table 2. Run time in seconds. *

diction error (MSE) relative to the true value function
v. Since the estimate v and target values v are both
vectors, we report a summary MSE score which is the
maximum of the individual MSEs over each compo-
nent (state). Run time is measured in terms of the
total time to process the sample data and produce the
final estimate.

Results shown in Tables 1 and 2 support the superior
quality of ML as a statistical estimator. In our experi-
ments ML uniformly obtains the smallest MSE values,
regardless of problem size N, sample size T or transi-
tion matrix density ¢; see Table 1. Interestingly, ML
also produces its value estimates in reasonable time
compared to the other approaches; as shown in Ta-
ble 2. These run times were recorded for simple Mat-
lab implementations of the different procedures. What
is apparent from Table 2 is that ML’s cubic run time in
N is not always clearly revealed in real experiments.
Below we show that in many natural circumstances,
the run time of ML is in fact far better than cubic in
N, explaining why not only its accuracy, but also its
run time can be superior to TD(X) in many experi-
mental settings.

4. Investigating the efficiency of ML

An efficient implementation of the ML estimator must
address the problem of solving the linear matrix equa-
tion, Equation 3, for an estimated transition model P
and reward vector r. Let
A = I- ’yp

Note that A is a square nonsingular matrix, and there-
fore Equation 3 may be solved by a number of factor-
ization methods. Since factorization typically is con-
sidered to run in O(N?3) time (Golub & Loan, 1989),
most applications forego this approach for the faster
O(TN) approach of TD(A) and Monte Carlo methods.
However, the factorization run time is a gross general-
ization assuming a dense system using a direct solver
and assuming a linear relation between T and N. In
the remainder of this section, let v.= ml and note that
Equation 3 becomes

Av=r (4)

‘Legend ML: Maximum Likelihood; MC1: first-visit
Monte Carlo; MC2: every-visit Monte Carlo; TDR:
TD(A) with replacing eligibility traces; TDA: TD()) with
accumulating eligibility traces. The results are reported
with the best empirically found setting for A in each case.
Similarly, we found that the discount factor v = .95 and
step size a = .05 worked best throughout all simulations.
Table 2 illustrates typical runtimes for various densities of
matrices.

Here A is an N x /N matrix. Since ¢ is the number of
nonzeros in the matrix A, then

N <t<NZ (5)

Clearly T and N are not simply linearly related. This
paper will demonstrate that we can often achieve an
O(TN) run time to solve Equation 4 using a com-
bination of careful analysis and various matrix solve
approaches.

We now consider the cases under which it is possible to
solve Av =rin O(T'N) run time. First note that, un-
der the special case of ¢ < T2 a direct factorization
of matrix A runs in at worst O(¢3) time when ¢ = NV,
and therefore O(t%) < O(T%?) = O(TN). So when
t = TY? a matrix solve has comparable efficiency to
TD()). In fact, when ¢ < T2 a matrix solve is faster
than TD(A). Intuitively, these situations can be inter-
preted as, when the TD(A) method starts repeating
state-to-state transitions sufficiently often during their
sample runs, a matrix solve approach then becomes as
fast or faster in determining a solution.

Under the remaining conditions of T1/2 < t < T, we
can divide the problem into three cases: (1) dense:
aiN? < t < N2, (2) intermediate: N + c;N?/3 <
t < e1N?%, and (3) sparse: N < t < N 4 caN?/3;
where ¢; and c2 are constants such that 1 < ¢; and
1<ep < N3, Of these cases, the dense and sparse
situations are the easiest to show competitive compu-
tational efficiency for matrix solve. However, the inter-
mediate case poses remaining challenges. We outline
some ideas for tackling this difficult situation below.

4.1 Dense case

Lemma 4.1 Given c;N? <t < N% and T'? <t <
T, then a naive matriz solve runs in O(TN) time.

Proof. The factorization time of a matrix solve runs in
O(N3) for an N x N matrix. By assumption we have
c1N? <t < N? and therefore t'/2 < N < ¢3t'/2. Thus
O(t3/?) < O(N3) < O(t3?). Also, O(N?) = O(t) <
O(T) and hence O(N3) < O(TN). O

So under a very dense system, the matrix equation

for ML estimation can be solved as quickly as running
through the TD(A) estimator.

4.2 Sparse case

Here we assume N < t < N +¢,N2/3, Note that since
~ in Equation 3 is a discount factor, we have v < 1.
Also, since P is a probability matrix, Egzl P(n, m) =
1 for all n and therefore 'yzzzl P(n,m) =~ for all
n. Thus the matrix A = I — yP is diagonally domi-

nant. We can therefore symmetrically pivot our matrix
during factorization with respect to nonzero fill only,
while maintaining stability. To do so let us symmetri-
cally permute the rows and columns of the matrix A
in the following manner. First let n = N. Then repeat
until n = 1:

e Search 1 to n for the row m with the most nonzeros.
e Swap row m with row n, column m with column n.
o Setn+n—1.

We will call this new permuted matrix A.

Lemma 4.2 The number of nonzeros in any of the
first N — ¢;N?/3 rows of A has at most one nonzero
in the off diagonal.

Proof. Proof is by contradiction. Suppose a row in
the first N — ¢3N2/3 rows has more than one nonzero.
Then the last 3 N2/3 rows all have at least two nonze-
ros in each row, by the construction of A. Therefore,
the last c3 N2/3 rows contain at least 2 x ¢5 N2/3 nonze-
ros and at least one row in the first N — 3 N2/3 rows
This situation produces a
current total of 2 x c3 N2/3 + 2 nonzeros. There is ex-
actly one nonzero in each row not including the ones
on the diagonal contributed by the identity matrix in
the matrix A = I — yP. (This situation is due to
how P was constructed, since it is a probability ma-
trix where a row/column is only formed if a nonzero
was produced by a state-to-state transition.) There-
fore A has at least one nonzero in each of the remaining
N — ¢3N2?/3 — 1 rows for a total of:

has at least 2 nonzeros.

= 2x N3 4124 N —eyN23 1
N +eyN23 41
> N +cyN2/3

nonzeros. Since ¢ is the number of nonzeros in A4, this
result contradicts the fact that t < N+¢cyN?/3. There-
fore, our supposition is false. QED. O

Lemma 4.3 Given N <t < N + ¢y N?/3 and T'/? <
t < T, then the factorization for matriz A in Fqua-
tion 4 after being permuted into the form A runs in

time O(TN).

Proof. The normally cubic run time of matrix factor-
ization is due to the outer product multiplication, dur-
ing the iterative process of the factorization. There-
fore, for an k x k matrix A, a single factorization step

WOUld be:
[- - :|
Ak Ixk—1

06
uwT
I 0 Ap_ixk—1-—

a

Apxr =

alg — £ 2

Row Column
* * *
= * * *
4x4
* * *
* *

e * * %
3x3

* * %

* %

Figure 3. Elimination in a bipartite graph of a matrix A.

where uw’" is the outer product. If vectors u and w
are both full (i.e. no nonzero entries) then the outer
product is an (k—1)? product. Complete factorization

is an iterative process that involves factoring the sub-
uw

sequent k — 1 x k — 1 submatrix Ag_1xx—1— 5 — in
the same manner as the Ay, matrix. The complete
factorization produces a quadratic summation series
whose total is cubic.

Nonzero fill during factorization can be represented by
a bipartite graph, where each factorization step elim-
inates one pair of nodes {n, m}. For every node that
was connected to node n is connected to each node
that was connected to node m. The degree of node
n multiplied by the degree of node m represents the
total number of multiplications performed at that it-
erative step of factorization. See Figure 3. Thus for
matrix A, the first N —c3 N2/3 row nodes have at most
one arc connected to a column node (not including the
diagonal arc connected to the opposite column node).
At each factorization step all the row nodes that have
only one arc will continue to have only one arc, since
they only form a new connection if the one column
node they were originally connected to is eliminated
also.

Therefore, during the first N — ¢ N?/3 factorization
steps, at most

(N=1) + (N—=2)+..+N—cN?/?
_ N’-N (N—cN**)(N—esN** - 1)

N 2 2

N4/3 N2/3

5/3 2
= N / — 5 — s

2 2

multiplications are performed. During the last ¢, N2/3
factorization steps a matrix of size caN2/3 x g N2/3
is being factored. Therefore the run time is at worst
O((N?/3)3 = O(N?). Thus, the total run time for the
factorization is O(N?%) < O(TN). O

4.3 Intermediate case

The case of intermediate matrix density is the situa-
tion where the assumption that a direct solve approach
is less efficient than TD(A) truly holds. Under a direct
solve approach, a naive method that does not take into
account structure would produce a cubic run time in
general. However, even under this situation we can un-
der certain circumstances obtain a quadratic run time
in N: (1) by using iterative solve methods (Hageman
& Young, 1981; Varga, 1962; Young, 1971); (2) by
extending our sample runs to see if a localization of
substates occurs that moves us into one of the other
cases; or (3) by inverting the matrix by a Monte Carlo
method.

First, the efficiency of using iterative methods to solve
linear systems depends on the spectral radius of the
matrix. Since the convergence rates of iterative meth-
ods depend on the numerical values of the matrix, they
cannot always guarantee a quadratic solve time. How-
ever one can often shift the spectral radius to increase
the rate of convergence. This shift unfortunately usu-
ally reduces the accuracy of the solution. The body of
work in the area of iterative methods for matrix equa-
tion solving is extensive. However, the dependence
on the numerical values for convergence rates limits
the effectiveness of this approach in comparison to the
TD(A) alternative.

Second, unless a system is completely evenly dis-
tributed, some subset of states will generally be visited
more often than others. Such a localization of activ-
ity should be observed during sufficiently large sam-
ple runs. Therefore, under some systems, if we simply
continue our sampling long enough we may “push” our
system into one of the alternate sparse or dense cases.

The third approach exploits a method of matrix inver-
sion technique introduced by Von Neumann and Ulam
(Forsythe & Leibler, 1950), which uses a random walk
to determine the inverse of a matrix. Once the inverse
is found, the system can simply be solved by multi-
plying the inverse with the vector r of Equation 4.
The method uses a sequence of multiplications formed
through a random walk to determine an individual ele-
ment of the matrix being inverted. Since the complete
matrix has N? elements, the approach needs to run in
at least N2 walks to get a good approximation of the
inverse matrix. However, these random walks can be

run in parallel, so the number of random walks does
not have to directly relate to the running time of this
approach. Similar to the iterative method, the run-
ning time for determining a single element is depen-
dent on the random walk time which in turn depends
on the numerical values of the system and therefore
have the same drawback as the iterative method. A
second drawback to this approach is that the inverse
solution is an expected value. In order to reduce the
inherent variance in the approach the random walks
should be repeated.

5. Network Structure

The previous section demonstrated cases where the
ML direct solve approach can perform efficiently in
comparison with TD(X), regardless of network struc-
ture. Here we demonstrate that for acyclic networks
the direct solve approach will always be faster. Also,
for cyclic networks, we provide a parameter bound
whereby if the number of state-to-state transitions T
exceeds that parameter, then ML is faster.

5.1 Acyclic Networks

Lemma 5.1 Given a Markov reward process with a
network of state-to-state transitions where no cycles
are present, the run time of the ML approach with a
direct solver for estimating the values will be faster
than the TD(X) approach in the big-O sense.

Proof. Asstated by Singh and Sutton (1996), each step
of temporal differencing with eligibility traces runs in
O(N), where N is the number of states in the sys-
tem. The worst case run time is O(TN) where T is
the number of steps taken during sampling runs. Note
that T > N since only states visited can be assigned
a value in the temporal difference method. As illus-
trated in Figure 1 any temporal difference with eligi-
bility trace will require at least one addition and sev-
eral multiplications to update each state value for each
step in the sampling runs. Therefore the run time of
TD(A) is actually ¢T'N where ¢ > 1.5 Since an acyclic
network forms a DAG we can choose a labeling for the
states whereby we number each state n, 1 < n < N,
such that for any state-to-state transition from n to
m we have n < m. If we consider the resulting prob-
ability transition matrix P of such a network, then P
is a strictly upper triangular matrix. In terms of the
resulting equation that needs to be solved to value the

Various temporal differencing algorithms may be able
to reduce the number of multiplications, however there will
need to be at least one multiplication in order to discount
the eligibility by the discount factor 7.

states, the matrix I — 'yP of Equation 3 is also upper
triangular. Therefore, the only operations needed to
solve Equation 4 are a back substitution. The back
substitution equation for finding the value of a single
state n, in terms of Equation 4, would be:

r(n) — Ynty A(n, m)v(m)
A(n,n) (6)

v(n) =

(Note that each v(n) in the summation should already
be known from previous back substitutions.) Looking
closely at Equation 6, the number of additions per-
formed is equal to the number of nonzeros in row n of
the probability matrix P. If we let nz, be the num-
ber of nonzeros in row n, then by similar analysis,
Equation 6 requires nz, + 1 multiplications. There-
fore, the total number of computations to find a so-
lution to Equation 4 is O(N?). However the constant
coefficient of this quadratic run time is actually one.®
Therefore, TD(A) runs in O(T'N) time but the value of
the constant ¢ hidden in the big-O notation is greater
than one. ML runs in O(N?%) time. ML’s constant
cocfficient for the N? term is exactly one. Thus for
acyclic networks, ML is faster than TD(A). O

5.2 Cyclic Networks

Although it is true that standard matrix solvers run
in cubic time in the worst case, the actual constant
coefficient of the cubic term is 1/3 (Golub & Loan,
1989). From the analysis of the previous section the
run time of TD(A) is ¢T'N, where ¢ > 1. Therefore,
if we base our preference for using temporal differenc-
ing on its superior execution time, then the number
of steps performed during sampling must be T' < Jg—j
Since T' > N (otherwise the state would not be in-
cluded in our solution), we must visit each state less
than év—c times on average. Consider this situation as
an accuracy problem where we are interested in how
accurate TD(A)’s estimates are. Then if the true state-
to-state transition matrix is filled with more than 31—6 of
nonzeros, one of two situations may arise: (1) tempo-
ral differencing will not include some possible state-to-
state transitions in its sample runs; or (2) if all state-
to-state transitions are sampled at least once, then
temporal differencing will not be faster than maximum
likelihood method in producing a solution.

Based on the TD()) algorithm of Figure 1 a reasonable
value of ¢ would be 3. Therefore, if the matrix is more
than 11% dense, the ML approach is competitive with
TD(A).

®The maximum number of nonzeros in an upper trian-

gular matrix P is N(N — 1)/2.

N+ o < < oxn?
[Direct Solve Competitive with Monte Carlo and TD(\)
800 | [l Direct Solve Competiive with Monte Carlo and TDQ)

t: Number of State~to-State transitions in the System

1001

10 15
N: Number of States in the System

Figure 4. Region where run time of Maximum Likelihood
competitive with TD(X).

6. Conclusion

This paper has demonstrated that the general assump-
tion that the TD(A) approach for value estimation in
Markov reward processes necessarily achieves better
execution time than maximum likelihood is not al-
ways true. By using good sparse matrix algorithms
with a direct solver, when the sampling the Markov re-
ward process results in either a dense or sparse matric
equation, maximum likelihood value estimation can be
done as efficiently and often more efficiently than the
TD(A) approach. Figure 4 illustrates the regions where
a direct matrix solve approach is competitive with
the TD(A) approach. The upper region where Max-
imum Likelihood is competitive with TD(A) fills up
89% of the region. Thus the region where TD(A) ap-
pears more efficient is actually quite narrow. For den-
sities less than 11%, many sparse matrix algorithms
have been designed to specifically address this region.
Moreover, under the case where the reward process
forms a DAG over the state space, then the maximum
likelihood approach is always faster than TD(A).

We also experimentally verified the general perception
that maximum likelihood provides more accurate value
estimates than TD(A) or MC. Thus, the main advan-
tage of maximum likelihood is that it provides more
accurate estimates. However, there are circumstances
in which recovering an explicit model of the state tran-
sition model by itself might be useful. For example, in
situations where designers are attempting to discover
the underlying nature of the domain.

In terms of future work, we continue to investigate the
intermediate case. Generally speaking, under the in-
termediate conditions, although there are approaches
in matrix solve methods that can produce competi-
tive run time to TD(X), they have various limitations.
The direct solve approaches require some sort of spe-
cific structure to the system. The iterative and Monte

Carlo inverse approaches have no guaranteed bound
on running time, only expected bounds or convergence
times which can vary depending on the numerical val-
ues of the system. Further research should also be
done in the area of applications in order to determine
how often such median situations occur. A general set
of networks could be identified where the matrix solve
method is the desirable approach.

Acknowledgments

Research supported by NSERC and CITO.

References

Ash, R. (1972). Real analysis and probability. San

Diego: Academic Press.

Barto, A., & Duff, M. (1993). Monte carlo matrix
inversion and reinforcement learning. Proc. NIPS.

Bellman, R. E. (1957). A markov decision process.
Journal of Mathematical Mechanics, 6, 679-684.

Dayan, P. (1992). The convergence of TD()) for gen-
eral \. Machine Learning, 8, 341-362.

Forsythe, G. E., & Leibler, R. A. (1950). Matrix inver-
sion by a monte carlo method. MTAC, 6, 127-129.

Golub, G. H., & Loan, C. F. V. (1989). Matriz compu-
tations. Baltimore, MD: Johns Hopkins Univ. Press.

Hageman, L. A., & Young, D. M. (1981). Applied

iterative methods. New York: Academic Press.

Singh, S., & Dayan, P. (1998). Analytical mean
squared error curves for temporal difference learn-
ing. Machine Learning.

Singh, S., & Sutton, R. (1996). Reinforcement learning
with replacing eligibility traces. Machine Learning.

Sutton, R. (1988). Learning to predict by the method
of temporal differences. Machine Learning, 3, 9-44.

Sutton, R., & Singh, S. (1994). On step-size and bias in
temporal-difference learning. Fighth Yale Workshop
on Adaptive and Learning Systems.

Sutton, R. S., & Barto, A. G. (1998). Reinforce-
ment learning: An introduction. Cambridge, Mas-
sachusetts: MIT Press.

Varga, R. S. (1962). Matriz iterative analysis. Engle-
wood Cliffs, New Jersey: Prentice-Hall.

Young, D. M. (1971). Iterative solutions of large linear
systems. New York: Academic Press.

