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Abstract

One of the central challenges in reinforcement
learning is to balance the exploration/exploitation
tradeoff while scaling up to large problems. Al-
though model-based reinforcement learning has
been less prominent than value-based methods in
addressing these challenges, recent progress has
generated renewed interest in pursuing model-
based approaches: Theoretical work on the ex-
ploration/exploitation tradeoff has yielded provably
sound model-based algorithms such as E2 and
Rynaz, While work on factored MDP representa-
tions has yielded model-based algorithms that can
scale up to large problems. Recently the benefits
of both achievements have been combined in the
Factored E? algorithm of Kearns and Koller. In
this paper, we address a significant shortcoming
of Factored E3: namely that it requires an oracle
planner that cannot be feasibly implemented. We
propose an alternative approach that uses a prac-
tical approximate planner, approximate linear pro-
gramming, that maintains desirable properties. Fur-
ther, we develop an exploration strategy that is tar-
geted toward improving the performance of the lin-
ear programming algorithm, rather than an oracle
planner. This leads to a simple exploration strategy
that visits states relevant to tightening the LP solu-
tion, and achieves sample efficiency logarithmic in
the size of the problem description. Our experimen-
tal results show that the targeted approach performs
better than using approximate planning for imple-
menting either Factored E3 or Factored R,,q..

1. Introduction

Research on reinforcement learning has consistently focused
on developing algorithms that effectively manage the explo-
ration/exploitation tradeoff [1, 11] and attempting to scale up
to large real-world problems [8, 7]. Most research in these
directions has focused on the direct value-approximation ap-
proach [4, 5, 25] rather than the indirect model-based ap-
proach, because the model-based approach has not been
amenable to scaling up to large problems [24]. However, two
recent developments in model-based reinforcement learning
and Markov decision process (MDP) planning have created
new opportunities for model-based techniques.

The E? algorithm of Kearn and Singh [15] is the first known
technique for managing the exploration/exploitation tradeoff
that is guaranteed to yield approximately optimal policies
with near-minimal exploration.! This work has been recently
simplified and generalized as R 4. [6].

A parallel development has been significant progress in devel-
oping compact representations for large MDPs. These repre-
sentations scale logarithmically (not linearly) in the size of
the state space; that is, they are polynomial in the size of the
state description. A polynomial size representation is often
thought to be essential to scale up model-based MDP plan-
ning to realistic problems [2]. Of these approaches, the fac-
tored MDP representation developed by Koller and Parr has
proven to be particularly convenient [17, 18, 12]. Combined
with linear value function approximators it allows practically
efficient planning algorithms based on linear programming to
be easily implemented [13, 22].

Both lines of research—exploration/exploitation and compact
representations—have recently been brought together in the
Factored E2 algorithm of Kearns and Koller [14]. This algo-
rithm combines the theoretical exploration/exploitation guar-
antees of 3 with the ability to scale up to large state spaces
afforded by factored MDP representations. However, there is
a shortcoming with the result: it relies on an oracle planning
algorithm that must guarantee approximately optimal plans
for the exploration and exploitation steps. Unfortunately, it is
well known that even approximate planning is an inherently
hard compuational problem in factored MDPs [19, 20], and
it is thus unlikely that the Factored E3 algorithm can ever be
feasibly implemented as is.

The first main contribution of this paper is to investigate
a practical approach to implementing factored versions of
E? and R,,.. by using approximate planning algorithms
while preserving what one can of the theoretical guarantees.
Specifically, we consider approximate linear programming
as a practical planning algorithm, since it can be efficiently
applied to large problems (in factored form) without diffi-
culty [13, 22]. The second contribution is to take this de-
velopment one step further and demonstrate that the explo-
ration/exploitation strategy itself can be tailored to the spe-
cific approximate planning algorithm being used. That is,

That is, E®’s exploration requirements are near-minimal in
terms of how they scale in problem size and approximation accu-
racy, but not not in terms of constant factors.



rather than target the exploration toward every unknown re-
gion of the domain, or toward the unknown regions relevant to
an oracle planner, one can more effectively direct exploration
toward only the domain uncertainties that affect the results
of the approximate planner in a direct way. In fact, below we
show that linear programming offers a particularly elegant av-
enue to identifying relevant uncertainties in the domain and
therefore directing exploration effectively. We have imple-
mented practical factored versions of all these algorithms—
E3, Ryae, and our new relevance directed approach—and
compared them to benchmark strategies on simple domains.
Our experimental results confirm that the directed exploration
scheme yields benefits over the other approaches.

2. Markov decision processes

We first consider the problem of calculating optimal behavior
in a known stochastic domain, which can be formalized as
planning in a Markov Decision Process (MDP). An MDP is
defined as a 4-tuple (X, A, R, P) where X is a finite set of
; A is a set of actions; R is a
reward function R : X x A +— [0, R4z Such that R(x, a)
represents the reward obtained in state x after taking action a;
and P is a Markovian transition model such that P(x’ | x, a)
represents the probability of going from state x to state x’
after taking action a.

A stationary policy = for an MDP is a mapping = : X +—
A, where 7(x) is the action the agent takes in state x. We
assume that the MDP has an infinite horizon and the agent
is interested in maximizing the average reward received per

time step:
i R (x, >>)] ,

where x(*) is the state of the system at time ¢, and the expec-
tation is taken over possible sequences of states. We assume
that for any stationary policy =, the resulting Markov chain
P(x' | x,7(x)) is ergodic and hence the average reward p™
is unique, independent of the starting state [21].
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The optimal policy 7* is characterized by a set of fixed-point
equations

* *

p —i—V(x)—mgx (x,a) —|—va
for all x. Here, p* is the maximum average reward. The
function V(x) can be interpreted as the advantage of starting
in state x rather than a random state chosen according to the
stationary distribution. For any value function V, we can de-
fine the policy obtained by acting greedily relative to V by

Greedy(V)(x) = argmax R(x, a)+7 Z P(x'
Finally, the greedy policy relative to the optimal value func-
tion V* is the optimal policy 7* = Greedy(V*).

There are several algorithms for computing the optimal policy
in average reward MDPs [21]. One particularly convenient

"I x,a)V* ()],

| x,a)V(x).

approach is linear programming which we exploit below. To
formulate an explicit version of the required linear program,
enumerate the states in X as x1,...,xy. Then the variables
for the linear program are given by V1, ..., Vi, where V; rep-
resents V(x;). The linear program is then:

For variables: p,Vi,..., VN ;

Minimize: 0

Subject to: p+Vi>R(xi,a)+ >,
forall x; € X, a € A.

P(x}, | xi,a)Vy,

1)
Here the policy is implicitly represented in the slack variables
of the linear program. That is, for each x; there will be at
least one a for which the corresponding state value constraint
is tight, and this will in fact be an optimal action for x ;.

Overall, the problem of computing optimal policies for given
MDPs raises two important caveats: First, the linear program
in (1) contains a variable V; for each complete state x;. How-
ever, the state space is usually very large in most settings
(exponential in the number of state variables). Second, the
problem assumes full knowledge of the model parameters;
specifically, the transition probabilities and the reward func-
tion. These limitations are major hindrances to the applica-
tion of MDPs to the control of real stochastic systems. We
consider each of these shortcomings in turn.

First, to address the first issue of a large state space, we use
the common approach of considering value function approx-
imations that are compactly represented as a linear combina-
tion of basis functions H = {h1,...,ht}. A linear value
function over H is a function V that can be written as V(x) =
Zle w;h;(x;) for coefficients w = (w1, ..., wy)’. Here
x; is the subset of the state variables that ., depends on.
Given a linear value function representation the linear pro-
gramming approach can be adapted to produce an approxi-
mation to the optimal value function:

For variables: p,ws, ...
Minimize:  p;
Subject to: p+2 _ wihi(x;) >

k
R(xi, a) + 3 POxg | xi,a) 3250 wihy(xp);
forallx; € X,a € A.
@)

This linear program is guaranteed to be feasible for any set
of basis functions. (An analogous linear program was pro-
posed for the discounted infinite horizon case in [23].) In
general, there is no guarantee of the quality of the approxima-
tion Zle w;h; obtained by such approach, but recent work
[9] on the discounted reward case provides some analysis of
the error relative to that of the best possible approximation in
the subspace. This transformation has the effect of reducing
the number of free variables in the linear program to k& + 1,
but the number of constraints remains | X| x |.A|. Fortunately,
using the algorithms of [12, 13, 22] one can exploit the struc-
ture of a factored MDP (see Section 3) to obtain a compact
representation and efficient solution to this linear program.

y Wk 5

The second limitation of the explicit MDP planning approach,
unknown model parameters, has been the focus of extensive



work in the field of reinforcement learning (RL) [24]. Two
recent algorithms, 3 (Explicit Exploit and Explore) [15] and
R,.qz [6], can obtain provably near-optimal performance in
time polynomial in the number of states, among other quan-
tities. Unfortunately, the number of states is usually too large
to be handled explicitly (i.e. exponential) and hence these
methods are not usually practical. Here again one could ex-
ploit structure in a factored MDP to make these algorithms
feasible. Kearns and Koller [14] proposed Factored E3, a
version the £3 algorithm for factored MDPs. In Section 5,
we present this algorithm and, in Section 6, we propose Fac-
tored R4, @ similar extension for the R, algorithm.

3. Factored MDPs

Factored MDPs allow one to exploit problem structure to rep-
resent exponentially large MDPs compactly. The idea of rep-
resenting a large MDP using a factored model was first pro-
posed by Boutilier et al. [3]. Our presentation of factored
MDPs follows that of Koller and Parr [18]. In a factored
MDP, the set of states is described via a set of random vari-
ables X = {Xy,...,X,}, where each X; takes on values
in some finite domain Dom(X;). A state x defines a value
x; € Dom(X;) for each variable X ;. We define a state transi-
tion model 7 using a dynamic Bayesian network (DBN) [10].
Let X; denote a variable at the current time and let X'/ denote
the same variable at the successive step. The transition graph
of a DBN is a two-layer directed acyclic graph G whose
nodesare {X1,...,Xn, X{,..., X, }. We denote the parents
of X/ in the graph by Parents (X/). For simplicity of expo-
sition, we assume that Parents. (X/) C X i.e., all arcs in the
DBN are between variables in consecutive time slices. Each
node X is associated with a conditional probability distribu-
tion (CPD) P, (X | Parents,(X})). The transition probabil-
ity P-(x’ | x) is then defined to be [, P-(z} | u;), where u;
is the value in x of the variables in Parents - (X). We can de-
fine the transition dynamics of an MDP by defining a separate
DBN model 7, = (G, P,) for each action a. ?

Finally, we need to provide a compact representation of the
reward function. We assume that the reward function is fac-
tored additively into a set of localized reward functions, each
of which only depends on a small set of variables. We can
formalize this concept of localized functions:

Definition 3.1 A function f is restricted to a scope
Scope[f] = C C X if f : Dom(C) — IR. Furthermore,
if fisrestrictedto Y andY C Z, we will use f(z) as short-
hand for f(y) where y is the part of the instantiation z that
corresponds to variablesin Y. 1

We can now characterize the concept of local rewards. Let
Rq,..., R, be aset of functions, where each R; is restricted
to variable cluster W,; C {X3,..., X, }. The reward func-
tion for state x is defined tobe _7_, R;(W;) € IR. As with
the transition model, we assume there is a (potentially) differ-
ent decomposition R for each action a.

2In multiagent systems, the action space is exponentially large.
The results presented in this paper can be extended to such systems
by applying the planning algorithm of Guestrin et al. [13].

Factorization allows very large MDPs to be represented com-
pactly. However, we must still address the problem of plan-
ning in these MDPs. One might be tempted to believe that
factored transition dynamics and rewards would result in a
factored value function, which might allow a planner to con-
sider compact value function and policy descriptions. Un-
fortunately, even in factored MDPs, the value function rarely
maintains any internal structure [17].

Koller and Parr [17] suggest that there are many domains
where the value function might be “close” to structured; that
is, well-approximated by a linear combination of functions
where each only refers to a small number of state variables.
More precisely:

Definition 3.2 A factored (linear) value function is a linear
function over the basis h1, . . ., hx, where each h; is restricted
to some subset of variables C;. 1

Value functions of this type have a long history in the area of
multi-attribute utility theory [16].

4. Solving factored MDPswith linear programming

Factored value functions provide the key to performing ef-
ficient computations over the exponential-sized state spaces
encountered in factored MDPs [17, 18, 12, 13, 22]. The key
insight is that restricted domain functions (including our ba-
sis functions) allow for certain operations to be implemented
very efficiently. These basic operations can be combined to
create various practical algorithms. In this section, we briefly
review how the linear programming approach outlined in (2)
can be solved efficiently when the MDP is represented by a
factored model [13, 22].

The first key operation is the computation of the backprojec-
tion g; of a basis function h; through the DBN 7, of action a:

gi(x) =Y P | x, a)hi(x)

The expectation is a summation over an exponential num-
ber of future states. As shown in [17], this can be simpli-
fied substantially. Recall our assumption that the scope of
each h; is only a small subset of variables C;. Then, the
scope of g; is T',(C;) = Ux;ec; Parents,, (X7). Specifi-
cally, g¢(x) = > P(c; | z;)hi(c}), where z; is a value
of I',(C;). Note that the cost of the computation depends
linearly on |Dom(T",(C;))|, which depends on C; (the scope
of h;) and on the complexity of the process dynamics.

Once the backprojections for the basis functions are pre-
computed, we can write the constraints for (2) as:

k r
p+ D wilhi(x) —gi(x)] = YR, Q)

for all x, a. Although, we still have exponentially many con-
straints, the functions h;, g; and R¢ all have restricted scope
and thus depend only on small sets of variables. As demon-
strated by Guestrin et al. [12, 13], these constraints can be



represented compactly by an exponentially smaller set of con-
straints and LP variables using an algorithm resembling vari-
able elimination. Similarly, Schuurmans and Patrascu [22]
showed that these constraint sets can be built incrementally
using an efficient constraint generation scheme.

Unfortunately, as discussed in Section 2, it is not currently
known how to obtain strong formal guarantees of the qual-
ity of the policies obtained by approximate linear program-
ming. Nonetheless, as demonstrated in [13, 22] these linear
programs are very efficient and generate very reasonable poli-
cies. Currently, this approach seems to be the most appropri-
ate for obtaining linear approximations for factored MDPs.

5. Factored E3

Thus far, we have described a representation and an algorithm
for planning in MDPs with exponentially large state spaces.
Although, we have addressed our first concern about the stan-
dard MDP approach from Section 2, i.e., scaling up, we have
not addressed the second concern: unknown model parame-
ters. Clearly, estimating the unknown parameters in a DBN
model of a factored MDP is easily achieved by a straight-
forward maximum likelihood or maximum a posteriori ap-
proach. However, the difficult issue is how to explore the
environment efficiently to acquire the observations necessary
to form sufficient estimates of the domain quantities.

Kearns and Koller [14] proposed the Factored E?2 algorithm
to tackle this issue. Factored E? is a version of Kearns and
Singh’s E? algorithm [15] for factored MDPs. They simplify
the problem by considering only the case where the DBN
structure is known, and only the parameters of the MDP have
to be estimated. We maintain this assumption in this paper.

The intent behind E3 is to strike an effective balance between
exploring uncertain regions of the state space to gather infor-
mation, and exploiting knowledge of well-explored regions of
the state space to optimize reward. Like E3, Factored E? dis-
tinguishes “known” from “uncertain” states and employs two
significant planning steps: calculating a policy that exploits
the known part of the state space to maximize average reward
(planning to exploit); and calculating a policy that leaves the
known space to enter uncertain regions with high probability
(planning to explore). If these planning algorithms are able
to achieve provably near-optimal policies for their respective
problems, Factored E3 is guaranteed to approximate the op-
timal policy in reasonable time. Unfortunately, given a DBN
representation of an MDP, it is an inherently hard problem to
produce an approximately optimal policy [19, 20].

To implement a feasible version of Factored E2 we employ
an approximate planning strategy based on the linear pro-
gramming approach outlined above. This linear program only
gives an upper bound on the actual quality of the policies it
produces. Thus a guaranteed decision between exploration
and exploitation of the form required by [14, 15] cannot be
achieved. Nevertheless, a reasonable decision can be made
by comparing the objectives of the two linear programs and
favoring exploration, unless its objective is too small.

6. Factored R,z

Recently, Brafman and Tennenholtz [6] proposed the R..q.
algorithm. As with E3, this algorithm is guaranteed to yield
a near-optimal policy for an MDP in polynomial time. How-
ever, the R,,.. algorithm is much simpler than E3. Rather
than explicitly deciding whether to exploit or explore, R a0z
makes the decision implicitly. The agent is continually ex-
ploiting or exploring and, in polynomial time, it is guaranteed
to follow a near-optimal policy.

Following the generalization of E3 to Factored E2, one can
also implement an approximate factored form of R ... using
the linear programming approach. The weak upper bound
that the linear program gives on the policy value p™ prevents
the implicit explore or exploit theorem from being provable
the same way as in [6]. However, Factored R,,,. can be
directly implemented by using the linear program simply to
provide an approximation to the required planning algorithm.

7. Algorithm-directed factored RL

Unfortunately, Factored E2 and Factored R, suffer from
three strong limitations: First, the concept of known-state is
quite limiting. A state is not considered during planning until
it is known. On the other hand, the decision of when a state
becomes known depends on a loose bound on the error of
the probability estimate at that state. Thus, many visits are
required before a state becomes relevant to the plan.

Second, both Factored E3 and Factored R,,.. depend on the
mixing time 7" of the asymptotically optimal policy. This
quantity is central for deciding the number steps that the cur-
rent (exploration) policy should be followed. Although, both
E? and R,,.. can avoid knowing the horizon time by con-
sidering putative horizons T' = 1, 2, 3, . . ., thereby maintain-
ing polynomial running time, this issue becomes much more
difficult in the factored case. In particular, Factored E?3 re-
quires the numeric value of the bound on the sub-optimality
of the current policy for deciding when a particular T" should
be abandoned and the next should be tried. As discussed in
Section 2, it is unlikely that such bounds would be available
in practice, thus, this decision becomes particularly hard.

Third and most important, the theoretical guarantees of Fac-
tored E3 and Factored R,,.. both depend on the existence
of a planning algorithm for factored MDPs that can generate
a compactly represented p-optimal policy. Currently, to the
best of our knowledge, there is no known algorithm that can
achieve such a bound efficiently for general factored MDPs.
Furthermore, we conjecture that, for sufficiently small 1, such
an algorithm would require an exponential amount of space
to represent the policy. Unfortunately, without a planning al-
gorithm of this type, neither Factored E2 nor Factored R,,q.
maintains their strong theoretical guarantees. In addition, the
stopping criterion for Factored E3 depends fundamentally on
the existence of such approximation algorithm. Thus, it be-
comes difficult to apply “Exploit or Explore” Lemma of [14].

In this section, we propose a more “pragmatic” approach to
reinforcement learning for factored MDPs. Rather than learn-



ing the full factored model by assuming a strong approxi-
mation algorithm, we will adopt the linear programming ap-
proach for factored MDPs (Section 4) as our planning algo-
rithm, and only learn the critical parts of the model needed
for this algorithm. Thus, we call our approach algorithm-
directed factored reinforcement learning.

7.1 Optimality criterion

In our approach, rather than attempting to guarantee a near-
optimal approximation to the optimal value function, we will
assume that the user is trying to obtain a linear approximation
using the following linear programming approach:

Variables:  p,wq, ...
Minimize: p;
Subject to:  p + Z?:l wjih;(x;) >

y Wk 5

k
R(xi,a) + Zx; P(x; | xi,q) Zj:l wjh;(x});

Vx; € X,a € A
w; >0; j=1,...,k

(4)
Furthermore, we will assume that basis functions are non-
negative and bounded: H,,q, > hj(x) > 0,Vj,x. Without
loss of generality and for simplicity of presentation, we will
assume H,,.. = 1. Similarly, choosing positive weights does
not necessarily make this LP different from the one in (2). In
particular, if our basis function choice is appropriate (cover-
ing subset of variables), the solution of the two LPs are guar-
anteed to be equivalent.

Given a set of basis functions hi,...,h; and the true
transition probabilities P(x | x’,a) and reward functions
R¢(x), one could apply the LP-based approximation algo-
rithm from (4). This procedure would yield an approximate
value function and an estimate of the average reward, given
by the LP objective, which we denote by the exact-model av-
erage reward estimate p;;,. Note that this is not necessarily
the average reward of the policy obtained by the LP approach,
but it is the best LP objective achievable with the chosen set
of basis functions given that the MDP model is known.

Unfortunately, in the context of reinforcement learning, the
transition probabilities P(x | x’,a) and reward functions
R?(x) are not known. For some estimate P(x | x’,a) and
R¢(x) to the model parameters, we define the algorithm-
directed error as:

where p is the estimate of the average reward obtained by ap-
plying the LP-based approximation algorithm with the model

parameters P(x | x’,a) and ﬁg(x). In other words, it is the
objective value of the linear program when the approximate
model parameters are used in place of the true ones.

We can now define the optimality measure of our approach:

Definition 7.1 For some ¢ > 0, define an e-optimal
algorithm-directed approximation as a model P(x | x,a)

and R (x) which yields | o}, — ,3‘ <e 1

In other words, given that approximate linear programming
is to be used as the planning algorithm, we wish to estimate
the parameters of the factored MDP so that the LP objec-
tive obtained with the approximate model is close to the one
achieved with the true model.

7.2 Upper and lower bound LPs

In the first step of our algorithm, we propose an approach
for generating upper and lower bounds on the exact-model
average reward estimate pj ; specifically p and p such that:

P=pp=p -

For this purpose, we will first need upper and lower bounds
on the reward functions:

R/(x) > RY(x) > R%x), Vi x,a.

To maintain these bounds, we can start with the trivial bounds
[0, Rmaz] and update the values as the rewards are observed
for various states.

Now consider the other part of the constraint, the backprojec-
tion of each basis h;:

gi(x) = Y PO |xa)hi(x).

This operation is simply an expectation over a small set of
state variables x’ that yields a backprojected basis function
whose scope is restricted to B¢ = I', (C;). We would like to
maintain upper and lower bounds on the backprojections:

g; (bf) = gj'(b}) > g?(b}) ;

where b¢ is an assignment to B¢. We can estimate these
upper and lower bounds by doing a simple empirical mean
computation. Consider a transition visited along the explo-
ration path (x,a,x’). If the starting state x for this transi-
tion is consistent with b¢, then it can be used as a sample for
the estimation of the backprojection g¢. More formally, let
(x,a, x’>bg be the set of npa > 0 such transitions.® Also, let
the mean backprojection be given by:

We can now define upper and lower bounds which will hold
with high probability by:

g; (b7) = gi (bf)+e(nve); and gf(b7) = gi' (bi)—e(nbe ) ;

()
where the error parameter (nq ) is given by:
1 2k |A| Bae
e(npg) = \/ 1Ly 2B (6)
‘ Npe Y

for any v > 0, k basis functions and maximum backprojec-
tion scope size B4, = max,; |B?|. It is important to note

SWhen npe = 0 trivial upper and lower bounds should be used.

b



here that the sample complexity depends only logarithmically
on the number of basis functions, number of actions and the
size of the domain of backprojections; that is, it is only loga-
rithmic in the size of the “problem description”.

We can now obtain the desired upper and lower bounds:

Proposition 7.2 Let pj, be the average reward estimate ob-
tained by solving the LP in (4) using the true model param-
eters P(x | x',a) and R¢(x). Furthermore, for any v > 0,
let p be the average reward estimate by solving the LP in (4)
using the estimated upper bound backprojections g¢ and re-
wards R; (x); and let p be the estimate obtained using g ¢ and
Rf(x). Then p > p;, > p with probability at least 1 — .

Proof: First, we can prove using an application of Hoeffd-
ing’s inequality that g7 (b{") and ¢ (b{) as defined in Eq. (5)
will be upper and lower bounds, respectively, on the true
backprojection value g¢(b¢) for some assignment b¢ with
probability at least 1 — m. Thus, the upper and lower
bounds will hold for all assignments with probability at least
1—~ by the union bound, since there are k |.A| different back-
projections with at most B,,,,. assignments each.

The remainder of the proof assumes that the upper and lower
bounds hold, thus arguments are true with high probabil-
ity. Consider the lower bound case. Using g‘;(x) in place

of g%(x) makes the right side of the constraints in the LP
in (4) smaller, and therefore the solution to the LP with the
true model is still feasible. Thus, using the same set of basis
weights as the ones in the solution to the true model, we can
decrease the objective function, obtaining a smaller estimate
of the average reward.

On the other hand, consider the upper bound case, where
g2 (x) replaces g¢(x). Here, the right side of the constraints
in the LP in (4) becomes larger. Thus, the solution to the LP
with the true model may no longer be feasible. Which means
that the upper bound objective can be no smaller than p - .

Similar reasoning proves the influence of the upper and lower
bounds on the reward. 1

7.3 LP algorithm-directed exploration

By solving the upper and lower bound LPs in Section 7.2, we
obtain a well-defined stopping criterion: For any £ > 0, if
p — p < &, we must have obtained an e-optimal algorithm-
directed approximation.

In addition to the stopping criterion, these upper and lower
bound LPs give us information about which states need to be
explored to make the bounds tighter. Note that at the solution
point of the LP in (4), for a problem with % basis functions,
only k£ + 1 constraints will be active. These constraints cor-
respond to k& + 1 critical state-action (x, a) pairs for which
the inequality constraints become equality constraints. Now,
consider the upper and lower bound LPs. Let us define active
and active as the set of active state-action pairs in the upper
and lower bound LPs, respectively. Intuitively, these are the
critical states that need to be explored, as we now illustrate.

Consider an MDP model where some states-action pairs hap-
pen to have precise backprojection and reward values, but
other state-action pairs are imprecise. More formally let:

g; (x) = gi(x) Vi; ,
{(X’C‘)’ and R; (x) = RY(x), Vi }
{(x,a) | (x,a) & Precise}.

It is easy to show that if all of the active state-action pairs hap-
pen to be precise, then we have found an optimal algorithm-
directed approximation:

Precise =

Imprecise =

Proposition 7.3 Let active be the set of active state-action
pairs in the upper bound LP; and let Precise be the set of
states with precise backprojections and rewards. If active C
Precise. Then p = pj, with probability at least 1 — ~.

Proof: First note that with probability at least 1 — ~, for
(x,a) € Precise, we have that:

g¢ (%) = g (x) = g{ (x); Vi.
Thus, the constraints corresponding to state-action pairs in

Precise are equivalent in the upper bound LP, the lower bound
LP, and the LP with the true transition probabilities.

In linear programs, one can remove all constraints other
than the active constraints and the objective will remain un-
changed. Furthermore, one can add new linear constraints to
the linear program and the objective cannot decrease.

Now, consider the upper bound LP with active constraints
given by state-action pairs in active. Let —active denote the
state-action pairs for the other constraints. Create a trans-
formed LP by substituting the constraints for state-action
pairs in —active by their corresponding constraints in the LP
with the true model. By the properties of linear programs,
this substitution cannot decrease the objective. Thus, the new
objective will be at least p.

On the other hand, with probability at least 1 — ~, the con-
straints in the transformed LP will be the same as the ones in
the LP with the true model, as all the states in active are pre-
cise, by the assumption of the theorem. Thus, the objective
of the transformed LP will be pj,, which means that p < pj..

Recall from Proposition 7.2 that p > pj . Thus, we conclude
thatp = pj,. 1

Proposition 7.3 suggests that one should direct exploration
toward active LP states, because precise estimates on these
states are sufficient to obtain an optimal approximation. Of
course, the bounds will never be precise in reality, and one
needs to use LP sensitivity analysis to determine error bars
for g2(x) and R?(x) which ensure p — p < ¢ given only
nearly-precise estimates. Nevertheless, the intuition behind
Proposition 7.3 provides sufficient motivation for our algo-
rithm.

7.4 Algorithm

We can now describe our algorithm-directed reinforcement
learning approach for factored MDPs. As in Factored E3, we



assume that the structure of the factored MDP is given, but
the parameters are unknown.

During execution, we maintain upper and lower bounds on
the backprojections g¢ and on the reward function R¢(x). As
we visit state-action pairs, we update these functions.

After solving the upper and lower bound LPs, we can ver-
ify whether the stopping criterion has been reached. If not,
we collect the active state-action pairs in the upper and lower
bound LPs:

ToVisit = active | ] active.

As outlined in Section 7.3, visiting states in ToVisit is of fun-
damental importance in improving our LP approximation.

We can now define a factored MDP where the agent will
receive rewards for exploring the states in ToVisit. In this
MDP, the reward function will be decomposed according to
the structure of the DBN. Specifically, for each (x ), a9)) €
ToVisit, for each state variable X;, we define a local re-

ward function R;{;” (x) with scope restricted to W, ,; =

Parents,  (X}). The reward function R;ﬁ(jj) (x) takes value
1 if the state x is consistent with the assignment to the vari-
ables of W, ; in xU) and 0 otherwise. In other words, the
agent receives a reward for visiting the state that corresponds
to the active constraints in the upper and lower bounds LPs.
Note that, if a particular backprojection estimate g¢(b?) is
sufficiently precise, we should not necessarily add a reward
for the state variables in b¢ to avoid unnecessary exploration.

This construction yields a new, factored, exploration MDP. A
policy for this MDP will guide the agent toward relevant un-
known states. To obtain an exploration policy, we can again
attempt to apply the LP approach in (4). However, the tran-
sition probabilities for this exploration MDP are not known
precisely (as for the original MDP) so rather than applying
the LP in (4) directly, we should apply the same upper and
lower bound LPs strategy as in the original problem. If these
have sufficiently tight upper and lower bounds, then we have
a satisfactory exploration strategy. Otherwise, we can add the
critical constraints of these new LPs to the ToVisit set and re-
peat the process. Note that after every recursion, states are
added to the ToVisit set, but no states are deleted. Thus, if the
set is the same after two successive recursions, then we know
we cannot yet obtain a satisfactory exploration policy and
have to explore by other means. This auxiliary exploration
can be performed either with our current best approximation
to the exploration policy or with a standard exploration strat-
egy, such as balanced wandering.

8. Experimental results

To assess the quality of our algorithm we compare it with Fac-
tored E3 and Factored R, on three problems. Two of the
problems consider a simple computer network administrator
domain that has been investigated previously [12, 22]. The
third problem we consider is a resource allocation problem.*

4The network administrator problem has binary state variables
which correspond to the status of computers on a network. Ma-

Cycle Problem, N = 4, 10, 16

6 8 9 10
log(t)

Figure 1. Policy quality on “cycle” network problem, N computers.

Figs. 1-3 report our results. For the network domains, each
exploration strategy was run 20 times. The graphs plot the
average reward value p, obtained by the policies produced,
m, as a function of exploration time ¢. Specifically, at given
times, the current policy was extracted and separately eval-
uated to ascertain its asymptotic rate of reward p. (These
evaluations were conducted by large auxiliary Monte Carlo
runs.) Plotted also is the average reward obtained by an ideal
LP planner that uses the exact MDP model. Figs. 1-2 show
that the algorithm-directed technique exhibits superior behav-
ior for smaller network problems. This is partially due to
its switching from a “wander” mode to an “explore” as its
statistics allow it to do so earlier than E3 or R,,,,... However,
the advantage becomes less predominant on larger problems
(V. = 16). Fig. 3 shows preliminary results on the resource
problem (but using fewer runs). This problem has a large ac-
tion space (corresponding to ways of allocating resources to
problems) which causes the methods to take longer to con-
verge. The results show good behavior for the algorithm-
directed method. The error bars (not shown) are still loose,
and more runs need to be completed. Nevertheless, the trends
appear to be positive.

9. Conclusions

In this paper, we presented a new exploration/exploitation
strategy for model-based reinforcement learning in factored

chines crash with an increased probability if an ancestor is down.
Actions are to reboot at most one machine per time step. Reward
1 is obtained for each machine that is up, plus an extra reward for
a designated server machine. The transition probabilities for a ma-
chine depend on its status and the status of its direct ancestors in
the directed network. In the resource allocation problem, there are
tasks which become active spontaneously and have to be serviced
by choosing resources from an available pool. Any resource can
be applied to any task, and applying additional resources increases
the probability of completing the task. However, once resources are
depleted they are only regenerated at a slow random rate.



ThreeLegs Problem, N = 7, 10, 16
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Figure 2. Policy quality on “3legs” network problem, N computers.

Resource Problem, 4 Tasks, 2 Resources
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Figure 3. Resource allocation problem; 4 tasks, 2 resources.

MDPs. This strategy addresses strong practical limitations of
the Factored E2 algorithm [14]: First, rather than assuming
the existence of an oracle that can perform near-optimal plan-
ning for factored MDPs, we tailor our exploration towards the
particular planning algorithm used, approximate linear pro-
gramming, which recently has been shown to scale to very
large problems [13, 22]. By not targeting exploration toward
every unknown region of the domain, nor toward unknown
regions relevant to an oracle planner, our algorithm can more
effectively direct exploration only toward the domain uncer-
tainties that affect the results of the approximate planner di-
rectly. Furthermore, our strategy makes better use of the data
collected. Rather than labeling states as known or unknown
and only using transition probabilities for known states, as in
Factored 3, we incorporate the confidence intervals of the
estimates of the model parameters onto the linear program-
ming approach. These estimates have good sample efficiency,
i.e., the number of samples needed for a given confidence
level depends logarithmically in the number of actions, ba-
sis functions and the domain size of the backprojected basis
functions. In contrast to Factored £3, which needs to use
hard thresholds to decide when a state becomes known, we
can dynamically decide which confidence intervals need to
be tightened. Our experimental results on benchmark prob-
lems demonstrate the effectiveness of this algorithm-directed
exploration strategy. We believe that this new practical ap-
proach to model-based reinforcement learning will further
the applicability of factored MDP models and algorithms to
large-scale real-world problems.
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