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Abstract

We describe a simple improvement to n-
gram language models where we estimate
the distribution over closed-class (func-
tion) words separately from the condi-
tional distribution of open-class words
given function words. In English, func-
tion words account for about 30% of
written language, and also form a nat-
ural skeleton for most sentences. By fac-
toring a language model into a function
word model and a conditional model over
open-class words given function words,
we largely avoid the problem of sparse
training data in the first phase, and lo-
calize the need for sophisticated smooth-
ing techniques primarily to the second
conditional model. We test our fac-
tored approach on the Brown and Wall
Street Journal corpora and observe a
3.5% to 25.2% improvement in perplex-
ity over standard methods, depending
on the particular smoothing method and
test set used. Compared to other pro-
posals for improving n-gram language
models, our factorization has the ad-
vantage of inherent simplicity and effi-
ciency, and improves generalization be-
tween data sets.

1 Introduction

Statistical language modeling is concerned with
determining the probability of naturally occur-
ring word sequences in a language. Tradition-
ally, the dominant motivation for language mod-
eling has come from speech recognition. However,
statistical language models have recently become
more widely used in many other application ar-
eas, such as information retrieval, machine trans-
lation, optical character recognition, spelling cor-
rection, document classification, information ex-
traction, and bioinformatics.

The goal of language modeling is to predict
the probability of natural word sequences, s =
wiws...wp; or more simply, to put high probabil-
ity on word sequences that actually occur (and low
probability on word sequences that do not occur).
Given a word sequence wiws...wy to be used as a
test corpus, the quality of a language model can be
measured by the empirical perplexity and entropy
scores on this corpus (Bahl et al., 1983)
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The goal is to obtain small values of these mea-
sures.

The simplest and most successful basis for lan-
guage modeling is the n-gram model. Note that
by the chain rule of probability we can write the
probability of any word sequence as

N
Pr(wiwsz...wn) = HPr(wi|w1...wi_1) (1)
i=1

An n-gram model approximates this probability
by assuming that the only words relevant to pre-
dicting Pr(w;|wy...w;_1) are the previous n — 1
words; that is, it assumes

Pr(w;|wy..w;—1) = Pr(w;|w;—nt1-.-wi_1)

A straightforward maximum likelihood estimate
of n-gram probabilities from a corpus is given by
the observed frequency

. #(wi—ny1..wi) (2)

Pr(wi|wi—n+1"‘wi_1) - #(w +1---W4 1)
il Wi

where #(.) is the number of occurrences of a spec-
ified gram in the training corpus. Although one
could attempt to use these simple n-gram models
to capture long range dependencies in language,
attempting to do so directly immediately creates
sparse data problems. Using grams of length up to



n entails estimating the probability of W™ events,
where W is the size of the word vocabulary. This
quickly overwhelms modern computational and
data resources for even modest choices of n (be-
yond 3 to 6). Also, because of the heavy tailed na-
ture of language (i.e. Zipf’s law) one is likely to en-
counter novel n-grams that were never witnessed
during training in any test corpus, and therefore
some mechanism for assigning non-zero probabil-
ity to novel n-grams is a central and unavoidable
issue in statistical language modeling.

The standard approach to smoothing probabil-
ity estimates to cope with sparse data problems
(and to cope with potentially missing n-grams) is
to use some sort of back-off or interpolated estima-
tor (Katz, 1987; Ney et al., 1994; Chen and Good-
man, 1998; Witten and Bell, 1991). The baseline
model used in this paper is a discounted back-off
n-gram model, which is defined as

Pr(wi|wi—nt1...w5-1)

pr(wi|wi_n+1...wi_1),
if #(wi—py1...w;) >0
Bwi—pnt1.-wi—1) X Pr(w;|wi—pi2...wi_1),
otherwise
(3)

where
N discount #(w;—p41...w;)

Pr(w;|wi—pnq1...wi_1) =

and B(w;—p41-.-w;_1) is a normalization constant.

Many sophisticated language models have been
proposed to improve this basic back-off n-gram
model. These models include link grammars (Laf-
ferty et al., 1992), sentence mixtures (Tyer, 1999),
decision trees, clustering (Brown et al., 1992),
caching (Jelinek et al., 1991; Clarkson, 1999),
skipping models (Rosenfeld, 1994; Siu and Osten-
dorf, 2000), maximum entropy models (Rosenfeld,
1994; Khudanpur and Wu, 2000), latent seman-
tic analysis (Bellegarda, 2000), structured lan-
guage models (Chelba and Jelinek, 1998; Char-
niak, 2001), neural network models (Bengio et
al., 2001), and web-data improved trigrams (Zhu
and Rosenfeld, 2001). The two references (Rosen-
feld, 2000; Goodman, 2000) provide a thorough
overview and systematic investigation of current
techniques. Most of these methods attack the
problem of coping with sparse training data di-
rectly, although some techniques also focus on im-
proving the basic model by capturing longer range
dependencies in language. Goodman (2000) shows
that most of these techniques improve perplexity
of the baseline n-gram model by a factor of 10%-

 discount #(w;_py1...w;_1)

26% individually, but that a sophisticated combi-
nation of a few techniques can achieve a state-of-
the-art model that obtains a 50% perplexity re-
duction (1 bit entropy reduction) over the stan-
dard baseline.

In the remainder of the paper, we present a sur-
prisingly simple extension to the basic n-gram lan-
guage model that incorporates a trivial linguistic
notion, introduces no new statistical ideas, and
yet achieves comparable perplexity reductions to
the complex extensions mentioned above. Our ap-
proach is far simpler than other approaches, and
entails almost no computational overhead over the
basic smoothed n-gram model itself.

2 A closed-class/open-class
factorization

Although words fall into many parts of speech cat-
egories, the categories themselves can be divided
into two types, which are commonly referred to as
closed-class and open-class words (Bradley, 1978).
Closed-class words comprise the function words
in a language, and are called closed-class because
new words are rarely added to these categories.
For example, the standard closed-class categories
include prepositions, articles, pronouns, conjunc-
tions and wh-words, which comprise a small set of
distinct words in natural language that stay rela-
tively fixed over time. By contrast, the open-class
words—nouns, verbs, adjectives and adverbs—
comprise a vastly larger portion of the vocabulary
that is subject to constant change as new words
get introduced and old words fall into disuse.

In human languages, the closed-class words play
a distinct, syntactic role from open-class words.
One way of viewing closed-class words is that they
reveal the skeletal structure of language, and do
so somewhat independently of open-class words.
In fact, psychological research has suggested that
the closed and open lexicons are accessed via dif-
ferent mechanisms in human language processing
(Bradley, 1978; Herron, 1998). The difference be-
tween these types of words is also revealed in re-
search on information retrieval, which almost uni-
versally remove closed-class words (stop words)
from processing models because these words say
little about the topic of a document. However, in
language modeling the closed-class words cannot
be simply ignored because they must be accounted
for in the probabilistic predictions.

From the perspective of language modeling,
the most important difference between these two
classes of words is the relative sizes of each set, and
the relative frequencies with which each of their
members occur. Clearly, the closed-class words



comprise a much smaller set of distinct words
than the set of all open-class words, and yet in
natural language closed-class words occur nearly
as often as open-class words. For example, in
the Brown corpus there are 47,703 distinct words
in the vocabulary, but only 172 distinct closed-
class words. Among the 1,171,008 words in the
corpus, 397,146 of these are closed-class words,
which implies that the average frequency of closed-
class words is about 142 times that of open-class
words. Additionally, the average distance between
two closed-class words in the Brown corpus is 1.9
words.

Based on these facts, we propose a language
model that distinguishes between closed- and
open-class words and attempts to explicitly ex-
ploit their differences. To do so, we first build
an m-gram model for closed-class words that ig-
nores the open-class words in the corpus. Once
constructed, we then build a second (conditional)
n-gram model for the open-class words that de-
pends also on the closed-class words. Although
this sounds simple minded, a closed-class word
model that does not depend on open-class words
allows one to achieve much better statistical esti-
mates, even if this compromises the potential pre-
dictive power of using open-class words. Our ex-
perimental results below verify that this tradeoff
nevertheless works on our favor. Interestingly, the
advantage comes not only from the raw frequency
of closed-class words, but also from their internal
predictive coherence.

The specific m-gram model we use for closed-
class words predicts the probability of the next
closed-class word conditioned only on the previ-
ous m — 1 closed-class words, which can be easily
identified from the text. We then build a n-gram
model for open-class words that predicts the prob-
ability of the next open-class word conditioned on
the previous n — 1 words, including both closed-
class and open-class words. In essence, we esti-
mate the distribution over open-class words using
completely standard n-gram modeling techniques,
but train the m-gram model for closed-class words
by first extracting a skeleton corpus, S¢, consist-
ing of only the closed-class words from the given
training corpus S.

To illustrate how our factored lan-

guage model works in detail, consider
the following hypothetical word sequence
S = €1011012013€2021022€3031€4041042¢5, Where

¢ denotes a closed-class word and o denotes
an open-class word. Here, the skeleton of the
sequence is S¢ = cycaczeqcs. First, we train a
standard m-gram model for the closed-class words

Input Training corpus S

—

Extract Skeleton corpus Sc

|

Train m-gram model
for closed words on Sc

Train n-gram model
for open wordson S

Evaluate perplexity on test corpus with Equation 4

Figure 1: Training procedure for the closed/open
m/n-gram word model

on S¢, and then train a standard n-gram model
for the open-class words on all of S. We call
the resulting combination a factored m/n-gram
closed/open word model. Given this model the
probability of a new test sequence s = wyws...wy
can be computed by

N
Pr(s) = HPr(wi|w1...wi_1)
i=1
where
Pr(w;|w;y...wi—1) =

Pr(w;|skeleton of w;_,4o...w;_1)

if w; is a closed class word
Pr(w;|wi—ng1...wi—1) X a(Wi—py1...Wi—1)

if w; is an open class word

(4)

and a(w;—p41...w;—1) is a normalization constant
such that

a(Wi—py1---Wi—1) =

B>

z € closed words

PAr(J:|Skelet0n of wi_py2...w;i_1)

1— Z pr(r|wi_n+2...wi_1)

z € closed words

(This ensures that the mass assigned to open-class
words given w;_,41...w;_1 is the same as the mass
assigned given its skeleton.) The overall training
regime for an m/n-gram closed/open word model
is illustrated in Figure 1.

Although this extension to the standard n-gram
language model is in some sense trivial, it nev-
ertheless incorporates a small piece of concrete



linguistic knowledge. What is more important is
that this seemingly trivial extension gives a sur-
prisingly significant and robust improvement to
basic n-gram models with no real additional ef-
fort conceptually or computationally.

3 Experiments

To evaluate our factored approach to language
modeling we conducted experiments on two large
data sets: the Brown corpus (105,210 sentences,
1,171,008 words, 47,703 unique words) and the
Wall Street Journal corpus (47,589 sentences,
1,232,350 words, 44,516 unique words). In each
case, we converted the entire corpus to lower case
text and then randomly selected 5000 sentences to
serve as test examples. Specifically, we randomly
selected 5000 sentences from the Brown corpus to
serve as a test corpus, B1, and used the remainder
of the corpus, B2, to train the language models.
Similarly, we randomly selected 5000 sentences
from the WSJ to serve as a test corpus, WSJ1,
and used the remainder, WSJ2, for training.

To build a lexicon of closed-class words we au-
tomatically extracted all words that were given
the part of speech tags DT, CC, IN, PRP, PRP$,
TO, WDT, WP$, WRB, and WP in the Penn
Treebank-3 tagged version of the Brown corpus.
These words consist of all the prepositions, ar-
ticles, pronouns, conjunctions, and wh-words oc-
curring in the corpus. The final list of closed-class
words had 172 distinct entries.

With the two training corpora we ran two ex-
periments. First, we trained our factored language
model on the training set B2 extracted from the
Brown corpus, and tested this model on both test
sets Bl and WSJ1 respectively. We then repeated
the experiment by training on the training set
WSJ2 extracted from the WSJ corpus, and tested
this model on both test sets (Bl and WSJ1) as
well. The following two subsections report the re-
sults of these two experiments respectively.

3.1 Training on the Brown corpus

To establish a baseline, we first report the results
of using traditional n-gram models trained on the
sentences in B2 and evaluated on the sentences in
B1 and WSJ1, but employing different smoothing
(discounting) techniques (Table 1). The numbers
in the table are the perplexity/entropy scores ob-
tained on the two test corpora.

Table 2 shows the results obtained by using the
factored m/n-gram closed/open word model de-
scribed in the previous section. Table 3 shows
the improvement of this factored model over the
traditional n-gram approach, where for each dis-

Discounting B1 WSJ1
Absolute 367.21/8.5204 700.75/9.4527
342.87/8.4208 608.17/9.4474
353.13/8.4641 711.13/9.4739
Linear 407.28/8.8718 773.68/9.5955

409.28/8.6790

808.72/9.6590

426.82/8.7374

826.90/9.6916

Good-Turing

362.82/8.5030

692.16/9.4349

339.26/8.4083

688.18/9.4266

350.33/8.4526

701.86/9.4550

Witten-Bell

377.04/8.5580

718.98/9.4857

370.65/8.5339

783.47/9.6137

N S ST N IS YN O ] N ORI =)

392.37/8.6160

827.87/9.6932

Table 1: Baseline n-gram model trained on the
Brown Corpus

counting technique the improvement is calculated
by comparing the best standard n-gram model to
the best m/n-gram closed/open model (shown in

boldface in Tables 1 and 2).

Discounting m/n B1 WSJ1

Absolute 2/2 644.72/9.3325 1199.79/10.2285
3/2 656.83/9.3593 1224.62/10.2581

2/3 322.84/8.3347 651.35/9.3473

3/3 328.91/8.3615 664.83/9.3768

2/4 307.11/8.2828 626.72/9.2916
2/5 308.19/8.2677 825.68/9.2893
Linear 2/2 687.40/9.4250 1284.40/10.3268
3/2 721.16/9.4941 1343.68/10.3919

273 354.07/8.4715 708.00/9.4676

3/3 372.41/8.5407 740.67/9.5326

274 334.70/8.3867 674.73/9.3981
2/5 334.68/8.3868 871.40/9.3910
Good-Turing | 2/2 639.01/9.3217 1188.68/10.2151
3/2 650.28/9.3449 1210.92/10.2418

2/3 319.84/8.3212 642.76/9.3281

3/3 325.03/8.3444 654.78/9.3548

2/4 303.87/8.2473 616.68/9.2683

2/5 304.65/8.2510 815.03/9.2845
Witten-Bell 2/2 643.17/9.3290 1203.13/10.2325
3/2 655.35/9.3561 1228.50/10.2626
2/3 331.77/8.3740 692.07/9.4847

3/3 338.06/8.4011 706.66/9.4648

2/4 329.36/8.3835 702.99/9.4573

2/5 335.17/8.3887 712.81/9.4773

Table 2: Factored closed/open
trained on the Brown Corpus

m/n-gram model

Discounting B1 WSJ1
Absolute 10.4% (0.1580) | 10.4% (0.1581)
Tinear 17.8% (0.2852) | 18.3% (0.2054)

Good-Turing | 10.4% (0.1590) | 10.6% (0.1622)

Witten-Bell | 11.1% (0.1704) | 8.5% (0.0510)

Table 3: Perplexity (entropy) improvement when
trained on the Brown Corpus

These results show that a significant improve-
ment in perplexity is achieved regardless of the
type of smoothing employed and regardless of the
corpus used for testing. The largest perplexity
improvement came when using linear discounting,
which was the weakest of the smoothing methods.
Here the reduction was 17.8% (0.2852 bits en-
tropy) on the Brown test corpus B1, and 13.3%
(0.2054 bits entropy) on WSJ1. However, the



simple closed/open factorization still led to im-
proved performance even when considering the
best smoothing method, which was Good-Turing
smoothing in this case. In this case the perplexity
reduction was still 10.4% (0.1590 bits entropy)
on the Brown test corpus B1, and 10.6% (0.1622
bits entropy) on the WSJ1.

3.2 Training on the WSJ corpus

Qualitatively similar results are obtained when
training on the WSJ corpus. First, to re-establish
baseline performance, Table 4 shows the results of
traditional n-gram models trained on WSJ2 and
evaluated on Bl and WSJ1 using each of the dif-
ferent discounting methods.

Discounting B1 WSJ1
Absolute 837.46/9.3162 270.96/8.0819
650.19/9.3447 228.51/7.8234
659.68/9.3656 230.41/7.8481
Linear 894.96/9.4407 297.44/8.2164

728.82/9.5094

2688.90/8.0709

739.38/9.5300

279.34/8.1258

Good-Turing

8268.87/9.2920

267.79/8.0649

637.56/9.3164

224.82/7.8113

646.48/9.3364

229.40/7.8417

Witten-Bell

840.94/9.3241

277.13/8.1144

712.35/9.4764

237.88/7.8940

il eo|rof [t eof | feo] o] s

753.89/9.5582

243.22/7.9261

Table 4: Baseline n-gram model trained on

WSJ

the

Table 5 shows the results obtained by using the
factored m/n-gram closed/open word model, and
Table 6 shows the perplexity (entropy) improve-
ment of this factored model over the traditional

n-gram approach.

Discounting m/n B1 WSJ1
Absolute 2/2 867.79/9.7612 488.89/8.9333
3/2 886.85/9.7925 495.76/8.9535
2/3 514.26/9.006 225.86/7.8192
3/3 525.56/9.0377 229.03/7.8394
2/4 500.82/8.9681 218.40/7.7374
2/5 500.28/8.9665 216.05/7.7552
Linear 2/2 898.51/9.8114 521.68/9.0270
3/2 963.81/9.9126 542.63/9.0838
2/3 539.30/9.0749 252.81/7.9819
3/3 578.49/9.1761 262.96/8.0387
2/4 521.85/9.0274 240.75/7.9114
2/5 520.18/9.0228 243.94/7.9303
Good-Turing | 2/2 854.09/9.7382 183.86/9.7382
3/2 872.26/9.7686 489.82/8.9361
273 504.27/8.9780 224.03/7.8075
3/3 515.00/9.0084 226.79/7.8252
2/4 489.96/8.9365 211.92/7.7274
2/5 489.03/8.93387 214.64/7.7458
Witten-Bell 2/2 844.50/9.7219 490.59/8.9383
3/2 861.40/9.7505 497.59/8.9588
2/3 530.54/9.0513 228.76/7.8376
3/3 541.16/9.0799 232.02/8.9329
2/4 542.01/9.0821 220.22/7.7828
275 547.75/9.0973 222.87/7.8001

Table 5: Factored closed/open m/n-gram model

trained on the WSJ

Once again, a noticeable improvement in per-
plexity is observed regardless of smoothing tech-

Discounting B1 WSJ1
Absolute 21.6% (0.8504) | 5.8% (0.0860)
Tinear 25.2% (0.4187) | 10.5% (0.1595)

Good-Turing 22.0% (0.3583) 5.7% (0.0839)

Witten-Bell | 17.2% (0.2728) | 7.4% (0.1112)

Table 6: Perplexity (entropy) improvement when
trained on the WSJ

nique and test corpus. Linear discounting was
again the weakest smoothing method, and led to
the largest improvements in perplexity using the
factored closed/open model. Here the reduction
was 25.2% (0.4187 bits entropy) on the Brown
test corpus B, and 10.5% (0.1595 bits entropy)
on WSJ1. However, we also achieve an improve-
ment even for the best smoothing method, which
again was Good-Turing smoothing. In this case,
a reduction of 22.0% (0.3583 bits entropy) was
obtained on B1, and 5.7% (0.0839 bits entropy)
on WSJI.

4 Discussion

A long standing trend in statistical language mod-
eling research is to focus on the problem of sparse
training data and pursue sophisticated techniques
for dimensionality reduction in an attempt to
achieve more reliable estimates. This trend en-
compasses research into various smoothing tech-
niques (and extensions) such as vocabulary clus-
tering methods, maximum entropy models, neural
network models, and decision trees, among others.
Another recent trend is to use additional training
data from auxiliary sources to help improve the
model; for example, by using additional web data
(Zhu and Rosenfeld, 2001). In contrast to this
work, we are exploiting a trivial piece of prior lin-
guistic structure which also happens to be relevant
to limiting the deleterious effects of sparse data.
By factoring the vocabulary into closed- and open-
classes and training a distinct model for closed-
class words, we obtain a 3.5%-25.2% improvement
in perplexity, depending on discounting method
used and on the training/testing set. There are
several observations to make about these experi-
mental results:

The first observation is that the improvement
obtained by factoring is largely due to improved
prediction on closed-class words. That is, since
the factored model treats open-class words almost
the same way as the traditional n-gram model,
it must make similar predictions on open-class
words. The perplexity improvement is therefore
primarily achieved from predicting closed-class
words more accurately. Our results show that the
gains obtained from improving the quality of the



statistical estimates of closed-class words, by con-
sidering only closed-class words alone, are greater
than the losses incurred by predicting closed-class
words without any reference to open-class words
in the surrounding context. Clearly, some of the
advantage comes from reducing the sparse data
problem to a point where it is not a significant
impediment. However, more interestingly, our re-
sults also show that the closed-class (function)
words themselves exhibit a significant amount of
predictive coherence that is independent of the
surrounding open-class context. Surprisingly, we
conclude that, from the perspective of n-gram lan-
guage modeling, open-class words do more dam-
age than good when it comes to predicting closed-
class function words—since the sparse data prob-
lems they introduce are more profound than the
predictive benefits they offer.

Second, we make the simple observation that
the improvement obtained by the factored model
depends on the specific method used to smooth
the probability estimates. However, some im-
provement is obtained in every case we exam-
ined. Generally speaking, the largest perplexity
improvements are obtained when using the weak-
est smoothing method (linear discounting in our
case), and the smallest improvements (but still
positive) are obtained when using more effective
smoothing methods such as absolute discounting
or Good-Turing smoothing. Nevertheless, some
improvement is robustly achieved in every case.

It is interesting to contrast the results of test-
ing on the Brown corpus to the results of test-
ing on the WSJ corpus. From Tables 3 and 6,
we can see that the improvement in perplexity is
greater when training on the Brown corpus than
when training on WSJ. A partial explanation for
this fact is simply that the closed-class words are
more prevalent in the Brown corpus than in WSJ.
(Tn the Brown corpus, closed-class words comprise
34% of all word occurrences, whereas in the WSJ
the frequency of closed-class words is only 28%.)
It seems intuitive that the more frequently closed-
class words occur, the greater improvement we
should expect to see in the test corpora.

However, the mere prevalence of closed-class
words does not fully explain their utility in lan-
guage modeling. In fact, if their benefit was solely
to reduce the effects of sparse training data, then
a more direct approach would be more effective:
one could simply take the most frequent English
words, regardless of their part of speech cate-
gories, and learn a factored model in exactly the
same way as indicated in Section 2—using these
frequent words instead of closed-class words to

factor the model. In fact, we did just this, to
validate the value of using the linguistic notion of
closed- versus open- part of speech classes. Specif-
ically, we re-ran the previous experiments by tak-
ing the 172 most frequent English words (which
is the number of closed-class words, regardless of
part of speech category—calculated on the train-
ing segment of the Brown corpus, B2) and learned
an m-gram model over these words alone, while
estimating the model over the remainder of the
vocabulary using a standard n-gram model which
considered all previous n — 1 words of any type.
Table 7 shows the results of running this control
experiment by training on the Brown corpus, B2,
and testing on sentences from both the Brown and
WSJ corpora. Interestingly, we found that using
the 172 most frequent words to factor the lan-
guage model does indeed lead to an improved per-
plexity score over standard n-gram modeling (Ta-
ble 8). However, this improvement was generally
not as great as that of using closed-class (func-
tion) words (Table 9). Here, a weaker improve-
ment is obtained for the stronger smoothing mod-
els (Good-Turing smoothing and absolute smooth-
ing) even though the 172 most frequent words ac-
count for 53% of the Brown corpus (whereas the
closed-class words only account for 34%). This re-
sult shows that the improvement obtained by the
closed/open class factorization is not solely due
to reducing the sparse data problem, but also due
to exploiting the non-trivial predictive coherence
that exists between function words, independent
of their surrounding open-class context.

m/n B1 WSJ1
Absolute 2/2 543.40/9.0858 1000.01/9.9658
3/2 531.87/9.0549 1016.81/9.9898
2/3 344.05/8.4264 666.40/9.3802
3/3 336.75/8.3955 677.59/9.4042
2/4 329.36/8.3635 648.15/9.3401
2/5 328.79/8.3810 846.42/9.3383
Linear 2/2 566.24/9.1452 1051.85/10.0387
3/2 587.26/9.1978 1118.12/10.1268
2/3 349.49/8.4491 684.06/9.4179
3/3 362.46/8.5017 727.15/9.5061
2/4 329.31/8.3633 655.02/9.3554
2/5 327.43/8.3550 851.24/9.3470
Good-Turing | 2/2 558.61/9.1256 1030.50/10.0091
3/2 545.07/9.0903 1045.33/10.0297
2/3 343.51/8.4242 664.47/9.3760
3/3 335.18/8.3888 674.04/9.3966
2/4 327.11/8.3536 642.87/9.3283
2/5 326.11/8.3492 840.50/9.3230
Witten-Bell 2/2 525.39/9.0372 969.94/9.9217
3/2 513.57/9.0044 980.48/9.9373
2/3 346.79/8.4379 887.61/9.4254
3/3 338.99/8.4051 695.09/9.4410
2/4 349.92/8.4509 707.62/9.4668
2/5 356.14/8.4763 717.77/9.4873

Table 7: Factored closed/open m/n-gram word
model trained on the Brown Corpus, using the
172 most frequent words (instead of closed-class
words) to factor the model



B1 WSJ1
Absolute 4.1% (0.0596) 7.4% (0.1111)
Tinear 19.6% (0.3168) | 15.0% (0.2492)
Good-Turing 3.9% (0.0571) 6.9% (0.1038)
Witten-Bell 8.5% (0.1288) 4.1% (0.0603)

Table 8: Perplexity (entropy) improvement of us-
ing the 172 word factorization over the baseline
n-gram model

B1 WSJ1
Absolute ~7.1% (-0.0984) | -3.3% (-0.047)
Tinear 2.2% (0.0316) 3% (0.0438)
Good-Turing -7.3% (-0.1019) -4.1% (-0.0584)
Witten-Bell 3% (-0.0416) 0.6% (0.0093)

Table 9: Perplexity (entropy) difference in using
the top 172 word factorization compared to the
closed-class word factorization

Returning to the experiments in Section 3, we
observe that one of the main benefits of our fac-
tored approach is that it leads to significantly bet-
ter generalization between data sets than the tra-
ditional n-gram model. For example, compare the
results of testing on the Brown corpus when train-
ing on the Brown and WSJ corpora respectively.
That is, compare column Bl in Table 3 with col-
umn Bl in Table 6. Here we see that a much
greater improvement is obtained when training on
a different data source from the test corpus. That
is, the perplexity reduction when testing on the
Brown corpus is much greater when training on
the WSJ than it is when training on the Brown
corpus itself. The same phenomenon is observed
when we consider the test results for the WSJ cor-
pus. Compare column WSJ1 in Table 3 with col-
umn WSJI1 in Table 6. Again, we see a much
greater reduction in perplexity when training on
the Brown corpus and testing on WSJ than we see
when both training and testing on WSJ (except
the results on Witten-Bell smoothing). These re-
sults suggest that the model learned over closed
class words is not only more accurate than tradi-
tional n-gram modeling, but also generalizes bet-
ter between corpora. This is an important advan-
tage when one considers exploiting auxiliary data
sources like the web (Zhu and Rosenfeld, 2001).

Finally, our last observation is that a simple m-
gram model may not be the most effective tech-
nique for capturing the predictive dependence be-
tween closed-class words. Evidence for this asser-
tion comes from the fact that we ran experiments
with m-gram models for m = 1...6 and found that
simple 2-grams or 3-grams were optimal over this
range. This outcome contradicted our prior intu-
ition that since closed-class words were so frequent
in the corpus they should be better modeled by

long m-grams. In fact, because of the prevalence
of closed-class words in our training corpora, this
failure of the larger m-gram models cannot be en-
tirely attributed to the sparse data problem. We
suspect that perhaps a simple m-gram model is
not sufficient to model the predictive relationship
between function words in a language, due to their
close relationship to syntactic structure. One idea
we are currently exploring is whether this syntac-
tic structure might be better modeled by a struc-
tural language model (Chelba and Jelinek, 1998;
Charniak, 2001).

5 Conclusions

We have described a simple variant of the tra-
ditional n-gram model that factors the vocabu-
lary into closed and open classes. We showed that
this factored model demonstrates improvements
over traditional n-gram models on the Brown and
WSJ corpora, where the observed perplexity im-
provement ranges from 3.5%-25.2% depending on
the discounting method used and the training/test
set. We conclude that traditional n-gram models
are not as effective at modeling closed-class words
given open-class words, apparently because this
entails coping with significant sparse data prob-
lems and ignores the fact that closed-class words
have an internally coherent predictive structure.

Our factored closed/open model is among sim-
plest variant of n-gram models that has recently
been investigated in the literature; it is much sim-
pler than long range n-gram models (also called
link grammars) (Lafferty et al., 1992), class-based
n-gram models (Brown et al., 1992), and variable
length n-gram models (Siu and Ostendorf, 2000).
Of course, all of these methods themselves are sim-
pler than complex techniques such as maximum
entropy models (Rosenfeld, 1994; Khudanpur and
Wu, 2000) and neural network language models
(Bengio et al., 2001). However, beyond the sim-
plicity of our factored m/n-gram approach, an ad-
ditional strength is that it systematically improves
standard n-gram models under a variety of condi-
tions while consistently improving generalization
across data sets.

One of the main benefits of our method is that it
is completely orthogonal to other language model-
ing techniques, and can in fact be applied in con-
junction with any of the above mentioned meth-
ods (clustering, caching, skipping, maximum en-
tropy, latent semantic analysis) with the prospect
of gaining further improvements. Here, because
we factor words into two distinct classes, we can
use different modeling techniques for each class;
for example, using class-based n-gram models for



open words and probabilistic context free gram-
mars for closed-class words. Combining specific
methods in this manner remains future work.
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