Self-supervised Chinese Word Segmentation

Fuchun Peng and Dale Schuurmans

Department of Computer Science
University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1
{f3peng,dale}@ai.uwaterloo.ca

Abstract. We propose a new unsupervised training method for acquir-
ing probability models that accurately segment Chinese character se-
quences into words. By constructing a core lexicon to guide unsupervised
word learning, self-supervised segmentation overcomes the local maxima
problems that hamper standard EM training. Our procedure uses succes-
sive EM phases to learn a good probability model over character strings,
and then prunes this model with a mutual information selection criterion
to obtain a more accurate word lexicon. The segmentations produced by
these models are more accurate than those produced by training with
EM alone.

1 Introduction

Unlike English and other western languages, many Asian language such as Chi-
nese, Japanese, and Thai, do not delimited words by white-space. Word seg-
mentation is therefore a key subproblem to language processing tasks (such as
information retrieval) in these languages. Unfortunately, segmenting an input
sentence into words is a nontrivial task in such cases. For Chinese, there has
been a significant amount of research on techniques for discovering word seg-
mentations; see for example [14]. The main idea behind most of these techniques
is to start with a lexicon that contains the set of possible Chinese words and
then segment a concatenated Chinese character string by optimizing a heuris-
tic objective such as maximum length match, mutual information, or maximum
likelihood. This approach implies, however, that one of the main problems in
Chinese word segmentation is constructing the original lexicon.

Methods for constructing lexicons can be classified as either supervised or un-
supervised. In supervised construction, one has to segment a raw unsegmented
corpus by hand and then collect all the words from the segmented corpus to
build a lexicon. Unfortunately, since there are over 20,000 Chinese characters,
among which 6763 are most commonly used, building a complete lexicon by
hand is impractical. Therefore a number of unsupervised segmentation methods
have been proposed recently to segment Chinese and Japanese text [1,3,8,12,
9]. Most of these approaches use some form of EM to learn a probabilistic model
of character sequences and then employ Viterbi-decoding-like procedures to seg-
ment new text into words. One reason that EM algorithm is widely adopted for



unsupervised training is that it is guaranteed to converge to a good probability
model that locally maximizes the likelihood or posterior probability of the train-
ing data [6]. For Chinese segmentation, EM is usually applied by first extracting
a lexicon which contains the candidate multi-grams from a given training corpus,
initializing a probability distribution over lexicon, and then using the standard
iteration to adjust the probabilities of the multi-grams to increase the posterior
probability of the training data.

One advantage of unsupervised lexicon construction is that it can automati-
cally discover new words once other words have acquired high probability [4]. For
example, if one knows the word “computer” then upon seeing “computerscience”
it is natural to segment “science” as a new word. Based on this observation, we
propose a new word discovery method that is a variant of standard EM train-
ing, but avoids getting trapped in local maxima by keeping two lexicons: a core
lexicon which contains words that are judged to be familiar, and a candidate
lexicon which contains all other words that are not in the core lexicon. We use
EM to maximize the likelihood of the training corpus given the two lexicons;
which automatically suggests new words as candidates for the core. However,
once new words have been added to the core, EM is reinitialized by giving half
of the total probability mass to the core lexicon, thus allowing core words to
guide the segmentation and pull EM out of poor local maxima.

A problem with maximum likelihood training, however, is that it tends to
put probability mass on conjunctions of shorter words. Note that since likelihood
is defined by a product of individual chunk probabilities (making the standard
assumption that segments are independent), the more chunks a segmentation
has, the smaller its likelihood will tend to be. For example, in English, given
a character sequence sizeofthecity and a uniform distribution over multi-grams,
the segmentation sizeof|thecity will have higher likelihood than segmentation
size|of|the| city. Therefore, maximum likelihood will prefer fewer chunks in its
segmentation and tend to put large probability on long non-word sequences like
sizeof and thecity. If one can break such sequences into shorter legal words, size,
of, the, city, the lexicon will be much smaller and the training and segmentation
performance should be improved. To this end, we employ a mutual information
criterion to eliminate longer agglomerations in favor of shorter primitives (once
the EM optimization has stabilized). Not only does this have the advantage of
producing a smaller core lexicon, it also has the side effect of driving EM out
of poor local maxima [6,2] and yielding better segmentation performance. The
remainder of the paper describes the self-supervised training procedure in detail,
followed by the mutual information lexicon pruning criterion, experiments, error
analysis, and discussion.

2 Self-supervised segmentation

We first develop a technique to help EM avoid poor local maxima when opti-
mizing the probability model. This is done by dynamically repartitioning the
vocabulary and reinitializing EM with successively better starting points.



Assume we have a sequence of characters C = cjica...cr that we wish to
segment into chunks S = s1s5...sp7, where T is the number of characters in the
sequence and M is the number of words in the segmentation. Here chunks s;
will be chosen from the core lexicon V; = {s;,i = 1,...,|V1|} or the candidate
lexicon V5 = {s;,j =1, ...,|Va|}. If we already have the probability distributions
0 = {6;|0; = p(s;),i =1,...,|V1|} defined over the core lexicon and ¢ = {¢;|¢; =
p(sj),j = 1,...,|Va|} over the candidate lexicon, then we can recover the most
likely segmentation of the sequence C' = ¢jco...cr into chunks S = s185...5)
as follows. First, for any given segmentation S of C, we can calculate the joint
likelihood of S and C' by

M1 Mo M
prob(S,C|0, ) = [ p(s:) [ [ p(s5) = T ] p(sk)
i=1 j=1 k=1

where M; is the number of chunks occurring in the core lexicon, M, is the
number of chunks occurring in the candidate lexicon, and s; can come from
either lexicon. (Note that each chunk s must come from exactly one of the core
or candidate lexicons.) Our task is to find the segmentation S* that achieves the
maximum likelihood:

S* = argmaz{prob(S|C;8,¢)} = argmaz{prob(S,C|, $)} (1)
s s

Given a probability distribution defined by 6 and ¢ over the lexicon, the Viterbi
algorithm can be used to efficiently compute the best segmentation S of character
string C'. However, learning which probabilities to use given a training corpus is
the job of the EM algorithm.

2.1 Parameter re-estimation

Following [6], the update @ function that we use in the EM update is given by

Qk, k+1) = prob(S|C; 6%, ¢")log(prob(C, S|6* T, 1)) (2)
S

Maximizing (2) under the constraints that 3>, 65! = 1 and 3°; ¢}*" =1 yields
the parameter re-estimation formulas

0k+1 _ ES #(SHS) X pTOb(S, C|0ka ¢k)
Y, Y #(si,8) x prob(S, C|6k, ¢*)

S+ = Y #(54,5) x prob(S, C|6*, ¢F)
J 2s; 2os #(sj,5) x prob(S, C|6%, ¢*)
where #(s;,5) is the number of times s; occurring the segmentation S. These

are the standard re-estimation formulas, and are the same for § and ¢ except
that each will be reinitialized differently in successive optimizations (see below).

3)

(4)




In both cases the denominator is a weighted sum of the number of words
in all possible segmentations, the numerator is a normalization constant, and
(3) and (4) therefore are weighted frequency counts. Thus, the updates can be
efficiently calculated using the forward and backward algorithm, or efficiently ap-
proximated using the Viterbi algorithm; see [13] and [5] for detailed algorithms.

2.2 Self-supervised training

The main difficulty with applying EM to this problem is that the probability
distributions are complex and typically cause EM to get trapped in poor local
maxima. To help guide EM to better probability distributions, we partition the
lexicon into a core and candidate lexicon, V3 and V5; where Vi is initialized to
be empty and V5 contains all words. In a first pass, starting from the uniform
distribution, EM is used to increase the likelihood of the training corpus Cfj.
When the training process stabilizes, the N words with highest probability are
selected from V5 and moved to Vi, after which all the probabilities are rescaled
so that V; and V5 each contain half the total probability mass. EM is then run
again. The rationale for shifting half of the probability mass to V; is that this
increases the influence of core words in determining segmentations and allows
them to act as more effective guides in processing the training sequence. We call
this procedure of successively moving the top N words to Vi forward selection.

Forward selection is repeated until the segmentation performance of Viterbi
on the validation corpus C> leads to a decrease in F-measure (which means we
must have included some erroneous core words). After forward selection termi-
nates, N is decremented by 5, and we carry out a process of backward deletion,
where the NV words with the lowest probability in V; are moved back to V5, and
EM training is successively repeated until F-measure again decreases on the val-
idation corpus Cs (which means we must have deleted some correct core words).
The two procedures of forward selection and backward deletion are alternated,
decrementing N by 5 at each alternation, until N < 0; as shown in Fig. 1. As
with EM, the outcome of this self-supervised training procedure is a probabil-
ity distribution over the lexicon that can be used by Viterbi to segment test
sequences.

3 Mutual information lexicon pruning

Both EM and self-supervised training acquire probability distributions over the
entire lexicon. However, as pointed out by [12], the lexicon is the most important
factor in the word segmentation, and therefore a better lexicon is more critical
than a better model. Unfortunately, by maximizing likelihood, either through
EM or self-supervised training, erroneous agglomerations tend to get naturally
introduced in the lexicon. This means that after a high-likelihood model has
been learned, we are still motivated to prune the lexicon to remove erroneous
non-word entries. We do this by invoking a mutual information based criterion.



0. Input
Completely unsegmented training corpus Cq
Validation corpus Cg

1. Initialize
V] = empty;
Vi contains all potential words;
OldFmeasure = infinite small;
bForwardSelection=true;
set N to a fix number;

2. Iterate
while (N > 0){

EM Learning based on current Vi and Vg until converge;
Calculate NewFmeasure on validation corpus Ca;

if(NewFmeasure < OldFmeasure){
// change selection direction
bForwardSelection = —bForwardSelection;
N = N-5;

H

OldFmeasure = NewFmeasure;

//SelectCoreWords(true) does forward selectoin
//SelectCoreWords(false) does backward selectoin
SelectCoreWords(bF orwardSelection);

}

3. Test
Test on test corpus Cg

Fig. 1. Self-supervised Learning

Recall that the mutual information between two random variables is given by

MI(X,Y) = Zp(m,y)logl% )

where a large value indicates a strong dependence between X and Y, and zero
indicated independence. In our case, we want to test the dependence between two
chunks s; and s2. Given a long word, say s= “abedefghijk”, we consider splitting
it into its most likely two-chunk segmentation, say s; = “abcd” and ss = “efghigk”.
Let the probabilities of the original string and the two chunks be p(s), p(s1), and
p(s2) respectively. The pointwise mutual information [10] between s; and ss is

p(s)

MI(sy,s2) logp(81) < p(2) (6)
To apply this measure to pruning, we set two thresholds v; > 7. If the mutual
information is higher than the threshold =, we say s; and s2 are strongly cor-
related, and do not split s. (That is, we do not remove s from the lexicon.) If
mutual information is lower than the lower threshold 5, we say s; and s, are
independent, so we remove s from the lexicon and redistribute its probability to
s1 and saz. If mutual information is between the two thresholds, we say s; and
so are weakly correlated, and therefore shift some of the probability from s to s;
and s2, by keeping a portion of s’s probability for itself (1/3 in our experiments)
and distributing the rest of its probability to the smaller chunks, proportional to
their probabilities. The idea is to shift the weight of the probability distribution
toward shorter words. This splitting process is carried out recursively for s; and
sa. The pseudo code is illustrated in Fig. 2.



1: (81, s9) = mostlikely_split(s);

2 MI = log——P(8)
°9p(s1)xp(s2)

3: if(MI > v1){//strongly dependent
return -1;

H

else if(MI < v9){//independent
probSum = p(s1) + p(s2);
p(s1)+ = p(s) X p(s1)/probSum;
p(s2)+ = p(s) X p(s2)/probSum;
p(s) =0;
return 1;

else{//weakly dependent
probDistribute = p(s)/3;
probSum = p(s1) + p(s2);
p(s) = probDistribute;
p(s1)+ = 2 X probDistribute X p(s1)/probSum;
p(sg)+ = 2 X probDistribute X p(sg)/probSum;
return 0;

}

Fig. 2. Mutual information probabilistic lexicon pruning

4 Experiments

To compare our technique to previous results, we follow [8,12] and measure
performance by precision, recall, and F-measure on detecting word boundaries.
Here, a word is considered to be correctly recovered iff [11]:

1. a boundary is correctly placed in front of the first character of the word,
2. a boundary is correctly placed at the end of the last character of the word,
3. and there is no boundary between the first and last character of the word.

Let N7 denote the number of words in the test corpus Cj3, let N2 denote the
number of words in the recovered corpus Cs’, and let N3 denote the number of
words correctly recovered. Then the precision, recall and F measures are defined

precision: p = %

e — N3
recall: r = A

2XpXT

F-measure: F' = o

We use a training corpus, C1, that consists of 90M (5,032,168 sentences) of
unsegmented Chinese characters supplied by the author of [8], which contains
one year of the “People’s Daily” news service stories (www.snweb.com). The
test corpus C3 is ChineseTreebank from LDC! (1M, 10,730 sentences), which
contains 325 articles from “Xinhua newswire” between 1994 and 1998 that have
been correctly segmented by hand. We remove all white-space from C5 and create
an unsegmented corpus C3"”. We then use the algorithm described in Section 2
to recover C3' from C3". The validation corpus, C2, consists of 2000 sentences
randomly selected from the test corpus.

According to the 1980 Frequency Dictionary of Modern Chinese (see [7]),
the top 9000 most frequent words in Chinese consist of 26.7% unigrams, 69.8%

! http://www.ldc.upenn.edu/ctb/



bigrams, 2.7% trigrams, 0.007% 4-grams, and 0.002% 5-grams. So in our model,
we limit the length of Chinese words up to 4 characters, which is sufficient for
most situations.

The experimental results are shown in Table 1—Results 1 are obtained by
standard EM training, Results 2 are obtained by self-supervised training, Re-
sults 3 are obtained by repeatedly applying lexicon pruning to standard EM
training, and Results 4 are obtained by repeatedly applying lexicon pruning to
self-supervised training. The row labeled Perfect lexicon is obtained by using
maximum length match with the complete lexicon of the test corpus, which
contains exactly all the words occurring in the test corpus. Soft-counting is the
result of [8]?, which is also a EM-based unsupervised learning algorithm. The
Word-based results are from [12] which uses a suffix tree model. Finally, the
Perfect lexicon[12] results are obtained using a lexicon from another test corpus.

p r F |/final lex size
Results 1 44.6%37.3%|40.0%|| 19044012
Results 2 55.7%53.9%54.1%|| 19044012
Results 3 73.2%|71.7%|72.1%|| 1670317
Results 4 75.1%|74.0%|74.2%|| 1670317

Perfect lexicon {/92.2%(91.8%|91.9% 10363
Soft-counting[8] ||71.9%(65.7%|68.7%
Word-based[12] |[84.4%|87.8%86.0%

Perfect lexicon[12]((95.9%]93.6%|94.7%

Table 1. Experimental results

There are several observations to make from these results. First, self-sup-
ervised training improves the performance of standard EM training from 40%
to 54.1%. Second, mutual information pruning gives even greater improvement
(from 40% to 72.1%), verifying the claim of [12] that the lexicon is more influ-
ential than the model itself. The lexicon pruning reduces the lexicon size from
19044012 to 1670317, which makes the lexicon much smaller. By combining the
two strategies, we obtain further improvement (from 40% to 74.2%), which is
promising performance considering that we are using a purely unsupervised ap-
proach. By comparison, the result given by a perfect lexicon is 91.9%. Finally,
the two improvement strategies of self-supervised training and lexicon pruning
are not entirely complementary and therefore the resulting performance does not
increase additively when both are combined (72.1% using lexicon pruning alone
to 74.2% using both).

A direct comparison can be made to [8] because it also investigates a purely
unsupervised training approach without exploiting any additional context infor-
mation and uses the same training set we have considered. When we compare

2 They did not supply F-measure, we calculate it for comparison.



the results, we find that self-supervised training plus lexicon pruning achieves
both a higher precision and recall than [8], and obtains a 5.5% (from 68.7%
to 74.2%) improvement in F-measure. One problem with this comparison, how-
ever, is that [8] does not report precisely how the testing was performed. It is
also possible to compare to [12], which uses a suffix tree model and employs
context information (high entropy surroundings) to achieve an 86% F-measure
score. This result suggests the context information is very important. However,
because of a different test set (our test set is the 1M ChineseTreebank from
LDC, whereas their test data is 61K pre-segmented by NMSU segmenter [9] and
corrected by hand), the comparison is not fully calibrated. In the perfect lexicon
experiments, [12] achieves higher performance (94.7% F-measure), whereas only
91.9% is achieved in our experiments. This suggests that we may obtain bet-
ter performance when testing on the data used in [12]. Nevertheless, the result
of [12] appears to be quite strong, and demonstrates the utility of using local
context rather than assuming independence between words, as we have done.

5 Error analysis

Fig. 3 shows two categories of errors that are typically committed by our model.
In each case, the left string shows the correct word and the right bracketed string
shows the recovered word segmentation. The first error category is date and
number. In Chinese, dates and numbers are represented by 10 characters. Unlike
Arab numbers, these 10 Chinese number characters are not different from other
Chinese characters. Most dates and numbers are not correctly recognized because
they do not have sufficient joint statistics in the training corpus to prevent
them from being broken down into some smaller numbers. For example, “1937
year” is broken into “19”, “87,“T year”; “2 wan & gian 1 bai I shi 4” is broken
into “2 wan”, “3 gian”, “1”, “bai 1 shi 4” (wan denotes 10-thousand, gian denotes
thousand, bai denotes hundred, and shi denotes ten). It turns out that one can
easily use heuristic methods to correct errors in these special cases. For example,
if a string of concatenated characters are all number characters, then the string
is very likely to be a single date or number.

The second error category is the recognition of compound nouns. For exam-
ple, the compound “total marks” is recovered as two words “total” and “marks”;
“team Australia” is recovered to “team” and “Australia”. One reason for the fail-
ure to correctly recover compounds is that we are limiting the maximum length
of a word to 4 characters, whereas many compounds are longer than this limit.
However, simply relaxing the length limit creates a significant sparse data prob-
lem. The recognition of noun compounds appears to be difficult, and a general
approach may have to consider language constraints.

6 Related work

Our work is related to many other research efforts.



A:Date and Numbers
—HE=HE ( —H = +HE )
SHEFog—pl (o8 =gl o

B:Compounds
BRI (& mS)
e LRI AU ( BART BA )

Fig. 3. Typical segmentation errors

Unsupervised Chinese Word Segmentation: [8] uses a soft counting
version of EM to learn how to segment Chinese. To augment the influence of
important words, [8] shifts probability mass to likely words by soft counting. In
our model, we shift half of the probability space to the core words by dividing
the lexicon to two parts. Also, [8] does not employ any sort of lexicon pruning,
which we have found is essential to improving performance. [12] uses a suffix tree
word-based model and a bigram model to segment Chinese strings. This work
takes the surrounding word information into consideration when constructing
the lexicon. [14] uses a more complicated Hidden Markov Model (HMM) model
that includes special recognizers for Chinese names and a component for mor-
phologically derived words. As pointed out by [8], standard EM segmentation
can be thought of as a zero order HMM.

Mutual Information Lexicon Optimization: Other researchers have
considered using mutual information to build a lexicon. For example, [14] uses
mutual information to build a lexicon, but only deals with words of up to 2 char-
acters. [3, 12] uses mutual information and context information to build a lexicon
based on the statistics directly obtained from the training corpus. By contrast,
we are using mutual information to prune a given lexicon. That is, instead of
building a lexicon from scratch, we first add all possible words and then use
mutual information to prune away illegal words after training with EM. Hence
the statistics we use for calculating mutual information are more reliable than
those directly obtained from corpus by frequency counting. Another difference
is that we are using a probabilistic splitting scheme that sometimes just shifts
probability between words, instead of completely discarding words.

7 Conclusion and future work

This paper describes a new unsupervised method for discovering Chinese words
from an unsegmented corpus. Combined with an efficient mutual information
based lexicon pruning scheme, we achieve competitive results.

However, there is much work left to be done. One problem is that we cannot
detect the hierarchical structure of Chinese compounds, which is very useful in



many NLP tasks. We are currently exploring a hierarchical unsupervised method
to detect Chinese compounds. Also, instead of assuming the independence of
each word, we should also consider context information, which has proven to be
helpful [12]. Another problem with our self-supervised training procedure is that
it puts equal weight on the core and candidate lexicons. One interesting idea
would be to automatically estimate the weights of the two lexicons by using a
mixture model.
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