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Abstract

We introduce a new approach to model selection
that performs better than the standard complexity-
penalization and hold-out error estimation techniques
in many cases. The basic idea is to exploit the intrin-
sic metric structure of a hypothesis space, as deter-
mined by the natural distribution of unlabeled training
patterns, and use this metric as a reference to detect
whether the empirical error estimates derived from a
small (labeled) training sample can be trusted in the
region around an empirically optimal hypothesis. Us-
ing simple metric intuitions we develop new geometric
strategies for detecting overfitting and performing ro-
bust yet responsive model selection in spaces of can-
didate functions. These new metric-based strategies
dramatically outperform previous approaches in ex-
perimental studies of classical polynomial curve fit-
ting. Moreover, the technique is simple, efficient, and
can be applied to most function learning tasks. The
only requirement is access to an auxiliary collection of
unlabeled training data.

Introduction

In the standard problem of learning a prediction func-
tion h : X — Y from training examples {z1,y1), ...,
(z¢,y), the idea is to take the small set of y-labels
and extend them to a total prediction function A over
the entire domain X. Our goal is to produce a func-
tion h that predicts the y-labels of future (possibly
unseen) z’s as accurately as possible, where we mea-
sure the accuracy of our predictions by some specified
error function err(g,y).!

The simplest prototypical approach to this problem
is to first conjecture a suitable class of hypothesis func-

9Copyright ©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

"Note that most research on function learning considers
specific representations for domain objects z (e.g., attribute
vectors), range predictions y (e.g., binary or real valued
label), and prediction functions h (e.g., feedforward neural
networks or decision trees); and focuses on specific error
functions like zero-one loss 1(4.,) or squared error ||§—y||°.
Here we will take a simple abstract view that encompasses
most such choices.
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tions H (e.g., by specifying a neural net architecture,
or some other representation class), and then choose
the hypothesis h* € H that minimizes the empiri-
cal error Zz-:l err(h*(z;),y;) on the training set. Of
course, the key to making this approach work is to
choose the right hypothesis class H. One could argue
for example that it would be advantageous to make
H as expressive as possible, since this would afford us
the greatest chance of representing a reasonable hy-
pothesis. However, by making H too expressive we
run the risk of “overfitting” the training data and pro-
ducing a hypothesis function that predicts poorly on
future test examples (see, e.g., Figure 3 below). In
fact, there is a well-developed statistical theory which
supports this intuition by saying that for A* to be reli-
ably near the best function in H we require a training
sample size that is proportional to the “complexity”
of the hypothesis class H (Vapnik 1982; Pollard 1984;
Haussler 1992). This suggests that we must restrict
the complexity of our hypothesis class somehow. Of
course, this can introduce the opposite problem of un-
derfitting. That is, we might restrict H so severely
as to eliminate any reasonable hypotheses, even when
perfectly acceptable prediction functions exist. This,
then, is the fundamental dilemma of machine learn-
ing: we need to make our hypothesis classes as expres-
sive as possible to maximize our chances representing
a good hypothesis, but we also need to restrict these
classes to ensure that we can reliably distinguish good
from bad hypotheses (Geman, Bienenstock, & Doursat
1992). Thus, there is a tradeoff between our ability to
represent a good function and our ability to identify
a good function, if one exists. The question of what
to do in the face of this dilemma dominates much of
machine learning research.

Most successful applied machine learning systems
employ some sort of mechanism to balance between
hypothesis complexity and data-fit. Perhaps the most
common strategy for coping with this dilemma in prac-
tice is to use some form of automatic Model Selection:
First stratify the hypothesis class into a sequence of
nested classes Hy C Hy C ... = H, and then (somehow)
choose a class which has the appropriate complexity



for the given training data. To understand how we
might make this choice, note that for a given training
set (x1,¥1),...,{T¢, y:) We obtain a corresponding se-
quence of empirically optimal functions hg, b, ... from
each successive subclass (Figure 1). The basic model
selection problem is to choose one of these functions on
the basis of their observed empirical errors. Note that
these errors are monotonically decreasing, and there-
fore choosing the function with minimum training er-
ror simply leads to choosing a function from the largest
class. Therefore the trick is to invoke some other crite-
ria beyond empirical error minimization to make this
choice.

Previous approaches Currently, two model selec-
tion strategies predominate. The most common strat-
egy is complezity-penalization. Here we first assign
increasing complexity values cg,c1,... to the succes-
sive function classes, and then choose a hypothesis
from hj, h3,.. that minimizes some prior combination
of complexity and empirical error (e.g., the additive
combination ¢; + Aerr(h})). There are many variants
of this basic approach, including the minimum descrip-
tion length principle (Rissanen 1986), “Bayesian” max-
imum a posteriori selection, structural risk minimiza-
tion (Vapnik 1982; 1996), “generalized” cross valida-
tion (Craven & Wahba 1979) (different from real cross
validation; below), and regularization (Moody 1992).
These strategies differ in the specific complexity values
they assign and the particular tradeoff function they
optimize, but the basic idea is the same.

The other most common strategy is hold-out testing.
Here we ask for the given set of training data which
hypothesis class H; generalizes best? We answer this
by partitioning the training set 1,...,¢ into a pseudo-
training set 1,...,k and a hold-out test set k+1,...,¢,
and then use the pseudo—traiqing set to obtain a se-
quence of pseudo-hypotheses hg, hy,..., etc. We then
use the hold-out test set to obtain an unbiased esti-
mate of the true errors of these pseudo-hypotheses.
(Note that the training set errors tend to be gross
underestimates in general.) From these unbiased es-
timates, we can simply choose the Ahypothesis class H;
that yields the pseudo-hypothesis h; with the smallest
estimated error. Once H; has been selected, we re-
turn the function h] € H; that obtains minimum em-
pirical error on the entire training sequence. Again,
there are many variants of this basic strategy—having
to do with repeating the pseudo-train pseudo-test split
many times and averaging the results to choose the
final hypothesis class; e.g., 10-fold cross validation,
leave-one-out testing, bootstrapping, etc. (Efron 1979;
Weiss & Kulikowski 1991). Repeated testing in this
manner does introduce some bias in the error esti-
mates, but the results are still generally better than
considering a single hold-out partition (Weiss & Ku-
likowski 1991).
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Figure 1: Sequence of empirically optimal functions de-
termined by a stratification Hy C H; C ... and training
set. Dotted lines indicate decreasing empirical errors.

Idea

Here we propose a fundamentally different approach to
model selection that seems to work better than either
complexity-penalization or hold-out testing in many
cases. Our basic idea is to exploit the intrinsic geom-
etry of the function learning task which arises from a
simple statistical model of the problem: Assume the
training and test examples are independent random
observations drawn from a joint distribution Py on
X x Y. Then we can decompose this distribution into
the conditional distribution of Y given X, B, and
the marginal distribution Py on X. Note that when
learning a prediction function A : X — Y we are re-
ally only interested in approximating the conditional
Bx. However our approach will be to try and exploit
knowledge about Py to help us make better decisions
about which hypothesis h to choose. In fact, for now,
we will assume that we actually know Py and see how
far this gets us.?

How can knowing Py help? Well, the first thing it
does is give us a natural measure of the “distance” be-
tween two hypotheses h and g. In fact, we can obtain
a natural (pseudo) metric on the space of hypotheses
via the definition d(h,g) = [, err(h(z),g(x)) dPx”;
that is, we measure the distance between two func-
tions by their average discrepancy on random z-objects
(the reason for the quotes is explained below). More-
over, we can extend this definition to include the
target conditional B, via the definition d(h,Bx) =
“[x [y err(h(x),y) dPy.dPy”; which means that we
can interpret the true error of a function h as the
distance between h and the target object Bx. Im-
portantly, these definitions are compatible in the sense
that the defined metric d satisfies the standard axioms
over H U {Pyx }.

Notice how this now gives us a nice geometric
view of the problem (Figure 2): We have a nested
sequence of spaces Hy C H; C ..., each with a
closest function hg,hi,... to the target B,x, where
the distances are decreasing. However, we do not

*We will note below that any information we require
about Py can be obtained from unlabeled training examples.
Thus, the key leverage of our approach will be based on
having access to a collection of unlabeled data on which we
can stabilize model selection behavior.
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Figure 2: Geometric view of model selection: given a
nested sequence of spaces Hy C H; C ..., try to find
the closest function to B, using estimated distances.

get to observe these real distances. Rather, we
are given a training sample and have to choose a
hypothesis from the sequence of empirically closest
functions hg, b7, ..., which have decreasing estimates
d(h},Pyx) = E;Zl err(h}(z;),y;)/t” (Figure 1). The
key point though is that we now have more informa-
tion at our disposal: not only do we have estimated
distances to B,x, we now know the true distances be-
tween functions in the sequence! (E.g., as indicated by
the bold lines in Figure 1.)

Our idea is to somehow use this additional informa-
tion to choose a better hypothesis. One intuition is
that these inter-function distances can help us detect
overfitting. For example, consider two hypotheses h}
and hj,; that both have small estimated distances to
B, x and yet have a large true distance between them.
We claim that one should worry about choosing the
second function. Why? Well, if the true distance be-
tween h; and hj,, is large, then both functions cannot
be close to B,x, by simple geometry. This means then
that one of the estimates must be wrong, and we know
to trust the earlier estimate more than the latter. In
fact, if both d(h}, R, ) and d(hlJrl , Prix ) really were ac-
curate estimates, they would have to satisfy the trlan—
gle inequality With the known distance d(hj, h},,); 4.

d(h7, Box) + (b1, Box) > d(h Biyn). (1)

Since these empirical distances eventually become
gross underestimates in general (because the h} are
explicitly chosen to minimize the empirical distance
on the training set) we can use the triangle inequality
test to detect when these estimates become untrust-
worthy. In fact, this forms the basis of a very simple
model selection strategy (TRI): choose the last func-
tion in the sequence hj, h3, ... that does not violate the
triangle inequality with any preceding function. This
simple procedure turns out to work surprisingly well in
experimental situations.

Case study: Polynomial curve fitting

To explore the effectiveness of our simple model se-
lection procedure we considered the classical problem
of fitting a polynomial to a set of points (Figure 3).
Specifically, we considered a function learning problem

where X = IR, Y = IR, and the goal is to minimize the
squared prediction error, err(f,y) = (§ —y)2. Here we
considered polynomial hypotheses h : IR — IR under
the natural stratification Hy C Hy C ... into polynomi-
als of degree 0,1, ..., etc. The motivation for studying
this task is that it is a classical well-studied problem,
that still attracts a lot of interest (Galarza, Rietman,
& Vapnik 1996; Cherkassky, Mulier, & Vapnik 1996;
Vapnik 1996). Moreover, polynomials create a difficult
model selection problem that has a strong tendency to
produce catastrophic overfitting effects (Figure 3). An-
other benefit is that polynomials are an interesting and
nontrivial class for which there are efficient techniques
for computing best fit hypotheses.

To apply our metric strategy TRI to this task we need
to define a suitable metric distance d under the pre-
sumed distribution Py. For the squared error measure
we can define the distance between two functions by

= (Jx(n (2))* dPX) /% and the distance

to PY|X by d(h PY|X ( [y Jy (h(z) = y)? dB,dP, ).
This estabhshes a verifiable (pseudo) metmc over H U
{Bx}. (Notice that we have to take square roots to get
a metric here; hence the earlier need for quotes.) Also,
for a given training set (z1,y1), ..., (Z¢, y¢), we can de-
fine the corresponding empirical distance estimate by

— . 1/2
a(h,Bx) = (54 (hle;) — ;) /¢)

To determine the efficacy of TRl we compared its
performance to a number of standard model selec-
tion strategies, including two well-known penalization
strategies—generalized cross validation GCV (Craven
& Wahba 1979) and structural risk minimization SRM
(Vapnik 1996) (under the formulations reported in
(Cherkassky, Mulier, & Vapnik 1996))—and 10-fold
cross validation 10CV, a standard hold-out method
(Efron 1979; Kohavi 1995).

We conducted a simple series of experiments by fix-
ing a uniform domain distribution Py on the unit in-
terval [0, 1], and then fixing various target functions
f :[0,1] - IR. To generate training samples we
first drew a sequence of values, z1,...,2;, computed
the target function values f(z1), ..., f(z:), and added
independent Gaussian noise to each, to obtain the la-
beled training sequence (z1,y1), ..., (T, y¢). For a given
training sample we then computed the series of best
fit polynomials hg, ht,... of degree 0,1, ..., etc. Given
this sequence, each model selection strategy will choose
some hypothesis h; on the basis of the observed em-
pirical errors. To implement TRI we assumed that it
had access to the known uniform distribution Py over
[0,1] in order to compute the true distances between
polynomials in the sequence. (We return to the issue
of estimating Py below.)

Our main emphasis in these experiments was to min-
imize the true distance between the final hypothesis
and the target conditional B.x. That is, we are pri-
marily concerned with choosing a hypothesis that ob-
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Figure 3: Minimum squared error polynomials of de-
grees 1, 2, and 9 for a set of 10 training points. Notice
that the high degree polynomial demonstrates erratic
behavior off the training set.

tains a small prediction error on future test examples,
independent of its complexity level.? To determine the
effectiveness of the various selection strategies, we mea-
sured the ratio of the true error of the polynomial they
selected to the best true error among polynomials in
the sequence h§, hi,.... The rationale for doing this is
that we wish to measure the model selection strategy’s
ability to approximate the best hypothesis in the given
sequence—not find a better function from outside the
sequence.*

Experiment 1 Tables 1-3 show the results obtained
for fitting a step function f(z) = step(z > 0.5) cor-
rupted by Gaussian noise. (The strategy ADJ in the
tables is explained below.) We obtained these results
by repeatedly generating training samples of a fixed
size and recording the approximation ratio achieved
by each strategy. These tables record the distribution
of ratios produced by each strategy for training sam-
ple sizes of 10, 20 and 30 respectively, given 800 trials
each. The results are quite dramatic. TRI achieved
median approximation ratios of 1.03, 1.07 and 1.06 for
training sample sizes 10, 20 and 30 respectively. This
compares favorably to the median approximation ra-
tios 1.24, 1.34 and 2.14 achieved by SRM, and 1.24,
1.16 and 1.16 achieved by 10CV (GCV was dramatically

3This is not the only criteria one could imagine optimiz-
ing here. For example, one could be interested in finding
a simple model of the underlying phenomenon that gives
some insight into its fundamental nature, rather than sim-
ply producing a function that predicts well on future test
examples (Heckerman & Chickering 1996). However, we
will focus on the traditional machine learning goal of min-
imizing prediction error.

“One could consider more elaborate strategies that
choose hypotheses from outside the sequence; e.g., by aver-
aging several hypotheses together (Opitz & Shavlik 1996;
Breiman 1994). However, we will not pursue this idea here.

percentiles of approximation ratios
method 25 50 75 95 100
TRI 1.00 1.03 1.17 1.44 2.42
10CV 1.07 124 151 7.38 854.3
SRM 1.05 124 144 4.24 58.3
GCV 1.76 10.6 98.7 2399 4.8 x 10°
ADJ 1.00 1.16 1.40 3.50 152.5

Table 1: Fitting f(z)=step(z > 0.5) with P, =U(0,1)
and o = 0.05. Distribution of approximation ratios
achieved at training sample size ¢ = 10, showing per-
centiles of approximation ratios achieved after 800 re-
peated trials.

percentiles of approximation ratios
method 25 50 75 95 100
TRI 1.00 1.07 1.19 1.44 2.18
10CV 1.06 1.16 1.39 4.60 1482
SRM 1.13 134  2.65 40.98 13,240
GCV 1.64 27.0 895.0 1x10° 2x 107
ADJ 1.03 1.13 1.25 1.58 3.42

Table 2: Same as Table 1 but with ¢ = 20 examples.

percentiles of approximation ratios

method 25 50 75 95 100
TRI 1.00 1.06 1.17 1.42 2.02
10CV 1.06 1.16 1.37 6.22 58.9

SRM 1.17 214 220 1894 3.2 x 106
GCV 420 73.0 1233 46,504 4.3 x 108
ADJ 1.06 1.15 1.27 1.53 2.08

Table 3: Same as Table 1 but with ¢ = 30 examples.
Le., fitting f(z) = step(z > 0.5) with P, = U(0,1)
and ¢ = 0.05, given t = 30 training examples; showing
percentiles of approximation ratios achieved after 800
trials.

percentiles of approximation ratios

method 25 50 75 95
TRI 1.00 1.06 1.17 1.40
10CV 1.01 1.31 4.15 65.9
SRM 9.57 1820 9.5x 108 1.1 x 10

GCV 252 3x10% 5.9x10'" 8.3x10'
ADJ 1.00 1.00 1.10 1.20

Table 4: Same at Table 3 but with P, =N (0.5,1).

percentiles of approximation ratios

method 25 50 75 95 100
TRI 1.02 112 1.28 1.39 2.44
10Cv 1.06 116 1.38 10.3 163.7

SRM 1.40 5.03 35.5 4594 5.2 x10°
GCV 220 11.9 1056 4138 1.6 x 107
ADJ 1.08 1.17 1.28 1.82 4.93

Table 5: Same as Table 3 but with f(z) =sin(1/z).



percentiles of approximation ratios
method 25 50 75 95 100
TRI 1.30 2.00 3.35 5.48 15.1
10CV 1.03 132 185 7.04 82.5
SRM 1.03 129 1.83 5.34 3978
GCV 1.04 141 293 370 19x10°
ADJ 1.02 131 1.88 4.19 8.92

Table 6: Same as Table 3 but with f(z) = sin®(27z).

worse on these trials).> However, the striking differ-

ence was TRI’s robustness against overfitting. In fact,
although the penalization strategy SRM performed rea-
sonably well fairly often, it was prone to making catas-
trophic overfitting errors. Even the normally well-
behaved cross-validation strategy 10CV made signifi-
cant overfitting errors from time to time. This is ev-
idenced by the fact that in 800 trials with a training
sample of size 30 (Table 3) TRI produced a mazimum
approximation ratio of 2.02, whereas 10CV produced a
worst case approximation ratio of 59, and the penal-
ization strategies SRM and GCV produced worst case
ratios of 3 x 10% and 4 x 108 respectively! (The 95th
percentiles were TRI 1.42, 10CV 6.22, SRM 1894, GCV
4.6 x 10%) In fact, TRI’s robustness against overfit-
ting is not a surprise: one can prove that TRI cannot
produce an approximation ratio greater than 3, if we
assume that (i) TRl makes it to the best hypothesis h*
in the sequence, and (ii) the empirical error of h* is an
underestimate. (The proof is by simple geometry and
is given in the appendix.)

The basic flavor of these results remains unchanged
at different noise levels and for different domain dis-
tributions Py. In fact, much stronger results are ob-
tained for wider tailed domain distributions like Gaus-
sian (Table 4), and “difficult” target functions like
sin(1/z) (Table 5). Here SRM and GCV can be forced
into a regime of constant catastrophe, 10CV noticeably
degrades, and yet TRI retains the same performance
levels shown in Table 3.

Experiment 2 Of course, a step function is a rather
pathological target to fit with a polynomial, and there-
fore it is important to consider other more “natu-
ral” targets which might be better suited to polyno-
mial approximation. In fact, by repeating the previ-
ous experiments with a more benign target function
f(z) = sin?(27x) we obtain quite different results. Ta-
ble 6 shows that procedure TRI does not fare as well
in this case—obtaining median approximation ratios of
1.4, 2.1 and 2.0 for training sample sizes 10, 20 and 30
respectively (compared to 1.6, 1.24 and 1.29 for SRM,
and 1.7, 1.4 and 1.3 for 10CV). A close examination of
the data reveals that the reason for this performance

5 Although the penalization strategies appear to be per-
forming worse for larger training sample sizes, their per-
formance improves again at sample sizes greater than 100.
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Figure 4: The real and estimated distances between
successive hypotheses h; and h; and the target B .
Solid lines indicate real distances, dashed lines indicate
empirical distance estimates.

drop is that TRI systematically gets stuck at lower de-
gree polynomials. In fact, there is a simple geometric
explanation for this: the even-degree polynomials (af-
ter 4) all give reasonable fits to sin®(27z) whereas the
odd-degree fits have a tail in the wrong direction. This
creates a huge distance between successive polynomi-
als, and causes the triangles to break between the even
and odd degree fits, even when the large even-degree
polynomial is a good approximation. So although the
metric-based TRI strategy is strongly robust against
overfitting, it can be prone to systematic underfitting
in seemingly benign cases. (Similar results were ob-
tained for other polynomial and polynomial-like target
functions.) This problem leads us to consider a refor-
mulated procedure.

Strategy 2: Adjusted distance estimates

The final idea we explore is based on the observation
that we are in fact dealing with two metrics here: the
true metric d deﬁnedAby the joint distribution Py, and
an empirical metric d determined by the labeled train-
ing sequence. Now given these two metrics, consider
the triangle formed by two hypotheses h} and h} and
the target conditional B,x (Figure 4). Notice that
there are six distances involved—three real and three
estimated, of which the true distances to B,x are the
only two we care about, and yet these are the only
two we don’t have! The key observation though is that
the real and estimated distances between hypotheses

hi and h}, d(h},h}) and d(h/’f\h"f), give us an obseruv-

RAAY] 1'%
able relationship between d and d in the local vicinity.
In fact, we can adopt the naive assumption that ob-
served relationship between h} and h} also holds be-
tween h;f and B,x. Note that if this were the case, we

would obtain a better estimate of d(h;f, Pix) simply by

adjusting the training set distance d(hﬁy‘x) accord-
ing to the observed ratio d(h}, h})/d(h}, h}). In fact,
adopting this as a simple heuristic leads to a surpris-
ingly effective model selection procedure (ADJ): given

the hypothesis sequence hj, h3, ..., first multiply each

5Note that since we expect d to be an underestimate in
general, we expect this ratio to be typically larger than 1.
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estimated distance d(h},Px) by the largest observed

ratio d(h;,h})/d(h;,h}), i < j, and then choose the
function in the sequence that has the smallest adjusted
distance estimate to B,x. This simple but motivated
procedure seems to overcome the underfitting problems
associated with TRI while still retaining TRI’s robust-
ness against overfitting.

To demonstrate the efficacy of ADJ we repeated the
previous experiments including ADJ as a new com-
petitor. Our results show that ADJ robustly out-
performed the standard complexity-penalization and
hold-out methods in all cases considered—spanning a
wide variety of target functions, noise levels, and dis-
tributions Py. Although space limitations preclude a
complete and systematic exposition of our results, Ta-
bles 1-6 demonstrate typical outcomes. In particu-
lar, Table 6 shows that ADJ avoids the underfitting
problems that plague TRI; it responsively selects high
order approximations when this is supported by the
data. Moreover, Table 3 shows that ADJ is still ex-
tremely robust against overfitting, even in situations
where the standard approaches make catastrophic er-
rors. Although the results reported here are anecdotal,
our full suite of experiments strongly suggest that ADJ
outperforms standard techniques across a wide vari-
ety of polynomial regression problems. Overall, this is
the best model selection strategy we have observed for
these polynomial regression tasks.

Estimating Py

Of course, one can always argue that these results are
not terribly useful since the metric-based strategies TRI
and ADJ both require knowledge of the true domain
distribution Py. This is clearly an unreasonable as-
sumption in practice. However, it is trivial to observe
that we can obtain information about Py from unla-
beled training instances. In fact, many important func-
tion learning applications have large collections of un-
labeled training data available (e.g., image, speech and
text databases), so these metric-based techniques could
still apply to a wide range of practical situations—
provided they are robust to using only estimated dis-
tances. To explore this issue, we repeated our previous
experiments, but gave TRl and ADJ only a small ref-
erence sample to estimate inter-hypothesis distances.
We found that these strategies were in fact extremely
robust to using approximate distances. Table 7 shows
that as few as 100 unlabeled examples (just over three
times the number of labeled examples) were still suf-
ficient for TRl and ADJ to perform nearly as well as
before. Moreover, Table 7 shows that these techniques
only begin to significantly break down once we consider
fewer unlabeled than labeled training examples. Al-
though the evidence is anecdotal, this robustness was
observed across a wide range of problems. It remains
an important direction for future research to systemat-
ically characterize the range of reference sample sizes

percentiles of approximation ratios

method | 25 50 75 95 100
TRI(100) | 1.00 1.07 1.18 181 7.07
TRI (50) [ 1.01 1.10 1.28 2.56 23.3
TRI (25) [ 1.03 1.14 151 7.89 2342
ADJ(100) | 1.06 1.15 1.27 1.56 3.50
ADJ (50) | 1.05 1.14 1.29 1.69 10.4
ADJ (25) | 1.06 1.16 1.34 213  158.0

Table 7: Same as Table 3 but using a small number of
unlabeled examples (in parentheses) to estimate Py.

for which this holds.

Finally, note that this still yields a reasonably effi-
cient model selection procedure, since computing inter-
hypothesis distances involves making only a single pass
down the reference list of unlabeled examples. This is
a strong advantage over standard hold-out techniques
like 10CV which repeatedly call the hypothesis gener-
ating mechanism to generate pseudo-hypotheses—an
extremely expensive operation in many applications.

Conclusion

We have introduced a new approach to the classical
model selection problem that is based on exploiting
the intrinsic geometry of the function learning task.
These new techniques significantly outperform stan-
dard approaches in a wide range of polynomial regres-
sion tasks. The primary source of this advantage is
that our metric-based strategies are able to detect dan-
gerous situations and avoid making catastrophic over-
fitting errors, while still being responsive enough to
adopt complex models when this is supported by the
data. They accomplish this by attending to the real
distances between hypotheses. Note that complexity-
penalization strategies completely ignore this informa-
tion, and as a result are heavily punished in our ex-
periments. Hold-out methods implicitly take some of
this information into account, but do so indirectly and
less effectively than the metric-based strategies intro-
duced here. Although there is no “free lunch” in gen-
eral (Schaffer 1994) and we cannot claim to obtain a
universal improvement for every model selection prob-
lem (Schaffer 1993), we claim that one should be able
to exploit additional information about the task (here
knowledge of Py) to obtain significant improvements
across a wide range of problem types and conditions.
Our empirical results for polynomial regression support
this view.

An important direction for future research is to de-
velop theoretical support for our strategies. Some
progress in this direction is reported in a compan-
ion paper (Schuurmans, Ungar, & Foster 1997) which
develops a general characterization of the difficulty
of model selection problems based on the standard
bias/variance decomposition of expected hypothesis er-



ror (Geman, Bienenstock, & Doursat 1992). Here we
characterize model selection problems by the shapes
of their approximation-error and variance profiles, and
use this to delineate the conditions where traditional
techniques are most prone to catastrophic mistakes and
where our techniques obtain their greatest advantage.

It remains open as to whether TRI and ADJ are the
best possible ways to exploit the hypothesis distances
afforded by P,. We plan to investigate alternative
strategies which might be more effective in this regard.

Finally we note that there is nothing about our ap-
proach that is specific to polynomial curve fitting! The
techniques developed here can easily be applied to
other hypothesis classes familiar to AI research; in-
cluding neural networks, radial basis functions, and
decision trees. In fact, our metric-based approach eas-
ily generalizes to classification learning tasks as well,
since the classification loss function err(§,y) = 1{y.,}
directly gives a metric via the definitions d(h,g) =
Py (h(z) # g(z)) and d(h, Bx) = Po (A(z) # y). How-
ever, as discussed in (Schuurmans, Ungar, & Foster
1997), we do not expect to achieve as dramatic suc-
cesses here, since classification involves a bounded loss
which does not permit catastrophic errors (i.e., dis-
tances greater than 1). Nevertheless, applying our
techniques to classification tasks is another important
direction for future research. Here we hope to compare
our results with the earlier study (Kearns et al. 1995).
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Appendix

We prove that TRI cannot exhibit an approximation
ratio larger than 3 if we assume that (i) TRl makes
it to the best hypothesis h} in the sequence, and (i)
the empirical error of h} is an underestimate. Con-
sider a hypothesis h} which follows hj in the sequence,
and assume d(h},Bx) > 3d(h},B.x). We show that
h} must fail the triangle test (1) with hj: First, no-
tice that h}’s error and the triangle inequality imply
that 3d(h;, Pux) < d(h}, Px) < d(h}, Px) +d(h, h});
and hence d(h},h%) > 2d(h},Bx). But now recall

i 1Y)

that d(hﬁy‘x) < d(hﬁyw) for j > i, and also, by

assumption, d(hf,B.x) < d(h},P,x). Therefore we

—_ —

have d(h;ka h;) > Qd(h;ka PY\X) > d(h:7 PY\X) +d(h;7 PYIX);

which contradicts (1). Thus, TRI will not consider Aj.
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