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Abstract

We investigate the structure of model selection
problems via the bias/variance decomposition. In
particular, we characterize the essential aspects
of a model selection task by the bias and variance
profiles it generates over the sequence of hypoth-
esis classes. With this view, we develop a new
understanding of complexity-penalization meth-
ods: First, the penalty terms can be interpreted as
postulating a particular profile for the variances
as a function of model complexity—if the postu-
lated and true profiles do not match, then system-
atic under-fitting or over-fitting results, depend-
ing on whether the penalty terms are too large or
too small. Second, we observe that it is generally
best to penalize according to the true variances
of the task, and therefore no fixed penalization
strategy is optimal across all problems. We then
use this characterization to introduce the notion
of easy versus hard model selection problems.
Here we show that if the variance profile grows
too rapidly in relation to the biases, then standard
model selection techniques become prone to sig-
nificant errors. This can happen, for example, in
regression problems where the independent vari-
ables are drawn from wide-tailed distributions.
To counter this, we discuss a new model selec-
tion strategy that dramatically outperforms stan-
dard complexity-penalization and hold-out meth-
ods on these hard tasks.

1 Introduction

When learning a function
�

: ����� from random train-
ing examples �	� 1 
�� 1 
�
�������
 �	��� 
�� � 
 , there is a well-known
tradeoff between the size of the training sample and the
complexity of the function class being considered: If the
class is too complex for the sample size, there is a risk
�
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of ”overfitting” the training data and guessing a function
that performs poorly on future test examples. On the other
hand, an overly restricted class can prevent us from con-
sidering any good candidate functions. The most com-
mon strategy for coping with this dilemma in practice is
to use some form of automatic model selection, such as
complexity-penalization or repeated hold-out testing, to
balance the tradeoff between complexity and data-fit.

Under the simplest formulation of model selection, the
idea is to first stratify the hypothesis class � into a se-
quence of nested subclasses � 0 � � 1 � ������� � and
then (somehow) choose a class which has the appropri-
ate complexity for the given training data. To understand
how we might make this choice, note that for a given train-
ing sample � � ��� 1 
�� 1 
�
�������
 �	��� 
�� � 
 we obtain a corre-
sponding sequence of empirically optimal functions,

� �
0  � 0 
 � �1  � 1 
������ , etc., that achieve minimum average er-

ror !err " � �#%$'&�)( �*�+
1 loss " � �# "�� * $ 
�� * $�,.- on the training

set � . The essence of the model selection problem is to
choose one of these functions based on their observed em-
pirical errors !err " � �1 $ 
 !err " � �2 $ 
������ Note, however, that these
errors are monotonically decreasing, and therefore choos-
ing the function with minimum training error simply leads
to choosing a function from the largest class. Therefore,
the trick is to invoke some other criteria beyond empirical
error minimization to make this choice.

Currently, two basic model selection strategies pre-
dominate. The most common strategy is complexity-
penalization. Here one assigns increasing complexity
values / 0 
 / 1 
������ to the successive function classes, and
then chooses the hypothesis from

� �
1 
 � �2 
0����� that minimizes

some combination of complexity and empirical error (e.g.,
the additive combination / #2143 !err " �5�# $ ). There are many
variants of this basic approach, including the minimum
description length principle (Rissanen 1986), “Bayesian”
maximum a posteriori selection, structural risk minimiza-
tion (Vapnik 1982; 1996), “generalized” cross validation
(Craven & Wahba 1979), and even regularization (Moody
1992). These strategies differ in the specific complexity
values they assign and the particular tradeoff function they



optimize, but the basic idea is still the same.

The other most common strategy is hold-out testing. Here
one asks: for the given set of training data, which hypoth-
esis class � # generalizes best? We answer this by parti-
tioning the training set, 1 
0������
 - , into a pseudo-training set,
1 
�������
 � , and a hold-out test set,

� 1 1 
�������
 - , and then us-
ing the pseudo-training set to obtain a sequence of pseudo-
hypotheses ˆ� 0 
 ˆ� 1 
0����� , etc. We then use the hold-out test set
to obtain an unbiased estimate of the true errors of these
pseudo-hypotheses. (Note that the training set errors tend
to be gross underestimates in general.) From these unbi-
ased estimates, we can simply choose the hypothesis class
� # that yields the pseudo-hypothesis ˆ� # with the smallest
estimated error. Once � # has been selected, we return the
function

� �#  � # that obtains minimum empirical error on
the entire training sequence. Again, there are many vari-
ants to this basic strategy—having to do with repeating the
pseudo-train pseudo-test split many times and averaging
the results to choose the final hypothesis class; e.g., 10-fold
cross validation, leave-one-out testing, bootstrapping, etc.
(Efron 1979; Weiss & Kulikowski 1991).

The abundance of model selection strategies and different
approaches to the problem raises the question of which
techniques are best and when. We attempt to answer this
in the context of regression by appealing to the standard
bias/variance decomposition of generalization error (Ge-
man, Bienenstock, & Doursat 1992). In particular, we
characterize model selection problems by the bias and vari-
ance profiles they generate over the sequence of hypothesis
classes. Given this characterization, we address a number
of topics regarding the behavior of model selection strate-
gies and the structure of model selection tasks: First, we in-
vestigate complexity-penalization methods, which attempt
to directly adjust the empirical error estimates to account
for the unseen variances. Here we observe that no sin-
gle penalization strategy dominates in every situation—all
penalization methods have conditions where they perform
well and conditions where they fail. Next, we investigate
the structure of model selection problems, and identify the
notion of easy versus hard model selection tasks. Here
we show that some problems are inherently more difficult
than others for standard complexity-penalization and hold-
out methods. For example, regression problems where the
independent variables come from wide-tailed distributions
cause difficulties for standard selection strategies, because
the example vectors encountered in testing tend to be quite
distant from the examples seen in training. Given the inad-
equacy of standard techniques in these cases, we discuss a
new model selection procedure that outperforms standard
approaches on these hard tasks.

2 Bias/variance decomposition

This paper focuses on least squares regression problems.
Here the goal is to learn a prediction function

�
: � ��� �

that minimizes the squared difference between predicted
ˆ� and true � -values, as specified by the loss function
loss " ˆ� 
�� $ � " ˆ��� � $ 2. Perhaps the simplest prototypical ap-
proach to this problem is to first conjecture a suitable class
of hypothesis functions � (e.g., by specifying a neural net
architecture, or some other representation class), and then
choose the hypothesis

� �  � that minimizes the empirical

error !err " � � $ &� ( �*�+
1 " � � "�� * $ � � * $ 2 ,.- on the training

set � � ��� 1 
�� 1 
�
0������
 ��� � 
�� � 
 . This approach is known as
empirical error minimization; i.e., we implicitly consider
a learning function ��� that maps training sets � into hy-
potheses

� � � � � " � $ from � that obtain minimum error
on � . Of course, the key to making such an approach work
is to choose the right hypothesis class � .

One way to asses the suitability of a particular hypothe-
sis class � is to consider the expected (true) error that re-
sults from minimizing empirical error on � . To formalize
this, consider a fixed distribution P	�
 on the space of ex-
amples �
� � and a training sample size - . Notice that
this yields a particular distribution, P �	�
 , on training se-
quences of length - . Observe that each such training se-
quence � determines a particular hypothesis

� � � ��� " � $
that obtains minimum error on � . Thus, from the distri-
bution over length - training sequences, we obtain an in-
duced distribution P� over hypotheses in � . Now notice
that each of these hypotheses

� �
has a true expected error

with respect to the distribution of examples P	�
 , given by

err " � � $ &� ������� " � � "	� $ � � $ 2 � P
�� � � P	 . Therefore, the in-
duced distribution over hypotheses generates a correspond-
ing distribution over true error values. It is the expected
value of this distribution,

E ��� err " � � $ &� � � err " � � $ � P� (1)

that is our primary interest. That is, we are interested in
the average (true) error of the hypotheses one obtains by
minimizing empirical error on � , given that we train on -
random examples drawn according to P	�
 (where we aver-
age over hypotheses generated by possible training sets).

Clearly, our goal is to make this expectation as small as
possible. That is, we wish to choose a class of hypotheses
� that ensures small expected error relative to the unknown
target distribution P	�
 . However, there are two opposing
forces to contend with here. If we make � too complex,
we obtain a large expected error because similar training
sets yield significantly different hypotheses (and not all of
these can be simultaneously accurate). On the other hand,
if we restrict � too severely, there might not be any good
hypotheses left.

This tradeoff can be formalized in terms of the
bias/variance decomposition of expected hypothesis error.
It is well known that (1) can be decomposed into “bias” and
“variance” terms by expanding around the mean hypothesis
¯�5� of the distribution P� (Geman, Bienenstock, & Doursat
1992). That is, if we define ¯� � to be the function such that
¯� � "�� $ � � � � � "	� $ � P� (i.e., on an input � , ¯� � outputs the



average prediction of the
� �

’s chosen according to P� ), we
then obtain the decomposition

E ��� err " � � $ � err " ¯� � $ 1 E ��� error " ¯� � 
 � � $ 

where error " ¯� � 
 � � $ &� ��� " ¯� � "�� $ � � � "�� $�$ 2 � P	 is the aver-
age discrepancy between the empirical hypotheses

� �
and

the mean hypothesis ¯� � . Here the first and second terms are
often referred to as the “bias” and “variance” respectively
(of � with respect to P �	�
 ).

Rather than using this particular decomposition, however,
we will find it instructive to consider an alternative decom-
position which expands (1) around the optimal hypothesis� ��� � in � , rather than the mean hypothesis ¯� � defined by
the distribution P� . That is, if we define

� ��� � to be the func-
tion that obtains minimum true error relative to P	�
 among
all hypotheses in � , then an alternative decomposition of
(1) can be shown to be

“bias” “variance”

E ��� err " � � $ � err " � ��� � $ 1 E ��� error " � ��� � 
 � � $ 
 (2)

where error " � ��� � 
 � � $ &� � � " � ��� � "�� $ � � � "	� $�$ 2 � P	 is the
average discrepancy between the empirical hypotheses

� �
and the class optimal hypothesis

� ��� � .1 Thus, we can de-
compose the expected hypothesis error into two slightly
different components: the true error of the optimal hypoth-
esis in � (irreducible bias), and the average discrepancy
between a random data generated hypothesis and this opti-
mal hypothesis (variance).2

Now given this decomposition, consider the model selec-
tion task: For a given instance of a model selection prob-
lem we are given a nested sequence of hypothesis classes
� 0 � � 1 � ����� , and are faced with a particular example
distribution P	�
 and training sample size - . Note that for
fixed P	�
 and - we obtain specific bias and variance val-
ues,

� # and � # , for each hypothesis class � # . Thus, each
instance of a model selection problem yields a particular
profile of biases and variances over the sequence of hypoth-
esis classes � 1 
 � 2 
0����� . Intuitively, we expect the variance
terms to increase for larger hypothesis classes, as there are
a wider variety of functions that give similar fits to the data.

1We require some technical conditions to yield this decom-
position. In particular, we require that � be closed under linear
combinations of functions (as well as Cauchy sequences). This
is sufficient to ensure that � is a closed linear subspace of a

Hilbert space defined by the inner product �	��

������ ����� � �������
� ������� 2 � P	 ; see, e.g., (Ash 1972, Chapter 3). Given these con-
ditions, we can apply the relevant projection theorem to obtain� ��!#"

, and the subsequent analysis becomes a simple consequence
of generalized Pythagorean relations. Fortunately, this technical
condition holds for most hypothesis classes normally considered
in practice; including (obviously) linear regression functions, as
well as any neural network regressor that uses linear output units.

2Note that
� ��!$"

and ¯� � actually coincide for linear regression
when there is a linear generating model and zero mean noise.

On the other hand, we expect the bias terms to decrease as
we are better able to approximate the optimal regression
for the given distribution. A model selection strategy needs
to infer how the combination of bias + variance behaves,
based on the structure of � 1 � � 2 �&%�%'% and the training
set errors !err " � �1 $ 
 !err " � �2 $ �����
By adopting the perspective that these bias and variance
profiles capture the essential aspects of the task, we are
able to make several useful predictions about the behav-
ior of model selection strategies, as well as characterize the
difficulty of model selection problems—based solely on the
shapes of these bias and variance profiles, and disregarding
other aspects of the problem.

3 Performance of penalization strategies

We begin by investigating the behavior of complexity-pe-
nalization strategies. Recall that for a training sample �
and corresponding hypothesis sequence

� �
1 
 � �2 
0����� , a penal-

ization strategy will choose the hypothesis
� �# that mini-

mizes some combination of class complexity / # and em-
pirical error !err " � �#.$ . The point is that the empirical er-
rors !err " � �#.$ tend to be gross underestimates of err " � �# $ in
general (since the

� �# are explicitly chosen to minimize the
error on � ), and the degree of underestimation tends to
become worse at higher complexity levels. Complexity-
penalization, therefore, seeks to adjust the empirical er-
ror estimates to compensate for this fact. This results in a
generic model selection strategy where one first penalizes
the empirical errors to obtain better estimates

!errpen " � �# $ � !err " � �# $ 1 penalty # (3)

and then chooses the hypothesis
� �# with the smallest ad-

justed estimate !errpen " � �# $ .
As mentioned, there are many variants of this strategy, but
to illustrate our main points it will suffice to consider two
strategies that embody distinct penalization policies. To
describe these strategies, let ( �*) , - be the number of
complexity levels being considered per training example.3

The first penalization strategy we consider is Generalized
Cross Validation GCV (Craven & Wahba 1979). Follow-
ing (Moody & Utans 1992) we can write the adjusted error
estimate of this strategy as

!errGCV " � �# $ � !err " � �# $ 1 2 ( � ( 2

" 1 � ( $ 2 !err " � �# $ �
The other penalization strategy we consider is Vapnik’s
Structural Risk Minimization procedure SRM (Vapnik
1996), which following (Cherkassky, Mulier, & Vapnik

3For most natural orderings � 1 + � 2 ,$,#, , the complexity level-
corresponds to the number of free parameters used in the defini-

tion of function class �/. . Therefore, intuitively 0 gives the num-
ber of distinct parameters being estimated per training example
(Cherkassky, Mulier, & Vapnik 1996; Vapnik 1996).



1996) can be formulated

!errSRM " � �# $ � !err " � �# $ 1
�

˜(�
1 � � ˜(���� !err " � �# $ 


where ˜( � ( " 1 1 ln 1 , ( $ 1 " ln -�$�, 2 - , and " % $ � denotes
the positive threshold function; i.e., "	( $ � � ( if (�� 0;
" ( $ � � 0 if (	� 0. For our purposes, the key difference be-
tween these two policies is that SRM uses a much steeper
penalization profile than GCV. (See Figures 1–4 below.)

Now reconsider the bias/variance characterization devel-
oped above. This offers an interesting interpretation of
complexity-penalization methods. This can be seen by di-
rectly comparing equations (2) and (3) and noting that the
first terms can be naturally aligned. Notice here that, al-
though !err " � �# $ is normally considered to be a direct (but
poor) estimate of

� �# ’s true error, we can alternatively view
!err " � �#.$ as an estimate of the true error of the optimal hy-
pothesis in the class,

� ��� �# . In fact, !err " � �# $ is typically a
much better estimate of err " � ��� �# $ than it is of err " � �# $ !
To see this, consider Figure 0 which depicts the relation-
ship between the training set estimate !err " � �# $ and the
fixed quantities err " � �#.$ and err " � ��� �# $ . First notice that
!err " � �# $ � !err " � ��� �# $ , since

� �# is explicitly chosen to mini-
mize !err. However, notice also that

� ��� �# is a fixed hypothe-
sis which has not been chosen as a function of � , and there-
fore we know that after relatively few training examples
we will have !err " � ��� �# $�
 err " � ��� �# $ with high probability.
Thus, combining this with the fact that err " � ��� �# $ � err " � �# $
by the definition of

� ��� � , we obtain the chain of inequalities

!err " � �# $ � !err " � ��� �# $ P
 err " � ��� �# $ � err " � �# $ �
This shows that !err " � �# $ must be closer to err " � ��� �# $ than
err " � �# $ with high probability after relatively few training
examples.4 In fact, the superiority of interpreting !err " � �# $
as an estimate of err " � ��� �# $ rather than err " � �# $ can be easily
demonstrated experimentally, as shown in Table 5 below.

Although not often explicitly made, this elementary obser-
vation leads to an interesting interpretation of penalization
strategies: if the empirical error term !err " � �# $ accurately
estimates the the bias term for class � # , then the penalty #
term must be accounting for the unobserved variance of
� # . Thus, we can interpret the sequence of penalty terms,
penalty1 
 penalty2 
������ , as in effect postulating a particular
profile of variance terms for the classes � 1 
 � 2 
������ . So
for example, a steep penalization profile encodes the as-
sumption that the variances grow rapidly as a function of
complexity level ) , whereas a flat profile asserts that the
variances grow more slowly. This observation leads to a
series of specific predictions about the behavior of penal-
ization strategies: (1) if the penalization profile is much

4This argument could be formalized into precise quantita-
tive statements, for example, by an elementary application of
Hoeffding-Chernoff bounds (Hoeffding 1963), but we do not pur-
sue this here. The intuition is clear in any case.
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!err
� � �. � err

� � ��!#". �

!err
� � ��!$". �

err
� � �. �

Figure 0: Illustrating the relation between the true error
and estimated error of the empirically best function

� �# and
of the true best function

� ��� �# . Solid lines indicate the true
errors determined by P	�
 , and dashed lines indicate the em-
pirical errors obtained on a training sample � .

steeper than the true variance profile, we expect system-
atic underfitting since the latter hypotheses will be over-
penalized relative to the true variances; (2) on the other
hand, if the penalization profile is much flatter than the true
variance profile, we expect systematic overfitting since the
latter hypotheses will be under-penalized; and finally (3)
we expect good generalization performance if the penalty
profile matches the true variance profile for the task.

Experiment To test these hypotheses we ran a series of
experiments to investigate the behavior of GCV and SRM
on model selection tasks with different bias and variance
profiles. Recall that GCV and SRM propose very differ-
ent penalization policies and therefore we expect them to
behave quite differently as we vary the task structure. To
conduct our experiments we considered a traditional lin-
ear regression problem where the goal is to learn a linear
function

� "	� 1 
�������
 ��� $ ��� 1 � 1
1 %'%�% 1 � � ��� that minimizes

the mean squared error on an unknown P˜	 
 . In this con-
text, a natural model selection task arises by considering
the nested sequence of function classes � 1 � � 2 � %'%'%
defined by the first 1 
 2 
0����� variables respectively (which as-
sumes in effect that the variables have been ordered by im-
portance). To design test problems, we set � � 10, - � 20,
and considered a series of distributions P˜	 
 that yield dif-
ferent bias and variance profiles for the task. Specifically,
we used distributions defined by a simple additive model
� ��� 1 � 1

1 %�%'% 1 � � � � 1�� , where the � # ’s and �
are independent and ����� " 0 
�� 2 $ . We generated � # ’s
by a Cauchy " 0 
 1 $ distribution, which was then truncated at
" ��� # 
 1 � # $ for different choices of � # . We also set the lin-
ear model coefficients to be � # � 1 , � # , to normalize the � #
variances. Thus, our test distributions P˜	 
 were determined
by � and the truncation constants � 1 
0������
�� 10.

The reason for using these Cauchy-like distributions in-
stead of more conventional Gaussians is that we wished to
construct difficult model selection problems. That is, wide-
tailed distributions like Cauchy create difficult variable se-
lection problems, because small training samples will not
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Figure 1: Bias and variance profiles for Problem 1 (flat
variance), showing the corresponding penalty profiles used
by GCV and SRM.

percentiles of error ratios mean
mean after 1000 repetitions compl.
ratio 50 75 95 100 diff.

GCV 1.90 1.421 2.114 4.357 37.47 -0.962
SRM 2.86 2.287 3.383 6.567 37.47 -5.834
VAR 1.60 1.057 1.677 3.584 37.47 0.030
10CV 2.08 1.610 2.469 4.657 12.73 -1.812
ADJ 2.00 1.544 2.358 4.492 35.74 -2.223

�

ADJ 2.02 1.572 2.328 4.568 35.74 -2.266

Table 1: Results for Problem 1—flat variance profile.

accurately capture the significant range of � # values that
will be observed in testing. Therefore small errors in

�� # re-
sult in hypotheses with huge test set errors, since we eval-
uate these functions on large unobserved � # values. In this
way we achieve a large variance between hypotheses.

For these tasks, we evaluated model selection strategies
by measuring the ratio of the true error of the hypothe-
ses

� �# they chose to the true error of the best hypothesis
in the sample-dependent sequence

� �
1 
 � �2 
0����� . (The ratio-

nale for this is that we wish to measure the selection strat-
egy’s ability to approximate the best hypothesis in the given
sequence—not find a better function from outside the se-
quence.) We ran our experiments by fixing a distribution
P	�
 , repeatedly generated training samples of size - � 20,
and recording the ratio of chosen to best-in-sequence errors
achieved by each strategy. This was repeated 1000 times to
estimate the performance of the model selection strategies,
as well as to estimate the bias/variance characteristics of
the given problem.

The first problem we considered, shown in Figure 1, was
designed to have a flat variance profile comparable in size
to the bias profile (defined by setting �4� 0 � 5, � # � 10).
Here we expect GCV to outperform SRM, since its pe-
nalization profile more closely matches the true variance
profile of this task (Figure 1). In fact our results show ex-
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Figure 2: Bias and variance profiles for Problem 2 (steep
variance), showing the corresponding penalty profiles used
by GCV and SRM.

percentiles of error ratios mean
mean after 1000 repetitions compl.
ratio 50 75 95 100 diff.

GCV 73.1 1.745 4.886 248.5 8007 0.605
SRM 2.3 1.613 2.274 4.41 117 -1.151
VAR 1.9 1.454 2.077 4.07 33 -0.830
10CV 17.8 1.643 3.021 26.97 2745 0.009
ADJ 1.5 1.229 1.724 3.10 8 -0.550

�

ADJ 1.8 1.252 1.798 3.66 34 -0.286

Table 2: Results for Problem 2—steep variance profile.

actly this. Table 1 shows that GCV significantly outper-
forms SRM at this task, obtaining a mean approximation
ratio of 1.9 over 1000 trials, compared to 2.9 obtained by
SRM. (The other strategies mentioned in Table 1 are ex-
plained below.) That is, GCV chose a function from the
sample-determined sequence

� �
1 
 � �2 
0����� that had a true error

1.9 times larger than the best true error of any function in
the sequence, on average. Moreover, GCV chose functions
at complexity levels that were close to the optimum com-
plexity levels for the given training sets—the last column
of Table 1 shows that GCV underestimated the best com-
plexity level by only 1.0 on average. For this problem SRM
significantly underfit the data, choosing function complex-
ities that were 5.8 levels smaller than optimum complexity
on average. These results support our predictions based on
the variance and penalization profiles involved.

We next considered a problem that had a much steeper vari-
ance profile, more closely resembling the penalization pro-
file of SRM (defined by setting � � 0 � 5, � # � 10 � 2

#
� 1);

see Figure 2. In sharp contrast to the previous results, Ta-
ble 2 shows that SRM significantly outperforms GCV in
this case, achieving a mean approximation ratio of 2.3 ver-
sus GCV’s mean ratio of 73.1. The last column in Table 2
also shows that GCV now overshoots the best complex-
ity by an average of 0.6 levels, which leads to devastat-
ing consequences given the sharply increasing variances in
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Figure 3: Bias and variance profiles for Problem 3 (low
variance), showing the corresponding penalty profiles used
by GCV and SRM.

percentiles of error ratios mean
mean after 1000 repetitions compl.
ratio 50 75 95 100 diff.

GCV 1.22 1.0 1.000 2.246 12.97 -0.111
SRM 2.46 1.0 2.151 8.985 51.12 -0.806
VAR 1.03 1.0 1.000 1.054 3.17 0.071
10CV 1.47 1.0 1.000 3.686 14.25 -0.246
ADJ 2.10 1.0 2.220 6.325 27.16 -0.630

�

ADJ 2.13 1.0 2.175 6.293 43.10 -0.620

Table 3: Results for Problem 3—low variance profile; easy
problem.

this task. Notice that here SRM avoids these large errors
by systematically underfitting the data (by an average of
1.2 complexity levels), and thus avoids the more complex
hypotheses that cause big problems. Thus, it seems that
underfitting the data has far less severe consequences than
overfitting in this case. In fact, there seems to be an inher-
ent asymmetry here which favors conservative (steep) pe-
nalization methods over credulous (flat) penalizers; i.e., the
losses associated with overfitting are far more significant
than underfitting if the variances are sharply increasing.

These results show that there is, in general, no best penal-
ization method. The performance one obtains depends on
how closely the penalization profile of the strategy matches
the true variances of the task. If the penalty terms are much
larger than the variances, systematic underfitting results;
whereas if the penalties are much smaller, the data are sys-
tematically overfit.5 Not surprisingly, directly penalizing
by the true variances of the task (Procedure VAR) always
seems to yield good performance for any slope of variance
profile. E.g., Tables 1 and 2 show that VAR performs well

5Note that this is similar to an observation made by Kearns et
al. (Kearns et al. 1995) in the context of learning classifications.
However, they do not explicitly invoke a bias/variance characteri-
zation of model selection problems to explain their results.
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Figure 4: Bias and variance profiles for Problem 4 (extreme
variance), showing the corresponding penalty profiles used
by GCV and SRM.

percentiles of error ratios mean
mean after 1000 repetitions compl.
ratio 50 75 95 100 diff.

GCV 2118 1.49 11.4 9205 2 � 3 � 105 0.658
SRM 198 1.07 1.78 5.37 1 � 1 � 105 -0.366
VAR 1.73 1.00 1.70 3.26 75.3 -0.502
10CV 869 1.45 4.04 1482 2 � 3 � 105 0.308
ADJ 1.31 1.00 1.32 2.59 9.48 -0.257

�

ADJ 23 1.00 1.53 8.63 13,422 0.069

Table 4: Results for Problem 4—catastrophic variance pro-
file; hard problem.

on Problems 1 and 2, even though the variance profiles be-
have quite differently in these two cases. Of course, VAR
avoids systematic over or under-fitting by using different
penalization profiles for each problem, and this is certainly
not achievable in practice. However, this suggests that one
should try to directly penalize according to the true vari-
ances of the task as much as possible.

Overall, these results suggest that one can interpret penaliz-
ers as asserting a particular structure for the problem: The
postulated penalization profile makes a specific assumption
about the behavior of the variances in the given task. The
obvious conclusion is that one should set the penalty terms
according to whatever prior knowledge one has about the
variance profile for the task at hand. Accurate assump-
tions tend to yield excellent generalization performance,
whereas inaccurate assumptions lead to poor performance.
However, we will see that there are situations where one
might not want to use penalty methods regardless.

4 Difficulty of model selection problems

The bias/variance decomposition can also be used to char-
acterize the notion of hard versus easy model selection
problems. Specifically, in terms of our previous definitions,
we find that if the variance profile is flat (grows slowly



hypothesis class (# of variables)
interpretation

- � 1 5 7 10
!err

� � �. � ests. err
� � �. � 0.042 119 782 1632

!err
� � �. � ests. err

� � ��!$". �
0.036 0.048 0.069 0.12

variance on 1000 trials

Table 5: Empirical comparison of the two interpretations
of !err " � �# $ : (A) as a direct estimate of its true error err " � �#%$ ,
versus (B) as an estimate of the class bias err " � ��� �# $ . Shows
variances obtained for hypothesis classes in Problem 4.

and is not large in comparison to the bias profile) then al-
most any sensible penalization strategy will do reasonably
well. On the other hand, if the variance profile grows ex-
plosively relative to the bias profile, then disaster results for
any penalization strategy that does not use the exact vari-
ance profile for the task (or at least a sufficiently steep pro-
file). These difficult problems occur naturally in regression
whenever the � values have wide-tailed distributions—for
example, as occurs with Cauchy distributions or in polyno-
mial regression problems.

Experiment To demonstrate the distinction between easy
and hard problems, we conducted a series of experiments in
the same setup as before. The first case we considered was
a model selection problem which had a low variance profile
in relation to the bias terms (defined by setting � � 0 � 1,
� # � ) ; Figure 3). We expect such a problem to be easy
for most reasonable selection strategies, since the variances
play a minor role and there are no serious consequences to
minor over or under-fitting. Table 3 demonstrates the rela-
tively benign behavior of the penalization strategies on this
task; although the variance profile distinctly favors GCV in
this case and this is reflected in the results.6

To contrast with this, we next considered a problem (Fig-
ure 4) which had a variance profile that grows explosively
in complexity of the hypothesis class (defined by setting
� � 1, � # � 10

#
, and � # � " 1 , � # $ 3 � 4). We expect this to

give a hard model selection problem because of the dras-
tic consequences that would befall even minor overfitting.
Table 4 shows that both GCV and SRM fail badly at this
task. Both strategies make catastrophic mistakes from time
to time, choosing hypotheses that are many orders of mag-

6It might seem surprising at first that the penalty and variance
terms can actually decrease on these problems, as shown in Fig-
ure 3. However, this is a consequence of the fact that the penalty
terms depend on the training set errors, which can decrease faster
than the multiplicative adjustments used by GCV and SRM. For
the variances, the easiest way to see how they can decrease is to
imagine a case where � is a deterministic linear function of the
variables. Here, any linearly independent set of training examples
determines the target function exactly, and thus we would observe
zero variance if given a linearly independent set (which could hap-
pen with probability 1 for ��� ��� ). The additive noise compo-
nent � has the effect of monotonically increasing these variances,
in counterbalance.

nitude worse than the best available. Interestingly, Proce-
dure VAR, which penalizes according to the true variances
of the task, still works reasonably well in this case (Ta-
ble 4). But of course VAR is not a practically realizable
strategy. Overall, we found that model selection problems
of this type tend to be inherently difficult for penalization
strategies. In fact, we tried an entire suite of penalization
methods on this task and obtained uniformly poor perfor-
mance. These included Akaike’s AIC, Schwarz’s BIC, and
Mallow’s � � , among others; see e.g., (Foster & George
1994; Cherkassky, Mulier, & Vapnik 1996) for a discussion
of several such methods.

These results lead us to conclude that complexity-
penalization can be an inherently risky strategy. There
seems to be a potential for disaster whenever the task hap-
pens to be hard; i.e., whenever the variance profile grows
explosively in an unpredictable manner.

Alternative hold-out methods An obvious idea in these
situations is to consider alternative hold-out–based meth-
ods, like 10-fold cross-validation (10CV) or some other
resampling procedure (Kohavi 1995; Weiss & Kulikowski
1991). The common folklore surrounding these techniques
is that they can often be better behaved than penaliza-
tion methods. However, it turns out that these strategies
are prone to the very same drastic mistakes suffered by
penalty-based methods, as Table 4 clearly demonstrates for
10CV. The strikingly bad performance obtained by all
standard model selection methods on these difficult tasks
raises the question of whether it is possible to do better on
hard problems, or whether we have to live with the poten-
tial of making disastrous mistakes.

5 A new model selection technique

In a recent paper, (Schuurmans 1997), one of the authors
introduces a new strategy for model selection that takes a
fundamentally different approach to the problem than pre-
vious techniques. This new strategy seems to avoid many
of the catastrophic overfitting errors that plague standard
complexity-penalization and hold-out methods on difficult
model selection tasks. This procedure implicitly attempts
to estimate the variance of a function class � * by examin-
ing how

� �* compares to
� �# for ) �
	 .

The basic idea behind this new strategy is to exploit the in-
trinsic geometry of the function learning task which arises
from a simple statistical model of the problem: Assume the
training and test examples are independent random obser-
vations drawn from a joint distribution P	�
 on � � � . Then
we can decompose this distribution into the conditional dis-
tribution of � given � , P
�� 	 , and the marginal distribution
P	 on � . Note that when learning a function

�
: � � �

we are really only interested in approximating the condi-
tional P
�� 	 . However our approach is to exploit knowledge
about P	 to help us make better decisions about which hy-
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Figure 5: The real and estimated distances between succes-
sive hypotheses

� # and
� * and the target P
�� 	 . Solid lines

indicate real distances, dashed lines indicate empirical dis-
tance estimates.

pothesis
�

to choose. In fact, for now, assume that we ac-
tually know P	 and see how far this gets us. (Note that any
information we require about P	 can be obtained from un-
labeled training examples.)

Knowing P	 is important because it allows us to define a

natural metric � " � 
�� $ &� � � � " � "	� $ ��� "�� $�$ 2 � P	 � 1 � 2 on
the space of hypotheses that measures the “distance” be-
tween two hypotheses

�
and � . Moreover, we can extend

this definition to include the target conditional P
�� 	 via the

definition � " � 
 P
�� 	 $ &� � � � ��� " � "�� $ � � $ 2 � P
�� � � P	 � 1
�

2
;

which means that we can interpret the true error of a func-
tion

�
as the distance between

�
and the target object P
�� 	 .

Importantly, these definitions are compatible in the sense
that the defined distance measure � satisfies the standard
(pseudo) metric axioms over ���	� P
�� 	�
 . This gives us
a nice geometric view of the problem: We are given a
nested sequence of spaces � 0 � � 1 � ����� , each with
a closest function

�
0 
 � 1 
0����� to the target P
�� 	 , where the

distances are decreasing. However, we do not observe
these real distances. Rather, we are given a training sam-
ple � � �	� 1 
�� 1 
�
0������
 �	� � 
�� � 
 , and have to choose from
the sequence of empirically closest functions

� �
0 
 �5�1 
0����� ,

which have monotonically decreasing distance estimates
�� " � 
 P
�� 	 $ &�
� ( �*�+

1 " � "	� * $ � � * $ 2 ,.-�� 1
�

2
on � . The key

point though is that we now have more information at our
disposal: not only do we have estimated distances to P
�� 	 ,
we now know the true distances between functions in the
sequence!

Our idea is to use this additional information to choose a
better hypothesis. In fact, notice that we are dealing with
two metrics here: the true metric � defined by the joint dis-
tribution P	�
 and an empirical metric ˆ� determined by the
labeled training sequence. Given these two metrics, con-
sider the triangle formed by two hypotheses

� �# and
� �* and

the target conditional P
�� 	 (Figure 5). Note that there are
six distances involved, three real and three estimated—of
which the true distances to P
�� 	 are the only two we care
about, and yet these are the only two we don’t have! The
key observation though is that the real and estimated dis-
tances between hypotheses � " � �# 
 � �* $ and

�� " � �# 
 � �* $ give

us an observable relationship between � and ˆ� in the lo-

cal vicinity. In fact, we can adopt the naive assumption
that observed relationship between

� �# and
�5�* also holds

between
� �* and P
�� 	 . Note that if this were the case, we

would obtain a better estimate of � " � �* 
 P
�� 	 $ simply by ad-

justing the training set distance
�� " � �* 
 P
�� 	 $ according to the

observed ratio � " � �# 
 � �* $ ,
�� " � �# 
 � �* $ .7 In fact, adopting this

as a simple heuristic leads to a surprisingly effective model
selection procedure (ADJ): given the hypothesis sequence� �

1 
 � �2 
0����� , first multiply each estimated distance
�� " � �* 
 P
�� 	 $

by the largest observed ratio � " � �# 
 � �* $ ,
�� " � �# 
 � �* $ , ) � 	 ,

and then choose the function in the sequence with the
smallest adjusted distance estimate to P
�� 	 . (Note that this
adjustment to

� �* ’s distance can be interpreted as an esti-
mate for the variance of � * , indirectly achieved by refer-
ring to � # � � * .)
Experiment Tables 1–4 show that this technique does in-
deed work effectively on the model selection problems con-
sidered here. In particular, Table 4 shows that ADJ com-
pletely avoids the catastrophic mistakes made by the stan-
dard model selection strategies, and even outperforms the
ideal variance penalizer VAR. This is somewhat surprising
since VAR exploits exact knowledge of the true variances
for the task. However, the reason for VAR’s failure is that
it does not pay explicit attention to the inter-hypothesis dis-
tances, and can therefore sometimes be fooled. Of course,
we do not expect a free lunch in general (Schaffer 1993),
and there are certainly model selection problems where
ADJ does not dominate, e.g., Table 3. However, one should
be able to exploit additional information about the task
(here knowledge of P	 ) to obtain significant improvements
across a wide range of problem types and conditions. Our
empirical results support this view for the case of hard
model selection tasks. (Further support to this claim is pro-
vided in (Schuurmans 1997) which considers a different
class of polynomial curve-fitting problems.)

To summarize, the new metric-based technique ADJ ap-
pears to effectively avoid dangerous under and over-fitting,
and provides a safe and responsive model selection strat-
egy, at least for the regression problems considered here.
Interestingly, the performance of ADJ does not seem to de-
grade too severely when we move to consider hard model
selection problems, even when these hard problems cause
tremendous difficulty for standard techniques.

Of course, one can always argue that these results are not
terribly useful since the metric-based strategy ADJ requires
knowledge of the true domain distribution P	 . This is
clearly an unreasonable assumption in practice. However,
one can obtain information about P	 from unlabeled train-
ing instances. In fact, many important function learning
applications have large corpora of unlabeled training data

7Note that since we expect ˆ� to be an underestimate in general,
we expect this ratio to be typically larger than 1.



available (e.g., image, speech and text databases), so these
metric-based techniques could still apply to a wide range of
practical situations—provided they are robust to using only
estimated distances. In fact, ADJ turns out to be reasonably
robust to using approximate distances. Tables 1–3 show
that as few as 100 reference examples were sufficient for
the approximate

�

ADJ procedure to perform nearly as well
as ADJ (except for the difficult problem in Table 4). Fi-
nally, note that this still yields a reasonably efficient model
selection procedure since computing inter-hypothesis dis-
tances involves making only a single pass down the refer-
ence list of unlabeled examples. This is a strong advantage
over standard hold-out techniques like 10CV which repeat-
edly call the hypothesis generating mechanism to generate
pseudo-hypotheses.

6 Conclusions

We considered a simple characterization of model selec-
tion problems based on the standard bias/variance decom-
position of expected hypothesis error. This analysis allows
us to make predictions about and distinguish the perfor-
mance of different model selection strategies based on two
simple but essential aspects of the task: the shapes of the
bias and variance profiles generated across the sequence of
hypothesis classes. With this characterization, we distin-
guished between easy and hard model selection problems.
This distinction is important because difficult model selec-
tion problems arise in fairly natural conditions. For exam-
ple, we demonstrated this for regression where the inde-
pendent variables are drawn from wide-tailed distributions.
In such cases, prediction variance increases sharply as ad-
ditional terms are added to the model, since the � ’s in the
out-of-sample testing data sets may be far from those in the
training set. Another example where steep variance pro-
files occur is polynomial curve-fitting (Cherkassky, Mulier,
& Vapnik 1996; Vapnik 1996).

These observations lead to specific recommendations:
First, one should use as much prior knowledge as possible
about the shape of the variance profile to choose a model
selection policy that works effectively while avoiding dis-
astrous mistakes. For example, in the case of steep variance
profiles, standard complexity penalization methods do not
penalize sufficiently, which leads to disastrous results. Sec-
ond, the new metric-based model selection strategies seem
to be much more robust against catastrophic overfitting er-
rors than standard techniques, and apparently can be use-
fully applied in difficult cases.

Among the many avenues for future work, we are currently
extending the same style of bias/variance analysis to classi-
fication (as opposed to regression) problems (Kearns et al.
1995). Note that the decomposition of prediction error into
additive bias and variance components is not so obvious for
classification however (Kohavi & Wolpert 1996).
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